
NASA Tech Briefs, September 2005 31

Information Sciences

Computationally Lightweight Air-Traffic-Control Simulation
This algorithm simulates ATC functions for a busy airport.
NASA’s Jet Propulsion Laboratory, Pasadena, California

An algorithm for computationally
lightweight simulation of automated air-
traffic control (ATC) at a busy airport
has been derived. The algorithm is ex-
pected to serve as the basis for develop-
ment of software that would be incorpo-
rated into flight-simulator software, the
ATC component of which is not yet ca-
pable of handling realistic airport loads.
Software based on this algorithm could
also be incorporated into other com-
puter programs that simulate a variety of
scenarios for purposes of training or
amusement.

The ATC simulation problem that
the algorithm is meant to solve can be
summarized as follows: ATC is respon-
sible for all aircraft that enter an arbi-
trarily specified hemisphere, denoted
the flight-simulator bubble, that is cen-
tered at the airport. ATC must guide all
the aircraft to safe landings in a se-
quence that is as fair as possible under
the circumstances. Information about
the airport that is taken into account

includes the lengths, directions, and lo-
cations of end points of runways. Infor-
mation about each aircraft that is taken
into account includes the current
three-dimensional position and veloc-
ity, maximum and minimum speeds,
and mathematical relationships among
turning times and the starting and end-
ing points of turns between specified
headings. The solution generated by
the algorithm must be a set of instruc-
tions to the aircraft that enable all air-
craft to land without violating any con-
straints.

The algorithm consists of four compo-
nents denoted the controller, the plan,
the vector generator, and the constraint
verifier. The controller is event-driven
and relatively simple: It responds to any
of three events, as follows:
1. An aircraft enters the bubble. The

controller tries all vector options in a
shortest-path-first order, checking
each by use of the constraint verifier.
When a solution is found, the con-

troller issues instructions to the ap-
propriate pilots.

2. An aircraft leaves the bubble. The
controller removes the aircraft from
the plan.

3. An aircraft changes location as pre-
scribed by the plan. The controller
causes the plan to be updated with the
new location and time of arrival of the
aircraft at the location. If necessary, it
gives instructions to the appropriate
pilot.

Thus, the controller is the input/output
interface for the ATC.

The plan is a data structure that is
used to verify current and hypothetical
routing for each aircraft. The plan con-
sists of a simple temporal network
(STN) augmented by labeling of time
points with identities of aircraft and of
other time points with which overlaps
must be prevented. The approach fol-
lowed by an aircraft is represented as a
directed path in the STN. Inasmuch as
each aircraft has its own unique path,

A method of generating solid models of
terrain involves the conversion of topo-
graphical data into a form useable by a
rapid-prototyping (RP) machine. The
method was developed to enable the use
of the RP machine to make solid models
of Martian terrain from Mars Orbiter
laser-altimeter topographical data. The
method is equally applicable to the gener-
ation of models of the terrains of other as-
tronomical bodies, including other plan-
ets, asteroids, and Earth.

Topographical data describe a terrain
in terms of a set of three-dimensional
coordinates [e.g., Cartesian (x,y,z) or
polar (latitude, longitude, radius) coor-
dinates] of points or nodes on the ter-
rain surface. The input data for the RP
machines are required to provide a
three-dimensional description, not of a

single surface, but of a volume — in this
case, a ground volume that underlies
the terrain surface. The description is
required to be in the form of triangular
elements that connect the nodes of all
the surfaces and that completely bound
the volume, with no open areas, no
overlap of triangles, and no extraneous
geometric elements.

The software used in the present
model-generation method was written
in IDL — an advanced programming
language that affords a number of
tools, including subroutines that trian-
gularize surfaces. The software creates
a volume from the topographical sur-
face data by adding sides to the edges of
the terrain surface and joining the sides
with a bottom surface. Each of the sides
is triangularized by use of IDL subrou-

tines, and then the software searches
for extraneous elements and removes
them.

Topographical data are usually pre-
sented in a grid corresponding to polar
coordinates, so that a model generated
from such data is equivalent to a topo-
graphical map in Mercator projection.
However an RP machine is fully capable
of including the curvature of a planetary
body in a model that it makes. There-
fore, the software also offers a capability
to transform the topographical data to a
projection onto a surface having a curva-
ture corresponding to that of the surface
of the modeled planet.

This work was done by John W. Keller of
Goddard Space Flight Center. Further in-
formation is contained in a TSP (see page 1).
GSC-14897-1

Generating Solid Models From Topographical Data
Topographical data are converted into forms useable by rapid-prototyping machines.
Goddard Space Flight Center, Greenbelt, Maryland



32 NASA Tech Briefs, September 2005

the overlap labels are used to enforce
the fundamental constraint that no two
aircraft may be in the same place at the
same time. If two time points overlap in
space, then it is necessary to ensure that
they do not overlap in time. This is done
by introducing temporal constraints.
Operations on the plan include inser-
tion of an aircraft, deletion of an air-
craft, and updating of the position and
time of an aircraft. An aircraft is in-
serted into the plan by inserting its ap-
proach.

The approach generator generates a
series of time points and temporal con-
straints that represent a hypothetical ap-
proach for an aircraft. It also generates
the information for the overlaps for each
time point of the plan. The approach

generator includes a vector generator
that iterates over options from most pre-
ferred (a full-procedure approach) to
least preferred (one or more turns in a
holding pattern, ending in a direct ap-
proach). Once a vector is generated, it
must be verified as described in the next
paragraph. If verified, it is incorporated
into the plan.

The constraint verifier checks a plan
and introduces temporal constraints
where necessary to maintain veracity.
The constraint verifier identifies time
points that lack temporal ordering be-
tween themselves and members of their
overlap set. It then incrementally inserts
ordering constraints and verifies that
each constraint is possible using tempo-
ral propagation. It can preferentially

schedule new points either before or
after pre-existing points, according to
the preferences of the designers of the
ATC system. Once a verified plan is
found, the verifier returns “true.” If a
verified plan cannot be found, the veri-
fier returns “false” and removes any ex-
traneous temporal constraints it in-
serted.

This work was done by Russell Knight of
Caltech for NASA’s Jet Propulsion Labo-
ratory. Further information is contained in
a TSP (see page 1).

The software used in this innovation is
available for commercial licensing. Please
contact Karina Edmonds of the California In-
stitute of Technology at (818) 393-2827.
Refer to NPO-40445.


