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Characterization Testing of the Teledyne  
Passive Breadboard Fuel Cell Powerplant 

 
Patricia Loyselle 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

  
Kevin Prokopius 

Analex Corporation 
Cleveland, Ohio 44142 

Summary 
NASA’s Exploration Technology Development Program (ETDP) is tasked with the development of 

enabling and enhancing technologies for NASA’s exploration missions. As part of that initiative, the 
return to the Moon requires a reliable, efficient, and lightweight fuel cell powerplant system to provide 
power to the Altair Lunar Lander and for lunar surface systems. Fuel cell powerplants are made up of two 
basic parts; the fuel cell itself and the supporting ancillary subsystem. This subsystem is designed to 
deliver reactants to the fuel cell and remove product water and waste heat from the fuel cell. Typically, 
fuel cell powerplant ancillary subsystems rely upon pumps and active water separation techniques to 
accomplish these tasks for closed hydrogen/oxygen systems. In a typical system, these components are 
the largest contributors to the overall parasitic power load of the fuel cell powerplant. A potential step 
towards the development of an efficient lightweight power system is to maximize the use of “passive” or 
low-power ancillary components as a replacement to these high-power load components.  

Introduction 
The Teledyne proton exchange membrane (PEM) fuel cell breadboard powerplant was designed to 

address alternatives to two subsystems within the powerplant: the gas and water separator and the reactant 
gas recirculation pumps. Both the recirculation pumps and the active water separation methods are the 
major contributors to the parasitic power load of a fuel cell powerplant (Ref. 1, internal report). As such, 
the development of alternative, low-power ancillary components for these tasks were chosen. The 
powerplant consists of a water-cooled, hydrogen/oxygen PEM fuel cell stack along with supporting 
ancillaries (Fig. 1) and a separate control and data acquisition system. Facility power is used to initially 
start the powerplant, that is, the opening of reactant valves and initiation of the coolant and heating loop. 
After the powerplant is operational, the ancillary components, except for the data acquisition and control, 
are powered by the powerplant itself.  

The breadboard powerplant uses a unique water separation mechanism to separate the product water 
from the oxygen reactant stream. In the past, for variable gravity water separation, a centrifugal method of 
separating the water from the reactant gas stream had been used. The method integrated within the 
breadboard powerplant has no moving parts but rather relies upon the separation of water from gas via a 
porous membrane. This membrane allows the passage of water but not the reactant gas. Within the 
breadboard, this passive water separator was used on the oxygen reactant stream. A backup, gravity- 
dependent water separator was placed in series with the passive unit to collect any water not separated 
from the oxygen gas stream. This was done to prevent damage to the fuel cell stack in the instance that 
the passive system did not work sufficiently. A gravity-dependent water separator was used to separate 
any small quantities of water carried by the hydrogen reactant stream. 

 



NASA/TM—2011-216783 2 

 
 

 
The breadboard powerplant uses a low-power alternative to the stand recirculation pumps used in the 

past. The role of the active gas reactant recirculation pumps normally used for reactant recirculation, has 
been replaced by a combination of a fuel injector/ejector on the hydrogen side and a solenoid/ejector on 
the oxygen side (Ref. 2, internal report). The gas recirculation rate is a function of the pulse rate of the 
fuel injector/ejector or solenoid valve/ejector. The parasitic power required to operate the injector/ejector 
or solenoid valve/ejector is on the order of approximately 10 W as opposed to the 100 to 200 W used by 
gas recirculation pumps. 

The fuel cell stack comprised 32 individual cells in a series configuration. The fuel cell stack was 
designed to provide 1.5 kW (nominal) and up to 1.8 kW peak. The passive water separator is located 
downstream of the fuel cell (Ref. 2, internal report). While the fuel cell product water is removed from the 
stack using a passive gravity independent water separator, a backup gravity-dependent water separator on 
the oxygen side is also installed (Ref. 2, internal report). On the hydrogen side, any water is removed from 
the gas stream via a gravity-dependent water separator. Waste heat is removed from the stack via an 
internal liquid cooling loop. The powerplant cooling system in turn rejects the heat to a facility cooling 
system external to the powerplant. 

