
(Preprint) AAS 11-527

A GENERAL EVENT LOCATION ALGORITHM WITH
APPLICATIONS TO ECLIPSE AND STATION LINE-OF-SIGHT

Joel J. K. Parker∗and Steven P. Hughes†

A general-purpose algorithm for the detection and location of orbital events is
developed. The proposed algorithm reduces the problem to a global root-finding
problem by mapping events of interest (such as eclipses, station access events,
etc.) to continuous, differentiable event functions. A stepping algorithm and a
bracketing algorithm are used to detect and locate the roots. Examples of event
functions and the stepping/bracketing algorithms are discussed, along with results
indicating performance and accuracy in comparison to commercial tools across a
variety of trajectories.

INTRODUCTION

One of the fundamental problems in spacecraft mission design is that of orbital event location;
that is, the determination of the start and end times and durations of various events of interest along
the trajectory of a spacecraft. While event location can be defined generally, in the context of space-
craft trajectories it includes such examples as the start and end times of an eclipse period, the start
and end times of communications contact with a ground station, and the time of closest approach
between two spacecraft. This is critically important to several disciplines, including spacecraft de-
sign and mission planning. Spacecraft design engineers must know the durations of eclipse events
to properly perform power system design, and mission planners must know the event start and end
times to schedule communication and data collection. Likewise, mission planners and operators
must know the timing and duration of ground station line-of-sight events so that communication
and tracking can be established.

There exist several tools that perform event location for spacecraft trajectories. These include
NASA tools such as the General Maneuver Program (GMAN),1 Swingby,2 and the Acquisition
Data Program (ACQSCAN),3 as well as commercial off-the-shelf (COTS) tools such as AGI’s STK
and A.I. Solutions’ FreeFlyer. The Navigation and Mission Design Branch (NMDB) at NASA
Goddard Space Flight Center is currently leading development of the General Mission Analysis
Tool (GMAT), a new open-source mission design tool that is designed for eventual operational use.
However, GMAT lacks the capability to perform event location, a necessary operational require-
ment.

The purpose of this study was to develop an algorithm to perform event location for spacecraft
trajectories and to demonstrate the approach with a prototype software tool. Based on this expe-

∗Flight Dynamics Engineer, Navigation and Mission Design Branch, Code 595, NASA Goddard Space Flight Center, 8800
Greenbelt Rd, Greenbelt, MD 20771.
†Flight Dynamics Engineer, Navigation and Mission Design Branch, Code 595, NASA Goddard Space Flight Center, 8800
Greenbelt Rd, Greenbelt, MD 20771.

1

Earth

Earth

station

view cone

shadow cone
trajectory

entrance event

exit event

Figure 1: Eclipse (top) and station line-of-sight (bottom) physical and function representations

rience, parts of this algorithm will be implemented in GMAT to provide it with an event location
capability.

At its core, event location is a global root-finding problem. This can be seen graphically in Figure
1, which in the upper left shows the physical situation of a spacecraft trajectory passing through a
shadow caused by a celestial body (such as Earth). This situation can also be represented in a
functional form similar to that shown in the graph at the right of the figure. As the spacecraft travels
along its trajectory, its “distance” from the event boundary (in this case, entrance to or exit from the
shadow region) can be plotted as a function of time. This is referred to as the event function. The
measure of distance can be chosen based on the application, but in all cases the instant of the event
is represented by an ordinate value of zero. In Figure 1, while the spacecraft is outside the shadow
region its distance value is positive, while inside the shadow region it is negative, though this is not
a requirement. The diagram in the lower left shows a similar case involving a spacecraft travelling
through the visibility cone of a ground station, which can be represented in functional form in an
identical way.

By defining the appropriate measures of distance for each type of event, a functional representa-
tion of that event can be generated, and the times of those events can be determined by finding the
roots of that function.

There are several complicating factors that make this problem non-trivial. The most basic in-
formation available about a spacecraft trajectory is its ephemeris, or time history of position and
velocity states. These states occur at discrete times (evenly spaced or not) and represent individual
points on the function plots represented in Figure 1. Given only the values of the event function at
these times, three cases could occur, as shown in Figure 2.

Figure 2a shows the trivial case, in which there exists a single root (and therefore a single event)
between each pair of ephemeris steps shown by vertical lines on the x-axis. Given these points, the
roots can be found by applying a classical root-finding method such as bisection or Brent’s.4

Figure 2b shows the case in which two roots exist between the final two ephemeris steps in the
figure. In this case, the roots are not individually bracketed, so a bisection-like method will fail.

