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Abstract— We present the results of single event effects (SEE) 

testing and analysis investigating the effects of radiation on 

electronics. This paper is a summary of test results. 
 

Index Terms—Single event effects, spacecraft electronics, 

digital, linear bipolar, and hybrid devices. 

I. INTRODUCTION 

The performance of electronic devices in a space radiation 

environment is often limited by its susceptibility to SEE. 

Interpreting the results of SEE testing of complex devices is 

quite difficult. As discussed elsewhere [1], SEE test data is 

often application specific and adequate understanding of the 

test conditions is critical. 
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Given this limitation of test data (application-specific), 

studies discussed here were undertaken to establish the 

sensitivities of candidate spacecraft electronics as well as new 

electronic devices to heavy ion and proton-induced single 

event upset (SEU), single event latchup (SEL), and single 

event transients (SET). For total ionizing dose (TID) and 

displacement damage results, see a companion paper 

submitted to the 2010 IEEE NSREC Radiation Effects Data 

Workshop entitled: “Current Total Ionizing Dose and 

Displacement Damage Compendium of Candidate Spacecraft 

Electronics for NASA” by D. Cochran, et al. [2]. 

II. TEST TECHNIQUES AND SETUP 

A. Test Facilities 

All SEE tests were performed between February 2009 and 

February 2010. Heavy ion experiments were conducted at 

Lawrence Berkeley National Laboratory (LBNL) [3], and at 

Texas A&M University Cyclotron (TAMU) [4]. Both of these 

facilities are suitable for providing a variety of ions over a 

range of energies for testing. The devices under test (DUTs) 

were irradiated with heavy ions having linear energy transfers 

(LETs) ranging from 0.59 to 120 MeV•cm
2
/mg. Fluxes ranged 

from 1x10
2
 to 1x10

7
 particles/cm

2
/s, depending on device 

sensitivity. Representative ions used are listed in Table I. 

LETs between the values listed were obtained by changing the 

angle of incidence of the ion beam with respect to the DUT, 

thus changing the path length of the ion through the DUT and 

the "effective LET" of the ion [5]. Energies and LETs 

available varied slightly from one test date to another. 

Proton SEE tests were performed at three facilities: the 

University of California at Davis (UCD) Crocker Nuclear 

Laboratory (CNL) [6], the Indiana University Cyclotron 

Facility (IUCF) [7], and at a 2 MeV Van de Graaff particle 

accelerator. Proton test energies incident on the DUT are listed 

in Table II. 

Laser SEE tests were performed at the pulsed laser facility 

at the Naval Research Laboratory (NRL) [8] [9]. The laser 

light had a wavelength of 590 nm resulting in a skin depth 

(depth at which the light intensity decreased to 1/e - or about 

37% - of its intensity at the surface) of 2 µm. A nominal pulse 

rate of 1 kHz was utilized. 
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TABLE I: HEAVY ION TEST FACILITIES AND TEST HEAVY IONS 

 Ion 
Energy 
(MeV) 

Surface 
LET in Si 

(MeV•cm
2
/mg) 

(Normal Incidence) 

Range in 
Si (µm) 

LBNL 
18

O 184 2.2 227 

22
Ne 216 3.5 175 

40
Ar 400 9.7 130 

65
Cu 659 21 110 

86
Kr 886 31 110 

136
Xe 1330 59 97 

10 MeV per AMU tune 

TAMU 
20

Ne 300 2.5 316 
40

Ar 599 7.7 229 
63

Cu 944 17.8 172 
84

Kr 1259 25.4 170 
109

Ag
 

1634 38.5 156 
129

Xe 1934 47.3 156 

15 MeV per AMU tune 

22
Ne 545 1.8 799 

40
Ar 991 5.5 493 

84
Kr 2081 19.8 332 

139
Xe 3197 38.9 286 

25 MeV per AMU tune 

 
TABLE II: PROTON TEST FACILITIES 

University of California at Davis (UCD) Crocker Nuclear Laboratory 

(CNL), energy tunes ranged from 6.5 to 63 MeV, flux ranged from 8×107 

to 1×109 particles/cm2/s. 

Indiana University Cyclotron Facility (IUCF), energy ranged from 63 to 

198 MeV, flux ranged from 5×105 to 3×109 particles/cm2/s. 

 

TABLE III: LASER TEST FACILITY 

Naval Research Laboratory (NRL) Pulsed Laser SEE Test Facility 

Laser: 590 nm, 1 ps pulse width, beam spot size ~1.2 μm 

 
 

B. Test Method 

Unless otherwise noted, all tests were performed at room 

temperature and with nominal power supply voltages. We 

recognize that high-temperature and worst-case power supply 

conditions are recommended for single event latchup (SEL) 

device qualification. 

1) SEE Testing - Heavy Ion: 

Depending on the DUT and the test objectives, one or 

more of three SEE test methods were typically used: 

Dynamic – the DUT was exercised continually while being 

exposed to the beam. The events and/or bit errors were 

counted, generally by comparing the DUT output to an 

unirradiated reference device or other expected output (Golden 

chip or virtual Golden chip methods) [10]. In some cases, the 

effects of clock speed or device operating modes were 

investigated. Results of such tests should be applied with 

caution due to the application-specific nature of the results. 