Test Summaries 
The stability, performance, life, and response time of the Teledyne breadboard powerplant were 

evaluated using a series of tests. These performance tests were conducted to assess performance and 
stability over conditions anticipated to be encountered during operation under mission scenarios. A brief 
description of each test type follows below. Detailed information regarding operating parameters of each 
test is included in Appendix C. 
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Calibration Series Test 

The calibration series test was a reference test for the breadboard powerplant. The series comprised a 
polarization test and an abbreviated version of the performance load profile test. This test was performed 
at specified intervals during the evaluation of the breadboard powerplant at NASA Glenn Research 
Center. The calibration series test was used to quantify performance changes of the breadboard model as a 
function of damage resulting from shipment, testing, or age. Voltage transitions were recorded at a rate of 
200 kHz during the various transitions in current.  

Performance Load Profile Test 

The performance load profile test was a benchmark test for the breadboard model powerplant. This 
load profile was developed to approximate a typical power load on the Space Shuttle orbiter. Voltage 
transitions were recorded at a rate of 200 kHz during some of the transitions in current. 

Transient Load Profile Test 

The utilization of passive components could negatively impact the ability of the powerplant system to 
follow rapid changes in power load demand. The transient load profile test was used to assess the 
performance and response of the passive ancillary components to multiple, rapid changes in power 
demand.  

Water Separator Evaluation 

The gravity-independent, passive water separator was evaluated by applying a constant power load to 
the powerplant for 20 hr. During that time, the water collected by the oxygen gravity-independent, passive 
water separator, the oxygen gravity-dependent backup water separator and the hydrogen gravity-
dependent water separator was collected and measured. Several power levels were applied to the 
breadboard powerplant to evaluate the water separator. 

Test Results and Discussion 
Calibration Series Tests 

During the course of the evaluation testing of the Teledyne breadboard powerplant, a power profile 
calibration series was applied at regular intervals to the powerplant (Figs. 2 and 3). The aim of this test 
was to not only monitor current performance of the powerplant but also capture changes in the 
performance over time as a result of age, extended testing or any environmental effects.  

Figure 3 shows, even as the power load level drawn from the fuel cell changes from 0 to 1800 W, the 
ancillary component parasitic power remains relatively constant, varying between 130 and 150 W. Within 
the powerplant, only the injector/ejector recirculation system varies with fuel cell power. The parasitic 
power required by this combination is constant with only the duty cycle (how many on/off pulses per 
minute) varying as the rate at which the fuel injector/solenoid pulse changes. 

In Figure 4, the results of the calibration testing carried out during the test regime are presented. 
There is some minor variation within the stack voltages. The variation observed can be a result of several 
factors, including coolant temperature, reactant temperature, and internal hydration content of the 
membranes. The stack voltage variation observed is minor and within reason given the day-to-day 
variation of environmental conditions. 
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Figure 5 shows the first and last calibration series collected, approximately 3 months apart, are not 
significantly different. However, there are some minor variations in the stack voltage. In this instance,  
the performance of the last calibration series collected was actually slightly better than the initial 
performance observed. A number of factors could be responsible for the slight performance change. 
These include temperatures of the reactants or the fuel cell and the relative hydration level of the 
membranes within the fuel cell. 
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In Figure 6, there is a similar performance variation seen between separate calibration series run on 
the same day. Minor variations in coolant temperature and variable internal water content of the 
membranes is likely responsible for the slight voltage variation observed. 
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Performance Load Profile Test  

Performance load profiles are measures of the performance and stability of the fuel cell powerplant 
over an 8-hr period. Performance load profile results from approximately 1 month apart can be seen in 
Figure 7. During this month, the breadboard powerplant had been operated for 322 hr. (The powerplant 
was operated for a total of 850 hr while at the Glenn Research Center.) Only minor variations in the stack 
voltage and power are present. As was seen for the calibration series results, small changes in temperature 
can result in these minor performance changes.  