2

(a) Type I—One root (b) Type II—Two roots (c) Type III—Many roots

Figure 2: Types of event function behavior between ephemeris steps

However, by considering the derivative of the function (which has a single root between the steps),
both roots can be found.

Figure 2c shows the final case, in which many roots (three or more) occur between ephemeris
steps. This case cannot be handled in a general way by considering the derivatives of the function,
and so must be prevented from occurring. This is the goal of the algorithm development in the next
section.

ALGORITHMS

Three classes of algorithms were developed as a part of this study: event functions, function
steppers, and an event detector.

Event Functions

An event function is a mathematical representation of a physical scenario, such as a spacecraft
travelling through a region of shadow (see Figure 1). It can be defined arbitrarily, but for the pur-
poses of this algorithm, it must behave according to certain rules. The event function must:

• be continuous,
• have a known first derivative, and
• have roots at the times of the events (and only at these times).

In general, the event function is a measure of distance of the spacecraft at any point in time
from the event occurrence. This study focuses on detecting eclipse and ground station line-of-sight
events, which combined require a total of five different event functions.

An eclipse event is the entrance to or exit from a region of shadow created by a celestial body
blocking all or part of the sun’s rays. The shadow region can be one of three types, as shown in
Figure 3.

The planar geometry for the umbra function is shown in Figure 4. In this construction, the umbral
cone created by the central body is shown by the solid tangent lines, and the spacecraft trajectory by
the dashed curve. At any instant in time, the satellite position (with radius vector r) defines a circle
about the shadow body of radius Rb. This circle intersects the umbral cone at the point located by
e, which makes an angle η with the edge of the cone. The angle γu between the vectors r and e
defines the event function, which depends only on the satellite radius vector r, the vector v from the

3

Figure 3: Shadow types

Figure 4: Umbra event function

shadow body to the sun, and the radii of the sun (Rs) and shadow body (Rb). The event function
itself is:

γu = π − θ + α− η, (1)

where

θ = cos−1
(

v · r
|v| |r|

)
, (2)

α = sin−1
(
RS −Rb

|v|

)
, and (3)

η = sin−1
(
Rb

|r|
cos(α)

)
. (4)

The first derivative of the umbra function is found by differentiating the equations above with
respect to time:

γ̇u = −θ̇ + α̇− η̇, (5)

where

4

Figure 5: Penumbra event function

θ̇ = −

v̇ · r+ v · ṙ
|v| |r|

− (v · r) (v̇ · v)
|v|3 |r|

− (v · r) (ṙ · r)
|v| |r|3

sin(θ)
, (6)

α̇ = −(RS −Rb) (v̇ · v)
|v|3 cos(α)

, and (7)

η̇ = Rb

−α̇ sinα

|r|
− (ṙ · r) cos(α)

|r|3

cos(η)
. (8)

A similar construction can be defined for the penumbra shadow event, as shown in Figure 5. Its
equation is

γp = π − θ − φ− δ, (9)

where θ is defined above,

φ = sin−1
(
RS +Rb

|v|

)
, and (10)

δ = sin−1
(
Rb

|r|
cos(φ)

)
. (11)

The derivative γ̇p is found by differentiating the equations above in the same manner as γ̇u.
Likewise, the equation for the antumbra function, shown geometrically in Figure 6, is

γa = π − θ − 2α+ η, (12)

where θ, α, and η are defined above.

Finding ground station line-of-sight events relies on the coupling of two different function types:
the elevation function for the station’s central body and the line-of-sight function for third bodies.