Static – the DUT was loaded prior to irradiation; data were 

retrieved and errors were counted after irradiation. 

Biased – the DUT was biased and clocked while power 

consumption was monitored for SEL or other destructive 

effects. In most SEL tests, functionality was also monitored. 

In SEE experiments, DUTs were monitored for soft errors, 

such as SEUs and for hard errors, such as single event gate 

rupture (SEGR). Detailed descriptions of the types of errors 

observed are noted in the individual test results [11]. 

SET testing was performed using a high-speed oscilloscope. 

Individual criteria for SETs are specific to the device being 

tested. Please see the individual test reports for details [11]. 

Heavy ion SEE sensitivity experiments include 

measurement of the Linear Energy Transfer threshold (LET th) 

and cross section at the maximum measured LET. The LETth 

is defined as the maximum LET value at which no effect was 

observed at an effective fluence of 1×10
7
 particles/cm

2
. In the 

case where events are observed at the smallest LET tested, 

LETth will either be reported as less than the lowest measured 

LET or determined approximately as the LETth parameter 

from a Weibull fit. In the case of SEGR experiments, 

measurements are made of the SEGR threshold Vds as a 

function of LET at a fixed Vgs. 

2) SEE Testing - Proton 

Proton SEE tests were performed in a manner similar to 

heavy ion exposures. However, because protons cause SEE 

via indirect ionization of recoil particles, results are 

parameterized in terms of proton energy rather than LET. 

Because such proton-induced nuclear interactions are rare, 

proton tests also feature higher cumulative fluences and 

particle flux rates than heavy ion experiments. 

3) Pulsed Laser Facility Testing 

The DUT was mounted on an X-Y-Z stage in front of a 

100x lens that produced a spot size of about 1.2 μm at full-

width half-maximum (FWHM). The X-Y-Z stage can be 

moved in steps of 0.1 μm for accurate positioning of SEU 

sensitive regions in front of the focused beam. An illuminator 

together with a charge coupled device camera and monitor 

were used to image the area of interest, thereby facilitating 

accurate positioning of the device in the beam. The pulse 

energy was varied in a continuous manner using a 

polarizer/half-waveplate combination and the energy was 

monitored by splitting off a portion of the beam and directing 

it at a calibrated energy meter. 

III. TEST RESULTS OVERVIEW 

Abbreviations and conventions are listed in Table IV. 

Abbreviations for principal investigators (PIs) are listed in 

Table V, and SEE results are summarized in Table VI. Unless 

otherwise noted, all LETs are in MeV•cm
2
/mg and all cross 

sections are in cm
2
/device. This paper is a summary of results. 

Complete test reports are available online at 

http://radhome.gsfc.nasa.gov [11]. 
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TABLE IV: ABBREVIATIONS AND CONVENTIONS 

LET = linear energy transfer (MeV•cm2/mg) 
LETth = linear energy transfer threshold (the minimum LET 

value for which a given effect is observed for a 
fluence of 1x107 particles/cm2 – in MeV•cm2/mg) 

< = SEE observed at lowest tested LET 
> = no SEE observed at highest tested LET 

 = cross section (cm2/device, unless specified as cm2/bit) 
max measured = cross section at maximum measured LET 

(cm2/device, unless specified as cm2/bit) 
ADC = analog to digital converter 
App. Spec. = application specific 
BiCMOS = bipolar complementary metal oxide 

semiconductor 
CMOS = complementary metal oxide semiconductor 
DUT = device under test  
EDAC = error detection and correction 
FPGA = field programmable gate array 
H = heavy ion test 
L = laser test 
LCDT = low cost digital tester 
LDC = lot date code 
N/A = not available 
P = proton test (SEE) 
PI = principal investigator  
POL = point of load 
SEE = single event effect 
SEFI = single event functional interrupt 
SEL = single event latchup 
SET = single event transient 
SEU = single event upset 
SiGe = silicon germanium 
SEGR = single event gate rupture 
Vds = drain-source voltage 
Vgs = gate-source voltage 
 

TABLE V: LIST OF PRINCIPAL INVESTIGATORS 

Principal Investigator (PI) Abbreviation 

Melanie Berg MB 

Martin Carts MaC 

Dakai Chen DC 

Hak Kim HK 

Kenneth LaBel KL 

Ray Ladbury RL 

Jean-Marie Lauenstein JML 

Cheryl Marshall CM 

Paul Marshall PM 

Timothy Oldham TO 

Jonathan Pellish JP 

Anthony (Tony) Sanders AS 

Michael Xapsos MX 

 

 
TABLE VI: SUMMARY OF SEE TEST RESULTS 

Part Number Manufacturer LDC 
Device 

Function 
Tech-

nology 
Particle: 

(Facility/Date) P.I., 

Test Results LET in 
MeV•cm

2
/mg σ in 

cm
2
/device, unless 

otherwise specified A
p

p
. 
S

p
e

c
. 