Transient Load Profile Test  

The transient load profile was intended to evaluate the performance of the breadboard powerplant to 
rapid changes in power demand. The change from active recirculation pumps that quickly recirculate 
unused reactants to injector/ejector or solenoid valve/ejector may limit the response of the powerplant to 
rapid load changes. The power profile combines several instances of longer times at different power 
levels to several rapid changes in power load over the course of a few minutes. The applied current load 
and resulting powerplant power output can be seen in Figure 8. The parasitic power remains essentially 
constant regardless of the power output of the breadboard powerplant. This reflects the largely passive 
design of this powerplant. 

Figure 9 displays an expanded view of the profile. This portion includes several rapid power 
transitions. The fuel cell powerplant is able to follow the current demands applied to it. After each 
transition, the power level delivered rapidly follows the current draw and remains constant and stable 
until the next load step. However, it should be noted that all load steps were within the design power 
delivery range of the powerplant. If the load steps were above or below the design range, the performance 
stability would likely degrade. Beyond this range, the reactant delivery and recirculation may not be 
adequate to meet the power demand or provide enough circulation to move the water from within the 
stack to the water separator.  
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Transient load profile tests were carried out at various times during the overall test regime. The 
results of these tests can be seen in Figure 10. There is some variation in stack voltage between the 
various test runs. As previously discussed, this variation can be caused by a number of factors, including 
the temperature of the fuel cell from run to run. In Figure 11, the coolant inlet temperature for the various 
transient load profile runs is plotted. The coolant inlet temperature also varies from run to run with the 
higher temperature runs corresponding to the slightly higher stack voltages.  
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Water Separator Evaluation Test 

The Teledyne breadboard powerplant uses a unique water separation mechanism to separate the 
product water from the oxygen-reactant stream. In the past, for variable gravity water separation, a 
centrifugal method of separating the water from the reactant gas stream has been used. The method 
integrated within the breadboard powerplant has no moving parts but rather relies upon the separation of 
water from gas via a porous membrane. This membrane allows the passage of water but not the reactant 
gas. Within the breadboard, this passive water separator was used on the oxygen reactant stream. A 
backup gravity-dependent water separator was placed in series with the passive unit to collect any water 
not separated from the oxygen gas stream. This was to prevent damage to the fuel cell stack in the 
instance that the passive system did not work sufficiently. A gravity-dependent water separator was used 
to separate any small quantities of water carried by the hydrogen reactant stream. 

To evaluate the performance of the passive water separator, the powerplant was run at several power 
levels (Fig. 12) for a set period of time of 20 hr. During that time, product water was collected from the 
passive water separator on the oxygen reactant loop and the gravity dependent water separators on the 
hydrogen and oxygen reactant loop. At the end of each time period, the water collected in each water 
separator was measured. The results of the water separator test can be seen in Figure 13. 

Figure 13 shows the quantity of water collected by the gravity-independent passive water separator 
follows a linear relationship with increasing current. Small quanities of water were also collected within 
the gravity-dependent separators on both the hydrogen and oxygen lines. The quantity of water collected 
in those separators was less than 1 percent of the water collected by the gravity-independent separator. It 
is likely that the water collected by the backup gravity-dependent separator is due to condensation as the 
temperature of the gas stream is reduced. The gravity-independent separator removed the water produced 
by the fuel cell over the entire range of power levels applied to the breadboard fuel cell powerplant.  
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Mission Profile Test 

A 240-hr mission profile test profile was applied to the Teledyne breadboard powerplant. This test 
serves the purpose of an abbreviated life test of the powerplant. The profile is an approximation of the 
typical power load experienced by the Shuttle orbiter fuel cell powerplant. Figure 14 shows the test is 
primarily composed of a long-duration steady-state power load, with load variations in the beginning and 
end of the profile. Over extended periods of time, the stack voltage degrades slightly. This had been 
observed before in other powerplants evaluated (Ref. 3). It is likely this is due to a buildup of impurities  
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and/or excess water vapor within the powerplant. Unfortunately, the powerplant shut down 72 hr short of 
the planned 240-hr test. The powerplant was shut down automatically by the powerplant controller as a 
result of a pressure differential between the oxygen and hydrogen inlet lines exceeding 8 psi. This 
pressure differential was caused as a result of intermittent burping of the reactant systems to vent 
accumulated impurities combined with the timing of the recirculation system pulses.  