5

Figure 6: Antumbra event function

Figure 7: Elevation event function

The elevation function represents the visibility of the satellite from the ground station above its local
horizon. This geometry is shown in Figure 7. The definition of the ground elevation angle is

el = sin−1
(
ρz
ρ

)
, (13)

where ρ is the spacecraft range and is equivalent to |r|.5 However, this formulation is not smooth
through a single pass, which is not ideal. Since any arbitrary function can serve as the event function
as long as it has identical roots to Eq. (13),

ef = sin

(
ρz
ρ

)
(14)

and its derivative

ėf = cos

(
ρz
ρ

)(
ρ̇z
ρ
− ρzρ̇

ρ2

)
. (15)

can be substituted. In this formulation, the elevation angle is

6

Figure 8: Line-of-sight event function

el = sin−1
(
sin−1 (ef)

)
(16)

The station line-of-sight function geometry is shown in Figure 8. This function captures the
obstruction of line of sight between the ground station and the spacecraft through any bodies other
than the central body of the station. The formulation relies on the magnitudes of the angles θ1 and
θ2, the sum of which represents the maximum angle at which line-of-sight is preserved, and θ, the
actual angle between the spacecraft and ground station vectors from the center of the obstructing
body. The equation is

l = θ1 + θ2 − θ, (17)

where

θ1 = cos−1
(
Rb

|r|

)
, (18)

θ2 = cos−1
(
Rb

|rgs|

)
, and (19)

θ = cos−1
(

r · rgs
|r| |rgs|

)
. (20)

Stepping Algorithms

To locate the roots of these event functions (and thus locate the events), the functions can be
integrated along with the trajectory, or they can be evaluated in a post-processing step. In the
former case, the integrator will be able to adjust the step size based on the event function behavior
using a method such as that developed by Shampine.6 However, for simplicity for the purposes of
this study, a postprocessing method was used, which requires a search technique for its roots. There
are two classes of search methods that can be applied: fixed steppers and adaptive steppers.

7

A fixed stepper is the simplest of the search methods; it uses a fixed interval (or step size) and
moves along the function by that interval, searching for roots between each step. In equation form,
this is represented as

t1 = t0 + h, (21)

where t0 is the current step, t1 is the next step, and h is the step size. However, this method
has several drawbacks. With a step size chosen too small, many more steps are taken than are
required, reducing performance. With a step size chosen too large, there exists the possibility of
missing events, especially if more than two roots occur between adjacent steps. And if the function
frequency changes within the ephemeris interval, it is possible that a well-chosen step size may be
too small for one portion and too large for another.

In general, it is much more efficient to search for roots using an adaptive method, which adjusts
its behavior using knowledge of the behavior of the function (through its derivatives). There are
several potential methods available, including frequency analysis, polynomial approximation, and
Taylor methods to automatically adjust the step size sized based on the local function behavior. Of
these options, the Taylor method is straightforward to understand and implement, and is used widely
as a part of numerical integration methods (such as Runge-Kutta methods).

The Taylor adaptive stepping method is based on the error control method used by adaptive
Runge-Kutta numerical integration algorithms.7 In this method, two approximations are made of
the event function value at the next time step. As an example, the value of the function at time t1
may be approximated using a second-order Taylor approximation,

f1 (t1) = f (t0) + hf ′ (t0) +
h2

2
f ′′ (t0) +O

(
h3

)
, (22)

while a third-order approximation of the same function value is

f2 (t1) = f (t0) + hf ′ (t0) +
h2

2
f ′′ (t0) +

h3

6
f ′′′ (t0) +O

(
h4

)
. (23)

The difference between the two approximations can be interpreted as an error value using the
formula

err =
1

h
|f1 (t1)− f2 (t1)| , (24)

where h, again, is the step size. This error value can then be compared against a user-supplied
tolerance. If the error is less than tolerance, the step size may be too small, while if it is greater than
tolerance, the step size may be too large.

The step size itself is controlled by using a quality factor defined by

q = sf

(
tol

err

) 1
n

, (25)

8

where tol is the error tolerance, n is the order of the lower-order approximation (in this example
n = 2), and sf is a safety factor, usually 0.9 or 0.95 (though in this analysis sf was left at 1). The
quality factor is defined such that if the error is greater than the tolerance, q < 1. If the error is less
than the tolerance, q > 1.

In Eq. (22)–(23), f (t0) and f ′ (t0) are known (these are the values of the event function and the
event function derivative, respectively). However, the higher derivatives of f are not known, and
approximations must be used.