T
e

s
t 

(Y
/N

) 

S
u

p
p

ly
 

V
o

lt
a
g

e
 

S
a
m

p
le

 S
iz

e
 

(N
u

m
b

e
r 

T
e

s
te

d
) 

R
e
fe

re
n

c
e
 

ADC :           

ADC14155 
National 
Semi-

conductor 

No LDC 
(test chip) 

ADC CMOS 
P: (UCD09JUN) 
MB 

Low energy proton testing to 
investigate direct ionization. 
Errors were observed at 
proton energies near 1MeV 
and above; All low energy 
errors were analog (no digital 
errors detected); Potential 
direct ionization was 
observed. 

N 5V 2 
[12] 
[13] 

ADS5483 
Texas 

Instrument 

delidded 
by TI 

markings: 
AZ5483 
TI 83K 

E7N0 G 

ADC 

Comple
mentary 
Bipolar 

(BiCom3) 

H: (TAMU09MAY) 
MB (w/Robert 
MacDowell)  
P: (IU09AUG) MB 

H: LETth <8.6 (no LET SEE); 
SEL LETth >75 
P: SEE σ ranged from 2x10

-10 

cm
2
/device at 75MeV to 

2.5x10
-10

 cm
2
/device at 

198MeV. 

N 
3.3V, 
5V 

H: 2 
P: 4 

[13] 
[14] 

FPGA:           

RTAX2000S Actel 0526 
RTAX-S 
FPGA 

Antifuse 
Tech-

nology/ 
CMOS 

H: (TAMU09DEC) 
MB 

SEL LETth >80; 
2.5 < SEU LETth <8.6 

Y 
1,5V Core, 
2.5V, 3.3V 

2 [15] 

XC5VLX30T-
1FFG665GU 

Xilinx 0849 
Virtex V 
FPGA 

65nm 
CMOS 

H: (TAMU09SEPT) 
MB;  
P: (UCD09JUN) 
MB; P: (IU09AUG) 
MB 

H: SEL LETth >75;  
SEU LETth <2;  
P: SEUs observed for all 
energies tested (0.9, 1.4, 2.3, 
5.9, 7.8, 13.2, 21.8, and 63.8 
MeV); SEU σ = 5x10

-17
 

cm
2
/bit at 0.9MeV; SEU σ max 

measured = 2x10
-14 

cm
2
/bit at 

~ 20MeV. 

Y 
1,2V, 1.8V, 
2.5V, 3.3V 

3 [17] 

http://radhome.gsfc.nasa.gov/radhome/papers/D062209_AD14155.pdf
http://radhome.gsfc.nasa.gov/radhome/papers/RADECS09_Berg.pdf
http://radhome.gsfc.nasa.gov/radhome/papers/RADECS09_Berg.pdf
http://radhome.gsfc.nasa.gov/radhome/papers/T052309_IU081009_ADS5483.pdf
http://radhome.gsfc.nasa.gov/radhome/papers/T110909_RTAX2000SX_na.pdf
http://radhome.gsfc.nasa.gov/radhome/papers/D062209_XCVLX30T_na.pdf
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Part Number Manufacturer LDC 
Device 

Function 
Tech-

nology 
Particle: 

(Facility/Date) P.I., 

Test Results LET in 
MeV•cm

2
/mg σ in 

cm
2
/device, unless 

otherwise specified A
p

p
. 
S

p
e

c
. 

T
e

s
t 

(Y
/N

) 

S
u

p
p
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d
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R
e
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n

c
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Linear Devices:           

LTC6400 
Linear 

Technology 
0746; 
0705 

Differential 
Amplifier 

SiGe 
BiCMOS 

H: (TAMU09MAY) 
DC; 
P: (IU09AUG) DC 

H: SEL LETth > 49.6;  
SET LETth < 7.4  
SET σ increases linearly with 
frequency. 
SETs from 10 MHz signals 
are relatively minor. At 100 
MHz, the SETs appear 
mostly as short duration 
voltage spikes. At 1000 MHz, 
the majority of SETs “erase” 
the signal for several cycles. 
P: SET σmax measured 1.5 × 10

-11
 

cm
2
 for a fluence of 1 × 10

12
 

particles/cm
2
, with the device 

operating at 200 MHz. 
No SETs were observed at 
10 MHz. 

N 3 V 
2 (May); 
1 (Aug) 

[18] 
[19] 
[20] 

THS4304 
Texas 

Instrument 
OCT04 

Operational 
Amplifier 

SiGe 
BiCMOS 

H: (TAMU09AUG) 
DC 

SET LETth < 4.4 for 200 MHz 
waveforms, 15.6 for 100 MHz 
waveforms, and 31.2 for 10 
MHz waveforms 

N 2.5 V 2 
[20] 
[21] 

Memory Devices:           

Part Number: 
unavailable 

Manufacturer: 
unavailable 

LDC and 
die 

markings: 
un-

available 

Phase 
Change 
Memory 
(PCM) 

90nm 
CMOS 
Non-

volatile 
Memory 

H: (TAMU09AUG) 
HK, KL;  
H: (TAMU09DEC) 
HK, KL 

A commercial sample of a 
90nm CMOS phase change 
non-volatile memory was 
tested for heavy ion SEE 
tolerance at TAMU. Static 
and dynamic tests were 
performed with a variety of 
test patterns including 
checkerboard and inverse 
checkerboard. Static testing 
indicated that the phase 
change storage cells were 
hard to the highest tested 
LET of 112. No permanent 
device failures were 
observed. Even at elevated 
temperature (70ºC) and Vdd 
+10%, the device did not 
suffer permanent failures, 
though SEL was observed. 
However, the device showed 
low SEFI threshold at LET 
below 2.9 suggesting that 
control circuits are the weak 
link. Though non destructive, 
its low SEL LETth below 2.9 
cannot be ignored either. 