Conclusion 
The Teledyne passive breadboard fuel cell powerplant has been evaluated with regard to its 

performance and stability. Repeated tests over time were conducted and evaluated. Minor variation in 
performance between test runs was noted, however, these variations could be attributed to temperature 
changes within the fuel cell, not degradation or instability. In general, the powerplant exhibited consistent 
and reproducible performance over time. The passive, gravity-independent water separator was evaluated 
during extended operation over a variety of power loads. Over the entire range of power levels applied, 
the passive water separator effectively separated the product water from the oxygen stream exiting the 
fuel cell maintaining stable performance over the entire 20-hr test period at each power level. 
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Appendix A.—Test Matrix 

A.1 Test Schedule—2007  

• Verify reproducible performance over a 3-day period 
– October 26, 2007 

• Calibration series, transient test, calibration series, transient test 
– October 29, 2007 

• Calibration series, transient test 
– October 30, 2007 

• Calibration series, transient test 
 

October 30, 2007 
• Performance Load Profile Test 
• Verify long-term behavior of powerplant/stack; verify reproducibility with respect to testing at 

Teledyne   
– October 31, 2007, to November 9, 2007 
– Mission Profile Test 

• Evaluate any performance changes after 240-hr mission profile test 
– November 26, 2007 
– Calibration Series Test, Transient Test, Performance Load Profile Test 

  
November 30, 2007, to December 12, 2007 

• Water Separator (Teledyne Unit) Test 
 

December 12, 2007 
• Calibration Series Test, Transient Test 
 

December 13, 2007, to December 18, 2007 
• Mission Profile Test 
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Appendix B.—Operating Procedure for Teledyne’s  
Upgraded Breadboard Computer 

Updated: 3 January 2008 
Date: ___________ 

 
 

1.0 Start up Procedure 
 
 ______  Double click on the 20071116_NASA BB INTERFACE.vi icon on the desktop of the 

Teledyne Computer. 
 ______  Select a data storage rate for the test profile to be run (Fig. B1, green circle). Selecting a 

storage rate of zero will collect data at a rate of about 7 samples/second. 
 ______  Change the Delta V Shutdown Limit from 0.08 to 0.12 V. 
 ______  Press the white arrow at the top left of the screen to start up the program. 
 ______  Click “OK” to proceed with startup. 
 ______  Click “OK” to keep default file name for data storage or modify the file name and then click 

“OK.” If “CANCEL” is clicked data will not be stored. 
 ______  Click “OK” at Confirm Nitrogen Supply prompt to begin purging and leak testing. 
 ______  Click “OK” at Confirm Reactant Supply prompt to open reactants.  
 ______  When the TEST STATUS display indicates “STARTUP COMPLETE: FUEL CELL 

SYSTEM FULLY OPERATIONAL,” the power plant is at open circuit and load currents can 
now be applied. 

 ______  Begin test profile using the LabVIEW system. 
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2.0 Normal Shutdown Procedure 
 
 ______  Click the PRESS TO SHUTDOWN button located at the top of the Fuel Cell Interface Screen 

(Fig. B1, red circle). This will initiate a normal sequenced shutdown. Do not attempt to 
intercede or interrupt the shutdown since purging and cooling performed during shutdown is 
very important to maximize stack life. 

 
3.0 Emergency Shutdown Procedure 

 
 ______  Push in one of the red E-STOP buttons in the control room. This will immediately shut down 

the power plant. 
 ______  Once the emergency circumstance has been resolved, close the Teledyne program, reopen it, 

and restart it. Proceed with a normal startup until just after the nitrogen purging begins and 
then click the PRESS TO SHUTDOWN button (Fig. B1, red circle). This will cause the 
breadboard to go through a normal shutdown allowing any residual reactant gases to be 
consumed and to assure the stack voltage is brought down to a safe level. 

 
4.0 Miscellaneous Notes 

 
 ______  The graph in Figure B1 is set up to show the voltage of all 32 cells. This graph can be 

changed to digital display or sweep graph. It is displayed currently in histogram mode 
(Fig. B1, yellow circle). 

 ______  Figure B1 is currently set to the fuel cell interface screen. The screen can be changed to show 
the power plant P&ID screen (Fig. B2) as well as the power plant status display screen 
(Fig. B3). 