The higher derivatives of f can be approximated by finite differencing. For example, the classic
central difference formula for the first derivative of f is

f ′ (ti) =
1

h

[
−1

2
f (ti−1) +

1

2
f (ti+1)

]
+O

(
h2

)
. (26)

This formula uses the two surrounding time steps (that is, ti − h and ti + h) to approximate the
value of f ′ at the current step with an error on the order of h2. Similar formulas exist for forward
differencing (using the current and next time steps) and backward differencing (using the current
and previous time steps). Eq. (26) can be easily adapted to find the second derivative of f based on
its first derivative, as given by

f ′′ (ti) =
1

h

[
−1

2
f ′ (ti−1) +

1

2
f ′ (ti+1)

]
+O

(
h2

)
. (27)

Formulas with identical error terms also exist for higher derivatives, such as

f ′′′ (ti) =
1

h2
[
f ′ (ti−1)− 2f ′ (ti) + f ′ (ti+1)

]
+O

(
h2

)
(28)

and

f (4) (ti) =
1

h3

[
−1

2
f ′ (ti−2) + f ′ (ti−1)− f ′ (ti+1) +

1

2
f ′ (ti+2)

]
+O

(
h2

)
. (29)

In this way, Taylor methods up to the fourth order can be derived using finite difference ap-
proximations through the fifth derivative. This method can easily be extended further, with the
consideration that more time steps, and therefore more function evaluations, will be included in the
calculation.

The overall adaptive stepping algorithm is illustrated in Figure 9, where the entire sequence is
repeated at each step. First, Eqs. (22)–(23) (or their higher-order equivalents) are evaluated using
the current step size to approximate the function value at the next step. The two approximations
are compared and the error value and quality factor are calculated. The error value is compared to
a user-defined tolerance, and if the tolerance is met, the step is accepted and applied. The quality
factor is multiplied by the current step size to increase it, and the procedure moves to the next step.
However, if the tolerance comparison fails, the quality factor is used to decrease the step size, and
the process is repeated for the same step until tolerance is met.

9

Calculate Taylor approximations f1 (t0 + h), f2 (t0 + h)

Calculate error and quality factor err, q

err ≤ tol?

t1 = t0 + h

h = qh

h = qh

end

true

false

Figure 9: Adaptive stepping algorithm

f (t0)× f (t1) < 0 find 1 root

ḟ (t0)× ḟ (t1) < 0

no root

f (t0)× f (tr) < 0

no roots

find 2 roots

true

false

false

true

false

true

Figure 10: Event detection algorithm

The effect of this is that in intervals where the function is slowly changing, the step size is in-
creased to improve performance, and where the function is changing rapidly, the step size is de-
creased to preserve accuracy.

Event Detector

To find the roots of the event function (and therefore find the event times), the system applies the
event detection algorithm, shown in Figure 10, at each time step produced by the stepping algorithm.
The detection algorithm performs a series of checks to determine if a root has occurred between the
current and next steps. It begins by checking the signs of the function values at the two steps; if they
are different a single root exists between the steps and a local root finding method (such as Brent’s
method) is used to find it. If the function values have the same sign, but the signs of their derivative
values are different, then there may exist a maximum of two roots between the steps. In this case,
the local root finding method is used to find the root of the derivative (and thus the extremum of the

10

original function). Once the time value of the extremum is found, the signs of the original function
values at that point and at one of the endpoints are compared to determine the existence of any roots
between. If the signs are opposite, there exists two roots, one between the extremum point and each
endpoint. In the case of a discrete event (one without a beginning and ending event), the extremum
itself will be zero, and a single root will be found.

IMPLEMENTATION

The algorithms discussed in the previous section were implemented in a standalone prototype
event locator tool as a proof of concept. The tool was written in object-oriented MATLAB and
operates in a post-processing mode on the ephemeris for a single spacecraft.

The event locator uses as input an ephemeris file in the format of a Consultative Committee for
Space Data Systems (CCSDS) Orbit Ephemeris Message8 and reports event data either to the screen
or to a file. A project file in the text-based YAML format9 is used to specify options. For eclipse
events, the system supports umbra, penumbra, and antumbra events for any of the major celestial
bodies. The MATLAB version of the SPICE Toolkit (version N0064)10 is used for celestial body
ephemeris data, and custom bodies can be used by supplying an additional SPK file and indicat-
ing its path. Ground station line-of-sight can be calculated for any user-defined station. Stations
are specified in the system’s project file by supplying a name, a central body, and planetodetic co-
ordinates. In addition, multiple algorithmic settings can be set by the user including the stepping
algorithm to use (fixed or adaptive and adaptive orders 2–4), the stepping algorithm tolerance, and
the local root-finding method (Brent’s, bisection, secant) and its tolerance.