N 
2.7; 3.0; 
 3.6 V 

4 N/A 

K4B1GO846D-
HCH9 

Samsung 

0813 
Markings: 
SEC813H

CH9 
GNL037B

B 

DDR3 
SDRAM 

65 nm 
CMOS 

H: (TAMU09AUG) 
RL 
P: (IU09AUG) RL 

H: SEU LETth<2.8; 
σmax measured ~10

-3
 cm

2
/dev; 

MCU: LETth~10; σmax measured 
~5x10

-4
 cm

2
/dev; Block Error: 

LETth~2.8; σmax measured 
~5x10

-4
 cm

2
/dev; 

Stuck bits seen near end of 
run;  
SEFI seen at high LET, high 
fluence (10

-7
 cm

2
< σmax measured 

<10
-4
 cm

2
) 

P: Tested at 25 MHz with PLL 
disabled. Proton SEU seen 
with 80 and 198 MeV 
protons.  
Block errors seen with 198 
MeV protons. 

Y 1.8 V 2 [22] 

http://radhome.gsfc.nasa.gov/radhome/papers/T052309_LTC6400.pdf
http://radhome.gsfc.nasa.gov/radhome/papers/I080409_LTC6400.pdf
http://radhome.gsfc.nasa.gov/radhome/papers/NSREC2010_W26_Chen.pdf
http://radhome.gsfc.nasa.gov/radhome/papers/NSREC2010_W26_Chen.pdf
http://radhome.gsfc.nasa.gov/radhome/papers/T082409_THS4304.pdf
http://radhome.gsfc.nasa.gov/radhome/papers/I081009_T082409_K4B1GO846DHCF8.pdf
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Part Number Manufacturer LDC 
Device 
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Tech-

nology 
Particle: 

(Facility/Date) P.I., 

Test Results LET in 
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2
/mg σ in 
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2
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K9F4G08U0A-
PCB0 

Samsung 

0840; 
0843; 
0846; 
0901; 
0907 

4Gbit NAND 
Flash 

Memory 
CMOS 

H: (TAMU09MAY) 
TO; AS 
H: (TAMU09AUG) 
TO w/F. Irom 
testing LDC 0907 
only 

Bit error LETth ~2.8; 
Write mode failures were 
observed at 70ºC at LET 
54.8. 

N 

3.3V for 
SEU and 

SEFI, 3.6V 
(3.3 +10%) 

for SEL 

23 
[23] 
[24] 

MT29F4G08AA 
AWP 

Micron 0744 
4Gbit NAND 

Flash 
Memory 

CMOS 
H: (TAMU09AUG) 
TO w/ F. Irom 

31< SEL LETth <54.8; 
2.8 < destructive failure 
(erase failure) < 8.4; Bit 
errors were observed at 2.8;  
SEFIs  were observed at  
LET 8.4; 

N 3.3V 1 
[24] 
[25] 

Power Devices:           

CSD16403Q5A 
Texas 

Instrument 
0916C 
6W.08 

25V N-
Channel 
Power 

MOSFET 

Commer
cial 

NexFET
T

M
 n-

channel 
lat./vert. 
hybrid 

H: (TAMU09DEC) 
JML 

SEB last pass/first fail Vds= 
13V/14V for LET=27 (Kr) & 
41.5 (Ag), at all test Vgs. 

N 
0Vgs, 

5Vgs, 7Vgs 
18 [26] 

IRH7360SE 
International 

Rectifier 

No LDC. 
Markings 
R473288-

21 

Power 
MOSFET 

Gen 4 n-
channel 
VDMOS

FET 

H: (TAMU09MAR) 
JML 

LET=28.1 (Kr): no failure at 
0Vgs/400Vds; Failed at -
15Vgs/330Vds (last pass 
320Vds). 
LET=41.9 (Ag): SEGR at 
0Vgs/210Vds (last pass 
200Vds) and at -15Vgs/140Vds 
(last pass 130Vds). 

N 
0Vgs;  

-15Vgs 
11 [27] 

ISL70001 Intersil 

NA (Part 
in 

develop-
ment) 

POL DC/DC 
Converter 

BiCMOS 
H: (TAMU09MAY; 
TAMU09AUG) DC 
w/Intersil 

SEL / SEB / SEGR 
LETth>86.4 up to 125ºC 

N 5.7V >10 [28] 

MSK5820-2.5RH M.S. Kennedy 0923 
Voltage 

Regulator 

Linear 
Bipolar 
Hybrid 

L: (NRL09OCT) JP 

Positive and negative 
transients were observed 

( 12 to +100 mV), up to a 
width of ~225 µs. 