 ______  If the maximum cell voltage difference becomes greater than 0.1 V, the system will 
automatically shut down. 
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 ______  If the minimum voltage at any individual cell is less than 0.75 V, the system will 
automatically shut down. 

 ______  Do not apply peak loads in excess of 1.5 kW on a continuous basis. Peak loads between 1.5 
and 1.8 kW must not exceed 15 seconds in duration. 
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Appendix C.—Test Description Tables 
Element  

no. 
Increment 

time,  
sec 

Current,  
A 

Teledyne data 
recording 
interval,  

sec 

GRC  
data recording 

interval,  
sec 

High speed 
data recording 

rate,  
kHz 

Stack 
voltage,  

V 

Total time, 
sec 

Current 
density, 
mA/cm2 

Comments 

1a  115  0.0  1  1    115  0  Voltage transient  
1b  5  0.0  1  1  200   120  0   
2a  5  5.8  1  1  200   125  20   
2b  115  5.8  1  1    240  20  Between Elem. 1, 2  
3a  115  11.7  1  1    355  40  Voltage transient  
3b  5  11.7  1  1  200   360  40   
4a  5  17.5  1  1  200   365  60   
4b  115  17.5  1  1    480  60  Between Elem. 3, 4  
5  120  23.4  1  1    600  80   
6  120  29.2  1  1    720  100   
7  120  35.0  1  1    840  120   
8  120  40.9  1  1    960  140   
9  120  46.7  1  1    1080  160   

10  120  53.2  1  1    1200  182.2   
11  5  60.0  1  1    1205  205.4   
12  5  67.0  1  1    1210  229.4   
13  5  60.0  1  1    1215  205.4   
14  120  53.2  1  1    1335  182.2   
15  120  46.7  1  1    1455  160   
16  120  40.9  1  1    1575  140   
17  120  35.0  1  1    1695  120   
18  120  29.2  1  1    1815  100   
19  120  23.4  1  1    1935  80   
20  120  17.5  1  1    2055  60   
21  120  11.7  1  1    2175  40   
22  120  5.8  1  1    2295  20   
23  120  0.0  1  1    2415  0   
24  20  0.0  1  1    2435  0   
25  120  33.6  1  1    2555  115.2   
26  1200  29.0  1  1    3755  99.3   
27a  55  13.3  1  1    3810  45.6  Voltage transient  
27b  5  13.3  1  1  200   3815  45.6   
28a  5  46.0  1  1  200   3820  157.6   
28b  55  46.0  1  1    3875  157.6  Between Elem. 27, 28  
29  60  13.3  1  1    3935  45.6   
30  60  37.1  1  1    3995  127.2   
31  15  54.9  1  1    4010  188   
32  1200  37.1  1  1    5210  127.2   
33a  55  46.0  1  1    5265  157.6  Voltage transient  
33b  5  46.0  1  1  200   5270  157.6   
34a  5  13.3  1  1  200   5275  45.6   
34b  55  13.3  1  1    5330  45.6  Between Elem. 33, 34  
35a  25  0.0  1  1    5355  0  Voltage transient  
35b  5  0.0  1  1  200   5360  0   
36a  5  37.1  1  1  200   5365  127.2   
36b  55  37.1  1  1    5420  127.2  Between Elem. 35, 36  
37  40  13.3  1  1    5460  45.6   
38  60  37.1  1  1    5520  127.2   
39  15  54.9  1  1    5535  188   
40  60  37.1  1  1    5595  127.2   
41  40  26.9 1  1    5635  92  
42  60  37.1  1  1    5695  127.2   
43  40  50.6  1  1    5735  173.4   
44  60  37.1  1  1    5795  127.2   
45  40  31.5  1  1    5835  108   



NASA/TM—2011-216783 18 

Element  
no. 