For each event type requested by the user (e.g. umbra eclipse, penumbra eclipse, ground station
line-of-sight), the system processes a series of individual event functions using the desired stepping
method. The number of functions varies according to the type of event requested and the number of
celestial bodies involved: if only umbral eclipse events at Earth are requested, a single event function
is processed. However, if all three eclipse types are requested for both Earth and Moon, as well as
ground station line-of-sight for an Earth-based station, a total of 13 event functions are processed:
umbra, penumbra and antumbra for each eclipse body, the elevation function at the Earth ground
station, and line-of-sight through all other celestial bodies defined by default (Mercury, Venus,
Moon, Mars, Phobos, Deimos). This can be reduced by future enhancements to only consider
line of sight through user-requested bodies. Further, if the ephemeris file contains two segments,
the number of event functions processed increases to 26, because each segment must be processed
individually due to potential discontinuities caused by impulsive maneuvers or dynamics model
changes.

The system is currently capable of locating events along arbitrary trajectories, considering any
celestial body that can be supplied in a SPICE-compatible format, and considering any ground
station that can be specified by planetodetic coordinates on any of those celestial bodies. The results
are collected from all requested event types, combined if necessary, and reported in a user-friendly
text format. As it was developed as a proof of concept, the system assumes spherical celestial bodies
and does not include light-time corrections.

TESTING AND RESULTS

To test the event locator a series of nine test cases was created involving different types of trajec-
tories and multiple classes and combinations of events. The cases are listed in Table 1.

11

Test Case Description Eclipse events Station LOS events

Simple Quick LEO test Earth umbra/penumbra Equatorial station

LEO Earth orbit with Moon
umbra

Earth umbra/penumbra
Moon umbra/penumbra

NASA GSFC

HEO1 Highly-elliptical Earth
orbit with long eclipse

Earth umbra/penumbra Canberra

HEO2 Highly-elliptical Earth
orbit with short eclipse

Earth umbra/penumbra Madrid

Lunar Moon orbit with Earth
shadows and Earth sta-
tion access

Moon umbra/penumbra
Earth umbra/penumbra

Moon station
Plesetsk

Martian Mars orbit with Phobos
shadows and Earth sta-
tion access

Mars umbra/penumbra
Phobos penumbra

Mars station
Kwajalein

Earth Transit Transit of Earth/Moon
from Mars orbit with
Earth/Moon station ac-
cess

Earth penumbra/antumbra
Moon penumbra/antumbra
Mars umbra/penumbra
Phobos penumbra

Moon station
Wallops

Maven MAVEN escape trajec-
tory with Earth eclipse

Earth umbra/penumbra none

Table 1: Test Cases

12

Table 2: Test results

All cases, with the exception of Maven, contain both eclipse and ground station line-of-sight
events. The Maven case is intended to test a specific eclipse case and thus contains no ground
stations. Each case was implemented as a MATLAB function using the object model in STK 9.2.1.
STK was used to generate an ephemeris file, an eclipse report, and a station access report for each
ground station defined in the test case. Then a series of event locator project files was created
for each case, each testing a different stepping algorithm. The event locator was run using each
project file in an automated way, and its eclipse and station line-of-sight reports were compared to
those generated from STK. The test results (defined as a pass if all events were detected and their
times and durations were within tolerance, nominally set at 5 seconds), the actual maximum time
difference for all events in the test, and the number of function evaluations executed during the run
were all recorded.

To ensure that both tools were using identical input values, certain STK data files were edited to
match the values used by the SPICE kernels in the event locator. The changes included:

• Setting each central body radius to match the values given by SPICE
• Setting each central body to spherical shape
• Adding the appropriate ephemeris kernels to STK’s SPICE directory
• Setting each central body to use SPICE as its ephemeris source

Table 2 shows the results for each test case (column groups) and each stepping method (row
groups). The cases that pass by matching all events within tolerance (5 seconds) are marked green;
cases that detect all events but with a larger time difference are marked yellow. There are sev-
eral cases that do not detect all events used the fixed step method with large step sizes; these are
considered as expected failures and are marked with a crosshatch pattern.