Y 
Vin = 5 V, 

Vout = 2.5 V 
1 [29] 

MSK5900RH M.S. Kennedy 0703 
Voltage 

Regulator 

Linear 
Bipolar 
Hybrid 

L: (NRL09OCT) JP 

Positive and negative 
transients were observed 

( 20 to +40 mV), up to a 
width of ~200 µs. 

Y 
Vin = 5 V, 

Vout = 2.5 V 
1 [30] 

TPS79133 
Texas 

Instrument 
0710 

Voltage 
Regulator 

BiCMOS L: (NRL09JUN) DC 

SET pulse includes a positive 
and negative voltage spike, 
with pulse amplitudes = -0.2 
V to 0.2 V and pulse width 
(FWHM) = 10-20 µs for each 
spike. Pulse amplitude and 
width increase slightly at 
elevated temperature (373K). 

N 3.3 V 4 [31] 

Test Chips:           

Test Vehicle IBM 
No LDC 

(test chip) 
SRAM 

45 nm 
SOI 

CMOS 

P: (UCD09JUN) JP  
P: (IU09AUG) JP 

Completed further mapping of 
low-energy proton sensitivity. 
High-energy proton testing 
was done at approximately 
25 MHz for better MCU 
statistics. 

N 0.6-1.2 V 

2, com-
bined 

from all 
tests 

[32] 

Test Vehicle 
Texas 

Instrument 
No LDC 

(test chip) 
SRAM 

45 nm 
bulk 

CMOS 

P: (GSFC09MAY) 
JP/MX 
H: (TAMU09MAY) 
JP/MX 
P: (UCD09JUN) 
JP/MX 
P: (IU09AUG) 
JP/MX 
H: (LBNL09SEP) 
JP/MX [33] 

H: SEL observed at effective 
LETs as low as 30, though 
portions of SRAM are hard to 
SEL up to LET 60. 
P: No SEL observed with 
198MeV protons. 

N 1.2 V 

6, com-
bined 

from all 
tests 

none 

http://radhome.gsfc.nasa.gov/radhome/papers/T052309_K9F4G08U0A.pdf
http://radhome.gsfc.nasa.gov/radhome/papers/T082409_K9F4G08U0_MT29F4G08AA.pdf
http://radhome.gsfc.nasa.gov/radhome/papers/T082409_K9F4G08U0_MT29F4G08AA.pdf
http://radhome.gsfc.nasa.gov/radhome/papers/T110308_MT29F4G08AAAWP.pdf
http://radhome.gsfc.nasa.gov/radhome/papers/T110909_CSD16403Q5A.pdf
http://radhome.gsfc.nasa.gov/radhome/papers/T030409_IRH7360SE.pdf
http://radhome.gsfc.nasa.gov/radhome/papers/NRL102709_MSK5820.pdf
http://radhome.gsfc.nasa.gov/radhome/papers/NRL102709_MSK5900RH.pdf
http://radhome.gsfc.nasa.gov/radhome/papers/NRL062409_TPS79133.pdf
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Part Number Manufacturer LDC 
Device 

Function 
Tech-

nology 
Particle: 

(Facility/Date) P.I., 

Test Results LET in 
MeV•cm

2
/mg σ in 
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2
/device, unless 

otherwise specified A
p
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Miscellaneous 
Devices: 

          

OV5633 Omnivision 
No LDC 
(image 
sensor) 

5 megapixel 
Image 
Sensor 

CMOS 
H: (TAMU09SEPT) 
CM/MaC 

SEL LETth > 87; Fluence 
corrected for time part spent 
in SEFI mode. 

N 

Core 1.5 V; 
I/O 1.8V; 

Analog 2.8 
V; Pixel 2.8 

V; MIPI 
1.5V 

4 none 

Part Number: 
unavailable 

Manufacturer: 
unavailable 

LDC and 
die 

markings: 
un-

available 

Read Out 
Integrated 

Circuit 
(ROIC) 

0.5 µm 
CMOS 

H: (TAMU09SEPT) 
CM 

No SEL observed at 40 K, 
48 K and 80 K to σlimiting 
~2x10

-7
 cm

2
 for LET = 102; 

Single recoverable SEL event 
observed at 32 K to fluence = 
3.5x10

6
 cm

-2
 at LET = 102;  

At 20 K, ROIC sensitive to 
SEL for 12 = LET < 102 with 
2.0x10

-5
 < σ < 3.7x10

-4
 cm

2
 

(lowest test LET).  At 300 K, 
SEL σ ~ 1x10

-3
 cm

2
 at LET = 

87 

N 5.7 V 2 [34] 

 

IV. TEST RESULTS AND DISCUSSION 

As in our past workshop compendia of GSFC test results, 

each DUT has a detailed test report available online at 

http://radhome.gsfc.nasa.gov [11] describing in further detail 

the test method, SEE conditions/parameters, test results, and 

graphs of data. 

 

This section contains summaries of testing performed on a 

selection of featured parts. 

A. Texas Instruments ADS5483 ADC 

This study was undertaken to determine the Single Event 

Effects (SEE), susceptibility of the Texas Instruments (TI) 

ADC converter: ADS5483. The DUTs were evaluated with 

heavy ions and protons. 