Increment 
time,  
sec 

Current,  
A 

Teledyne data 
recording 
interval,  

sec 

GRC  
data recording 

interval,  
sec 

High speed 
data recording 

rate,  
kHz 

Stack 
voltage,  

V 

Total time, 
sec 

Current 
density, 
mA/cm2 

Comments 

46  60  37.1  1  1    5895  127.2   
47  40  46.0  1  1    5935  157.6   
48  60  37.1  1  1    5995  127.2   
49  40  38.0  1  1    6035  130   
50  60  37.1  1  1    6095  127.2   
51  40  43.3  1  1    6135  148.4   
52a  145  37.1  1  1    6280  127.2  Voltage transient  
52b  5  37.1  1  1  200   6285  127.2   
53a  5  0.0  1  1  200   6290  0   
53b  55  0.0  1  1    6345  0  Between Elem. 52, 53  

C.1 Performance Load Profile 
Element 

no. 
Increment 

time,  
sec 

Current, 
A 

Teledyne data 
recording 
interval,  

sec 

GRC  
data recording 

interval, 
sec 

High speed  
data recording 

rate,  
kHz 

Stack 
voltage,  

V 

Total time,  
sec 

Current 
density, 
mA/cm2 

Comments 

1  60  0.0  1  1    60  0   
2  150  33.6  1  1    210  115.2   
3  3600  29.0  1  1    3810  99.3   
4a  3295  13.3  1  1    7105  45.6  Voltage transient  
4b  5  13.3  1  1  200   7110  45.6   
5a  5  46.0  1  1  200   7115  157.6   
5b  895  46.0  1  1    8010  157.6  Between Elem. 4, 5  
6  3600  13.3  1  1    11610  45.6   
7  960  37.1  1  1    12570  127.2   
8  15  54.9  1  1    12585  188   
9  6120  37.1  1  1    18705  127.2   

10a  895  46.0  1  1    19600  157.6  Voltage transient  
10b  5  46.0  1  1  200   19605  157.6   
11a  5  13.3  1  1  200   19610  45.6   
11b  1675  13.3  1  1    21285  45.6 Between Elem. 10, 11  
12a  55  0.0  1  1    21340  0  Voltage transient  
12b  5  0.0  1  1  200   21345  0   
13a  5  37.1  1  1  200   21350  127.2   
13b  855  37.1  1  1    22205  127.2  Between Elem. 12, 13  
14  40  13.3  1  1    22245  45.6   
15  885  37.1  1  1    23130  127.2   
16  15  54.9  1  1    23145  188   
17  860  37.1  1  1    24005  127.2   
18  40  26.9  1  1    24045  92   
19  860  37.1  1  1    24905  127.2   
20  40  50.6  1  1    24945  173.4   
21  860  37.1  1  1    25805  127.2   
22  40  31.5  1  1    25845  108   
23  860  37.1  1  1    26705  127.2   
24  40  46.0  1  1    26745  157.6   
25  860  37.1  1  1    27605  127.2   
26  40  38.0  1  1    27645  130   
27  860  37.1  1  1    28505  127.2   
28  40  43.3  1  1    28545  148.4   
29a  220  37.1  1  1    28765  127.2  Voltage transient  
29b  5  37.1  1  1  200   28770  127.2   
30a  5  0.0  1  1  200   28775  0   
30b  55  0.0  1  1    28830  0  Between Elem. 29, 30  
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C.2 Transient Tests 
Element 