In general, the large majority of cases detect all events with very small time differences (many on
the order of hundredths of seconds). The Earth Transit case falls outside of the 5-second tolerance in
all instances, while the Martian case falls outside of tolerance only for station line-of-sight events.
These cases all include trajectories at Martian distances, which exacerbates certain known modeling
differences between the event locator and STK. For line-of-site events, the event locator does not
consider light-time delays in its calculations. This by itself accounts for the vast majority of the
timing errors in these line-of-sight cases. In the case of Earth Transit eclipse events, there is a

13

difference in Sun/Earth position between SPICE and STK on the order of hundreds of kilometers.
This is by far the largest discrepancy between the two systems for the eclipse functions, and probably
accounts for the approximately 90-second event time differences. More research into the issue is
necessary to confirm this.

CONCLUSIONS

The objective of this study was to develop a general algorithm for event location and apply it to
eclipse and ground station line-of-sight events. This was accomplished by developing the necessary
event functions for the three eclipse types and the two station line-of-sight criteria, a fixed-step and
several adaptive-step search methods, and an algorithm for event detection between steps. These al-
gorithms were implemented in MATLAB as a prototype event locator tool and tested by comparing
to existing software tools.

There are several avenues of continued development. There exists the possibility of improving the
event detection algorithm by implementing a local polynomial approximation scheme to increase
efficiency. This scheme would use an approximating polynomial between the two steps to check for
the possibility of roots between them; if the polynomial has no real roots, it can be assumed that
the original function also does not and the function itself does not need to be evaluated. There are
also potential efficiency improvements available by implementing higher-order adaptive stepping
methods, using the framework described previously.

From a software perspective, the addition of a graphical user interface would improve overall
usability. Because the rationale for this study was the lack of an event location capability in GMAT,
it is expected that these algorithms will be implemented in GMAT as native code, using the event
locator tool as a prototype. Finally, there is also interest in releasing this tool as a standalone utility,
an option that remains to be explored.

NOTATION
e vector from shadow body center to intersection of spacecraft auxiliary circle and umbral cone
ef elevation function value
el spacecraft elevation measured from ground station
err Taylor approximation error
h step size
r spacecraft position vector
q adaptive stepper quality factor

Rb shadow body radius
RS Sun radius
sf adaptive stepper safety factor
t time
v vector from center of shadow body center to Sun
α umbral half-cone angle
γa antumbra event function value
γp penumbra event function value
γu umbra event function value
η angle between e and the umbral cone

14

θ angle between r and the sunward side of the shadow body-Sun line
θ angle between spacecraft and ground station position vectors, measured from the center of an external celestial body

θ1, θ2 auxiliary angles for line-of-sight function
φ penumbral half-cone angle
ρ spacecraft range

REFERENCES
[1] “General Maneuver Program (GMAN) Mathematical Specifications, Revision 1, Update 7,” tech. rep.,

Mission Operations and Data Systems Directorate, NASA Goddard Space Flight Center, Greenbelt,
MD, November 1993.

[2] “Mission Analysis and Design Tool (Swingby) User’s Guide, Revision 3,” tech. rep., Flight Dynamics
Division, NASA Goddard Space Flight Center, Greenbelt, MD, September 1995.

[3] “Acquisition Data Program (ACQSCAN) Functional Description and User’s Guide,” tech. rep., Flight
Dynamics Division, NASA Goddard Space Flight Center, Greenbelt, MD, 1995.

[4] R. Brent, Algorithms for Minimization Without Derivatives. Prentice-Hall Series in Automatic Compu-
tation, Prentice-Hall, 1972.

[5] D. A. Vallado, Fundamentals of Astrodynamics and Applications. El Segundo, CA: Microcosm Press,
2nd ed., 2001.

[6] L. F. Shampine, I. Gladwell, and R. W. Brankin, “Reliable Solution of Special Event Location Problems
for ODEs,” ACM Transactions on Mathematical Software, Vol. 17, March 1991, pp. 11–25.

[7] R. L. Burden and J. D. Faires, Numerical Analysis. Belmont, CA: Thomson, 2005.
[8] “Orbit Data Messages,” Tech. Rep. CCSDS 502.0-B-2, The Consultative Committee for Space Data

Systems, November 2009.
[9] O. Ben-Kiki, C. Evans, and I. d. Net, “YAML Ain’t Markup Language (YAML) Version 1.2,” Tech.

Rep. 3rd Edition, October 2009.
[10] “The SPICE Toolkit, version N0064,” June 2010.

15

	Introduction
	Algorithms
	Event Functions
	Stepping Algorithms
	Event Detector

	Implementation
	Testing and Results
	Conclusions
	Notation