There was a total of 7 ADC tested. 2 were made available 

for heavy ion testing, including 1 control sample. 4 devices 

were made available for proton testing. A TI Evaluation board 

with one embedded ADC (DUT) was used as a daughter card 

that was physically connected to the NASA Goddard low cost 

digital tester (LCDT). The TI Evaluation board number is 

ADS548xEVM. The identification information for these 

ADCs is as follows: 

Test Chip: ADS5483 

Lot # unknown - delidded by TI  

Markings:  

AZ5483 

TI 83K 

E7N0 G 

The DUT technology is Texas Instruments complementary 

bipolar process BiCom3x. The following are some of the 

ADS5483 Features (please refer to the ADS5483 datasheet for 

a complete description): 

• 16-bit resolution. 78 dBFS Noise Floor 

• 170MSPS Sample Rate 

• SFDR = 95dBc 

• On-Chip High Impedance Analog Buffer 

• Efficient DDR LVDS-Compatible Outputs 

• Power-Down Mode: 70mW 

• Industrial Temperature Range: -40˚C to 85˚C 

• 3 Vpp Differential Input Range 

• 5 V or 3.3 V Power supply 

 
Fig. 1. Functional Block Diagram of the ADS5483. 

 

For reliable SEU response analysis, it is important to filter 

out the non-SEU noise that is introduced from both the test 

vehicle and the ADC device. Subsequently, prior to radiation 

testing, system noise was measured. A minimal error-bound 

(EB) was calculated per test set-up such that no ADC output 

code errors existed during operation and pre-irradiation. The 

EB code value can be translated to its corresponding voltage 

level (VEB) as illustrated in (1). 

http://radhome.gsfc.nasa.gov/radhome/papers/NSREC10_B1_Marshall_Pres.pdf


Submitted for publication in NSREC Data Workshop 2010 see nsrec2010_W8_SEE 7 

 
NbEB

VppEB
V

2

*
 (1) 

Concerning (1), Nb is the number of ADC output bits (16-

bits for the ADS5483) and Vpp is the peak-to-peak 

manufacturer supplied voltage range (3Vpp for the ADS5483). 

Regarding heavy ion testing, the ADS5483 DUT was tested 

at the TAMU using a 15 MeV/amu tune at room temperature. 

All tests were run with 10
3
 <flux rate < 10

4
 particles/cm

2
/s. 

Effective LETs ranged from 2.5 MeV•cm
2
/mg to 

83.4 MeV•cm
2
/mg by varying the ion and by varying the angle 

of incidence. All proton tests were performed at IUCF. Data 

was obtained for two proton energies: 78 Mev and 198 MeV. 

The ADC devices were operated at nominal room temperature 

using active cooling. A function generator was utilized as the 

clock and data input to the ADC. Measurements were taken by 

interfacing the ADC 16-bit digital outputs to the LCDT. The 

LCDT processed the output data and reported errors to the 

user host computer. 

 
Fig. 2. Heavy Ion SEU Error Cross Sections. 
 

 
Fig. 3. Proton SEU Error Cross Sections. 

 

As a summary, the SEU/SET response of the ADS5483 

consists of: 

1. Code upsets that only last for one ADC clock cycle. 

2. Code upsets that last for multiple ADC clock cycles 

(bursts). 

a. Heavy ion bursts were not as frequent as proton bursts. 

The longest heavy ion burst lasted for 39 ADC clock 

cycles. 

b. Bursts due to 198 MeV proton strikes could last 

thousands of ADC clock cycles. However, at 

EB=7.8 mV and above, the burst duration and 

frequency is significantly reduced. This is due to the 

fact that most of the burst upsets were small upsets 

from the expected values – i.e. the errors jittered 

around the expected values. This suggests that the 

analog circuitry has a significant sensitivity to 

198 MeV protons. 

c. Most upsets due to 73 MeV protons were single ADC 

clock cycle upsets. 

3. No clock losses were observed – however, this is still 

under investigation. 

4. SEU/SET rate did not increase significantly with 

frequency (10 MHz vs. 100 MHz) [13], [14]. 
 

B. Actel RTAX2000S RTAX-S FPGA EDAC Memory Tests 

This study was undertaken to determine the single event 

destructive and transient susceptibility of the internal memory 

structures embedded in the RTAX-S FPGA family of devices. 

The DUTs were configured to have various forms of active 

embedded memory structures. The memory and its supportive 

circuitry were monitored for SET and SEU induced faults by 

exposing them to a heavy ion beam. The purpose of this 

RTAX-S memory evaluation was to enhance prior testing of 

the device. The study included both static and dynamic modes 

of memory control and operation for memory configurations 

that utilized the embedded EDAC circuitry provided by Actel 

versus memory configurations that did not contain EDAC. It is 

important to note that the embedded EDAC circuitry does not 

reside in the hardened by design user-cells of the RTAX. 

Therefore, the embedded circuitry is assumed to be more 

susceptible than custom user designed EDAC that would 

utilize the RTAX-S hardened cells. 