no. 
Increment 

time,  
sec 

Current, 
A 

Teledyne data 
recording 
interval,  

sec 

GRC data 
recording 
interval,  

sec 

High  
speed data 

recording rate, 
kHz 

Stack 
voltage,  

V 

Total time, 
sec 

Current 
density, 
mA/cm2 

Comments 

1a  55  0.0  1  1    55  0.0   
1b  5  0.0  1  1  200   60  0.0  Voltage transient 
2a  5  54.0  1  1  200   65  184.9  Between Elem. 1b, 2a  
2b  50  54.0  1  1    115  184.9   
2c  5  54.0  1  1  200   120  184.9  Voltage transient 
3a  5  0.0  1  1  200   125  0.0  Between Elem. 2c, 3a  
3b  50  0.0  1  1    175  0.0   
3c  5  0.0  1  1  200   180  0.0  Voltage transient 
4a  5  37.1  1  1  200   185  127.1  Between Elem. 3c, 4a  
4b  50  37.1  1  1    235  127.1   
4c  5  37.1  1  1  200   240  127.1  Voltage transient 
5a  5  0.0  1  1  200   245  0.0  Between Elem. 4c, 5a  
5b  50  0.0  1  1    295  0.0   
5c  5  0.0  1  1  200   300  0.0  Voltage transient 
6a  5  17.5  1  1  200   305  59.9  Between Elem. 5c, 6a  
6b  50  17.5  1  1    355  59.9   
6c  5  17.5  1  1  200   360  59.9  Voltage transient 
7a  5  0.0  1  1  200   365  0.0  Between Elem. 6c, 7a  
7b  55  0.0  1  1    420  0.0  Voltage transient 
8  6  54.0  1  1  200   426  184.9  Between Elem. 7b, 8  
9  12  65.0  1  1  200   438  222.6  Voltage transient between Elem. 

8, 9  
10a  6  54.0  1  1  200   444  184.9  Voltage transient between Elem. 

9, 10a  
10b  120  54.0  1  1    564  184.9   
10c  5  54.0  1  1    569  184.9  Voltage transient 
11  6  37.1  1  1  200   575  127.1  Between Elem. 10c, 11  
12  6  54.0  1  1  200   581  184.9  Voltage transient between Elem. 

11, 12  
13  6  17.5  1  1  200   587  59.9  Voltage transient between Elem. 

12, 13  
14  6  54.0  1  1  200   593  184.9  Voltage transient between Elem. 

13, 14  
15  6  17.5  1  1  200   599  59.9  Voltage transient between Elem. 

14, 15  
16  6  0.0  1  1  200   605  0.0  Voltage transient between Elem. 

15, 16  
17  6  17.5  1  1  200   611  59.9  Voltage transient between Elem. 

16, 17  
18  6  0.0  1  1  200   617  0.0  Voltage transient between Elem. 

17 18  
19  6  37.1  1  1  200   623  127.1  Voltage transient between Elem. 

18, 19  
20a  5  37.1  1  1    628  127.1   
20b  600  37.1  1  1    1228  127.1  Voltage transient  
20c  5  17.5  1  1  200   1233  59.9  Between Elem. 20b, 20c  
21  6  37.1  1  1  200   1239  127.1  Voltage transient between Elem. 

20c, 21  
22  6  17.5  1  1  200   1245  59.9  Voltage transient between Elem. 

21, 22  
23  6  37.1  1  1  200   1251  127.1  Voltage transient between Elem. 

22, 23  
24  6  17.5  1  1  200   1257  59.9  Voltage transient between Elem. 

23, 24  
25  300  54.0  1  1  200   1557  184.9  Voltage transient between Elem. 

24, 25  
26  6  17.5  1  1  200   1563  59.9  Voltage transient between Elem. 

25, 26  
27  6  54.0  1  1  200   1569  184.9  Voltage transient between Elem. 

26, 27  
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Element 
no. 

Increment 
time,  
sec 

Current, 
A 

Teledyne data 
recording 
interval,  

sec 

GRC data 
recording 
interval,  

sec 

High  
speed data 

recording rate, 
kHz 

Stack 
voltage,  

V 

Total time, 
sec 

Current 
density, 
mA/cm2 

Comments 

28  6  17.5  1  1  200   1575  59.9  Voltage transient between Elem. 
27, 28  

29  6  0.0  1  1  200   1581  0.0  Voltage transient between Elem. 
28, 29  

C.3 Mission Profile Test  
Element 

no. 
Increment  

time 
Current, 

A 
Teledyne data 

recording 
interval,  

sec 

GRC data 
recording 
interval,  

sec 

High speed  
data recording 

rate,  
kHz 

Stack 
voltage, 

V 

Total  
time 

Current  
density, 
mA/cm2 

Comments 

1a  55 min  20.0  300  300    55 min  68.5  Restart, transient from OCV to 
20 A  

1b  5 min 20.0  300  5    1 hr  68.5  Restart  
2a  5 min  20.0  300  5    1 hr  

5 min  
68.5  Prelaunch 

2b  5 hr  
50 min  

20.0  300  300    6 hr  
55 min  

68.5  Prelaunch 

2c  5 min  20.0  300  5    7 hr  68.5  Prelaunch  
3a  5 min  31.5  300  5    7 hr 5 min  107.9  Launch  
3b  50 min  31.5  300  300    7 hr  