There was one RTAX-S device that contained the memory 

configuration under evaluation. The sample size per device (in 

this case) was not the focus since they are production- high 

speed parts with very little variation across the CMOS 

process. The emphasis was to test variations over the design 

state space. The devices were manufactured on an advanced 

0.15µm CMOS Antifuse Process Technology with 7 layers of 

metal. The manufacturer is Actel. The devices tested had LDC 

of 0526. 
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Fig. 4. SEU Error Cross Sections. Static and dynamic memory reads were 

evaluated for several patterns for memory structures with and without EDAC 

controls. 
 

Fig. 4 illustrates that the memory bit-cell SEU cross 

sections over all data patterns were statistically equivalent. 

Dynamic tests consisted of read-write-modify cycles. 

Regarding memory cell SEU-cross sections, there was no 

statistical difference between dynamic memory operations 

during DUT irradiation versus static memory operation. With 

dynamic testing, multiple bit failures (MBUs) per address did 

occur at 8.5 MeV•cm
2
/mg. Because the EDAC structures are 

Single Error Correct Double Error Detect (SECDED), 

memory reads that utilized the embedded EDAC structures 

had failures. No testing was performed below 

8.5 MeV•cm
2
/mg, therefore no on-set for memory MBU 

and  EDAC failure has been determined. For LET 

> 20 MeV•cm
2
/mg, EDAC SEFI’s also occurred. An EDAC 

SEFI pertains to the event of the EDAC circuitry becoming 

stuck in a state where it cannot correct data and eventually 

corrupts good data. EDAC SEFIs at LETs >20 MeV•cm
2
/mg 

were significant and can be avoided by the user creating a 

custom EDAC with the RTAX-S user fabric [15]. Note, also 

see J. George, et al., [16]. 
 

C. Linear Technology LTC6400 Differential Output 

Amplifier/ADC Driver 

The LTC6400 is fabricated with the JAZZ-TOWER 0.35µm 

SiGe BiCMOS process. Two parts were irradiated at room 

temperature with the devices operating at VCC = 3 V, VCM = 

1.25 V, sine wave inputs of 140 mVpp (large signal) or 2 mVpp 

(small signal), at frequencies of 10, 100, and 1000 MHz. Two 

ion species were used for this experiment: Ar and Kr.  

Fig. 5 shows the SET cross-sections from large signals at 

10, 100, and 1000 MHz. We observed SETs down to the 

lowest LET of 7.4 MeV•cm
2
/mg for all frequencies of 

operation. The SET cross-sections increase linearly with 

increasing frequency. The worst case transients occur at 1000 

MHz, where several cycles of the signal are erased from an 

SET. Fig. 6 shows an SET at 1000 MHz. No latchup events 

were observed. The supply current values remained relatively 

unchanged, at ~ 90 mA, throughout irradiation. 

Additionally, we found that the LTC6400 was robust 

against high energy protons, with relatively low SET cross-

sections. We irradiated 2 parts with 198 MeV protons. The 

increase in SET error cross-sections from 0° to 60° for DUT3 

is unlikely due to angular effects that result from nuclear 

reactions, since the final 0° incident run produced a larger 

error cross-section than the initial normal incident run. We 

irradiated DUT4 at normal incidence to examine the effects of 

total dose and displacement damage on SET sensitivity. The 

significant scatter in the dataset suggests that the SET cross-

sections more likely follow a Poisson distribution, and do not 

correlate strongly with accumulated dose. The different lot 

date codes of the parts may also contribute to the relatively 

large difference in the magnitudes of SET cross-sections. 

 
Fig. 5. Heavy-ion-induced SET error cross-sections for large signals at 10, 

100 MHz, and 1 GHz. 
 

 
Fig. 6. SET cross section vs. accumulated dose for the LTC6400 operating at 

200 MHz, irradiated with 198 MeV protons to a fluence of 1 × 1012 

particles/cm2. 
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D. Texas Instruments CSD16403QA Commercial Power 

MOSFET 

This study was undertaken to determine the single event 

gate rupture (SEGR) and burnout (SEB) susceptibility of the 

commercial CSD16403QA power MOSFET under heavy ion 

irradiation. The device is a 100 amp, 25 volt n-channel power 

MOSFET, manufactured under Texas Instruments’ recently 

acquired CICLON NexFET
TM

 commercial process 

technology. The NexFET technology is a hybrid lateral-

vertical power MOSFET (Fig. 7) featuring a lateral channel 

under a planar gate connecting the source to the lightly doped 

drain extension region (LDD), and a highly doped vertical 

drain “sinker” that brings the current flow vertically down to 

the backside drain contact. We believe that this test is the first 

to evaluate the heavy-ion response for this device type. 

 

 
Fig. 7. Cartoon showing the structure of a n-type NexFET™ power MOSFET.  

From:  Electronics Design, Strategy, News, 12 Feb 2009. 

 

Tests were conducted at normal incidence to the surface.  

Each device was biased at one of three gate-source voltage 

(Vgs) biases, and the drain-source voltage (Vds) was 

incremented between beam runs until device failure was 

observed.  Currents were monitored at the gate and drain 

nodes during testing, and voltage transients were recorded 

across a small sense-resistor placed behind the drain stiffening 

capacitor.  All device failures occurred during irradiation and 

were due to single event burnout, although in each instance the 

gate ruptured.  As can be seen in Fig. 8, the SEE safe 

operating area is 52% of the maximum rated drain voltage, 

independent of the gate bias applied during testing.  This gate-

voltage independence is a hallmark of single-event burnout.  

In addition, both krypton at an incident LET of 

27.4 MeV•cm
2
/mg and silver at an incident LET of 

40.5 MeV•cm
2
/mg yielded the same SEE response curves. 

 
Fig. 8. SEE response curve. 

 

Efforts to evaluate a p-channel NexFET were inconclusive 

due to the presence of an irremovable heat sink on top of the 

die obstructing more than 80% of the active region.  As p-

channel power MOSFETs do not suffer SEB, additional tests 

will reveal whether these commercial p-type structures will be 

naturally rugged under a heavy-ion space environment. [26] 

E. M.S. Kennedy Voltage Regulators MSK5900RH and 

MSK5820-2.5RH 

We undertook this study to characterize the application-

specific SET behavior of the MSK5900RH and MSK5820-

2.5RH low dropout voltage regulators using pulsed laser 

irradiation. Both regulators are hybrid integrated circuits, 

which contain controller circuitry that governs a power PNP 

bipolar transistor. The controller circuitry, manufactured by 

Linear Technology, is the LT1573 in the case of the MSK5900 

and the RH1573K in the case of the MSK5820. The 

LT1573/RH1573 is a low dropout PNP regulator driver. The 

RH1573K uses the same mask set as the LT1573, but has a 

different passivation to improve its total ionizing dose 

response. 
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Fig. 9. Micrographs of the MSK5900RH and MSK5820-2.5RH bipolar hybrid 

integrated circuits and the PNP driver regulator dice within. Note that (c) and 

(d) have been rotated so that their orientation is the same as in (a) and (b). The 
views in (c) and (d) are the same as what the laser sees through the 100x 

objective. 

 

Package and die micrographs of the MSK5900RH/LT1573 

and MSK5820-2.5RH/RH1573 are shown in Fig. 9. The 

MSK5900RH is packaged in a 12-pin flatpack and the 

MSK5820-2.5RH is packaged in a 5-pin single-inline package. 

It is clear from Figs. 9(c) and (d) that the LT1573 and RH1573 

have the same mask set. The main difference is that the 

MSK5900RH is a positive adjustable regulator tuned with an 

external resistor network and the MSK5820-2.5RH is a fixed 

positive voltage regulator. Both regulators were configured 

with a 5.0 V input and a +2.5 V output. 

We used the pulsed laser facility at the Naval Research 

Laboratory to perform single-photon absorption on the M.S. 

Kennedy voltage regulators with a 590 nm wavelength beam. 

The pulse energy for these experiments was in excess of an 

equivalent LET of 100 MeV•cm
2
/mg.  

We scanned the laser spot across the entire surface of both 

the LT1573 in the MSK5900RH and the RH1573K in the 

MSK5820-2.5RH. Two load conditions were used for each 

component. The MSK5900RH was irradiated with 25 mA and 

138 mA loads while the MSK5820-2.5RH was irradiated with 

0.515 A and 2.45 A loads. Voltage transients were observed 

with all load conditions on each component. We observed 

both positive and negative transients (-20 to +40 mV), up to a 

width of approximately 200 µs on the MSK5900RH. The 

MSK5820-2.5RH also showed both positive and negative 

transients (-12 to +100 mV), up to a width of approximately 

225 µs. These results are shown graphically in Fig. 10 and 

Fig. 11 [29] [30]. 

 
Fig. 10. MSK5900RH transients. 

 

 
Fig. 11. MSK5820-2.5RH transients. 
 

F. Intersil ISL70001 Point-of-load DC/DC Converter 

The ISL70001SRH is a new point-of-load (POL) DC/DC 

converter developed by Intersil Coporation. The part has been 

qualified for total ionizing dose irradiation. Here we give a 

short summary of the single event effects performance from 

heavy-ion irradiations. Details of the part’s radiation 

performance can be found in Intersil’s publication. [28] 

The ISL70001SRH was found to be free of 

SEL/SEB/SEGR up to an LET of 86.4 MeV•cm
2
/mg, with the 

device operating at an input voltage of 5.7 V, output current of 

7 A, output voltage of 1.8 V, and case temperature up to 

125
o
C.  

The redundant PWM loop design of the ISL70001SRH is 

effective in limiting SETs. The worst case SET at an LET of 

86.4 MeV•cm
2
/mg was found to cause less than 1% change in 

the output voltage.  
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A SEFI phenomenon of the Softstart function was observed 

at an LET of 84.6 MeV•cm
2
/mg and 3 V input voltage only. 

The ISL70001SRH shuts down and then restarts normally 

through the Softstart function. The estimated cross section for 

this phenomenon is 1.4 x 10
-6

 cm
2
 at an LET of 

84.6 MeV•cm
2
/mg and 3V input. With a 5 V input, the SEFI 

cross section increased to ~ 6.5 x 10
-8

 cm
2
. [28] 

V. SUMMARY 

We have presented current data from SEE testing on a 

variety of mainly commercial devices. It is the authors' 

recommendation that this data be used with caution. We also 

highly recommend that lot testing be performed on any 

suspect or commercial device. 
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