55 min  
107.9  Launch  

3c  5 min  31.5  300  5    8 hr  107.9  Launch  
4a  5 min  27.6  300  5    8 hr  

5 min  
94.5  Mission  

4b  177 hr  
50 min  

27.6  300  300    185 hr 
55 min  

94.5  Mission  

4c  5 min  27.6  300  5    186 hr  94.5  Mission  
5a  5 min  20.0  300  5    186 hr 

5 min  
68.5  Landing  

5b  23 hr  
50 min  

20.0  300  300    209 hr 
55 min  

68.5  Landing  

5c  5 min  20.0  300  5    210 hr  68.5  Landing  
6  0.5 hr  12.9  300  5    210.5 hr  44.2  Calibration 1  
7  0.5 hr  53.2  300  5    211 hr  182.2  Calibration 2, transient from 

12.9 to 53.2 A  
8  0.5 hr  31.5  300  5    211.5 hr  107.9  Calibration 3, transient from 

53.2 to 31.5 A  
9  0.5 hr  23.8  300  5    212 hr  81.5  Calibration 4  

10a  5 min  20.0  300  5    212 hr 
5 min  

68.5  Landing  

10b  23 hr  
50 min  

20.0  300  300    235 hr 
55 min  

68.5  Landing  

10c  5 min  20.0  300  5    236 hr  68.5  Landing  
11a  5 min  0.0  300  5    236 hr 

5 min  
0.0  Cooldown, transient from 20.0 

to 0.0 A  
11b  3 hr  

55 min  
0.0  300  300    240 hr  0.0  Cooldown  

C.4 Water Separator Test 
Element 

no. 
Increment 

time,  
min 

Current,  
A 

Teledyne data 
recording 
interval, 

sec 

GRC data 
recording 
interval, 

sec 

High speed  
data recording 

rate,  
kHz 

Stack 
voltage, 

V 

Total time Current 
density, 
mA/cm2 

Comments 

1 10 0 5 5      
2 5 0 5 5     Collect water 
3 60 5 5 5     Collect water 
4 60 5 5 5     Collect water 
5 10 0 5 5      
6 5 0 5 5     Collect water 
7 60 10 5 5     Collect water 



NASA/TM—2011-216783 21 

Element 
no. 

Increment 
time,  
min 

Current,  
A 

Teledyne data 
recording 
interval, 

sec 

GRC data 
recording 
interval, 

sec 

High speed  
data recording 

rate,  
kHz 

Stack 
voltage, 

V 

Total time Current 
density, 
mA/cm2 

Comments 

8 60 10 5 5     Collect water 
9 10 0 5 5      

10 5 0 5 5     Collect water 
11 60 15 5 5     Collect water 
12 60 15 5 5     Collect water 
13 10 0 5 5      
14 5 0 5 5     Collect water 
15 60 20 5 5     Collect water 
16 60 20 5 5     Collect water 
17 10 0 5 5      
18 5 0 5 5     Collect water 
19 60 25 5 5     Collect water 
20 60 25 5 5     Collect water 
21 10 0 5 5      
22 5 0 5 5     Collect water 
23 60 30 5 5     Collect water 
24 60 30 5 5     Collect water 
25 10 0 5 5      
26 5 0 5 5     Collect water 
27 60 35 5 5     Collect water 
28 60 35 5 5     Collect water 
29 10 0 5 5      
30 5 0 5 5     Collect water 
31 60 40 5 5     Collect water 
32 60 40 5 5     Collect water 
33 10 0 5 5      
34 5 0 5 5     Collect water 
35 60 45 5 5     Collect water 
36 60 45 5 5     Collect water 
37 10 0 5 5      
38 5 0 5 5     Collect water 
39 60 50 5 5     Collect water 
40 60 50 5 5     Collect water 
41 10 0 5 5      
42 5 0 5 5     Collect water 
43 60 55 5 5     Collect water 
44 60 55 5 5     Collect water 
45 10 0 5 5      
46 5 0 5 5     Collect water 
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