Experiences Developing a Semantic Representation of Product Quality, Bias, and Uncertainty for a Satellite Data Product

Patrick West¹, Gregory Leptoukh², Stephan Zednik¹, Chris Lynnes², Suraiya Ahmad³, Jianfu Pan⁴, Peter Fox¹

(1) Tetherless World Constellation
(2) NASA Goddard Space Flight Center
(3) NASA Goddard Space Flight Center/Innovim
(4) NASA Goddard Space Flight Center/Adnet Systems, Inc.
Issue

• Climate model and various environmental monitoring and protection applications have begun to increasingly rely on satellite measurements.

• Research application users seek good quality satellite data, with uncertainties and biases provided for each data point.

• Remote-sensing quality issues are addressed rather inconsistently and differently by different communities.
“The user cannot find the data; If he can find it, cannot access it; If he can access it, he doesn't know how good they are; if he finds them good, he can not merge them with other data.”

The Users View of IT, NAS 1989
Challenges in dealing with Data Quality

Q: Why now? What has changed?
A: With the recent revolutionary progress in data systems, dealing with data from many different sensors finally has become a reality.

Only now, a systematic approach to remote sensing quality is on the table.

- NASA is beefing up efforts on data quality.
- ESA is seriously addressing these issues.
- QA4EO: an international effort to bring communities together on data quality.
- GeoVique
Data from multiple sources to be used together:

• Current sensors/missions: MODIS, MISR, GOES, OMI.
• Future missions: ACE, NPP, JPSS, Geo-CAPE
• European and other countries’ satellites
• Models

Harmonization needs:

• It is not sufficient just to have the data from different sensors and their provenances in one place
• Before comparing and fusing data, things need to be harmonized:
 • Metadata: terminology, standard fields, units, scale
 • Data: format, grid, spatial and temporal resolution, wavelength, etc.
 • Provenance: source, assumptions, algorithm, processing steps
 • **Quality: bias, uncertainty, fitness-for-purpose, validation**

Dangers of easy data access without proper assessment of the joint data usage - *It is easy to use data incorrectly*
Three projects with data quality flavor

• We have three projects where different aspects of data quality are addressed.
• We mostly deal with aerosol data
• I’ll briefly describe them and then show why they are related
The DQSS filters out bad pixels for the user

• Default user scenario
 – Search for data
 – Select science team recommendation for quality screening (filtering)
 – Download screened data

• More advanced scenario
 – Search for data
 – Select custom quality screening parameters
 – Download screened data
DQSS Ontology (Zoom)
AeroStat: Online Platform for the Statistical Intercomparison of Aerosols

- Explore & Visualize Level 3
- Compare Level 3
- Level 3 are too aggregated
- Switch to high-res Level 2
- Explore & Visualize Level 2
- Correct Level 2
- Compare Level 2 Before and After
- Merge Level 2 to new Level 3

EGU 2011
6/30/2011
Qurator info model used our assessment of existing quality models.

• Describes a model whereby:
 – data annotated with quality annotation metadata

• QA metadata can be associated with data of varying degrees of granularity
 – ex: products, collections, arrays, specific values, etc.
 – this supports our interest in associated data with a product

• Quality evidence, a measurable quantity, provides a 'clue' into the quality
 – ex: hit-ratio, standard deviation, etc.
 – common examples associated with statistical analysis
 – often computed in QC
 – would global coverage, scatter plots, etc. fit?

• Quality assertions are domain-specific functions based on quality evidence
 – good, bad, ugly
 – No confidence, marginal, good, best

• Quality property (aka quality dimensions)
 – accuracy, completeness, currency
 – many dimensions of quality to consider, each with different evidence
IQ Curator Model
Application to our Project

This is an instance of QualityEvidence as shown in the IQ Curator paper (page 4).

Process is general, could be used to describe report activities, QA or bias studies, research, etc.

To support complex QualityEvidence quantifications hasValue is now an obj-property to a DataEntity. This is in contrast to how it is modeled in the IQ Curator paper (see HitRatio example).
Multi-Sensor Data Synergy Advisor (MDSA)

- **Goal:** Provide science users with clear, cogent information on salient differences between data candidates for fusion, merging and intercomparison
 - Enable scientifically and statistically valid conclusions

- Develop MDSA on current missions:
 - Terra, Aqua, (maybe Aura)

- Define implications for future missions
Title: MODIS Terra C5 AOD vs. Aeronet during Aug-Oct Biomass burning-in Central Brazil,

(General) Statement: Collection 5 MODIS AOD at 550 nm during Aug-Oct over Central South America highly over-estimates for large AOD and in non-burning season underestimates for small AOD, as compared to Aeronet; good comparisons are found at moderate AOD.

Region & season characteristics: Central region of Brazil is mix of forest, cerrado, and pasture and known to have low AOD most of the year except during biomass burning season

(Dominating factors leading to Aerosol Estimate bias):
1. Large positive bias in AOD estimate during biomass burning season may be due to wrong assignment of Aerosol absorbing characteristics.
 (Specific explanation) a constant Single Scattering Albedo ~ 0.91 is assigned for all seasons, while the true value is closer to ~0.92-0.93.
 [Notes or exceptions: Biomass burning regions in Southern Africa do not show as large positive bias as in this case, it may be due to different optical characteristics or single scattering albedo of smoke particles, Aeronet observations of SSA confirm this]
2. Low AOD is common in non burning season. In Low AOD cases, biases are highly dependent on lower boundary conditions. In general a negative bias is found due to uncertainty in Surface Reflectance Characterization which dominates if signal from atmospheric aerosol is low.

(Example): Scatter plot of MODIS AOD and AOD at 550 nm vs. Aeronet from ref. (Hyer et al, 2011) (Description Caption) shows severe over-estimation of MODIS Col 5 AOD (dark target algorithm) at large AOD at 550 nm during Aug-Oct 2005-2008 over Brazil. (Constraints) Only best quality of MODIS data (Quality =3) used. Data with scattering angle > 170 deg excluded. (Symbols) Red Lines define regions of Expected Error (EE). Green is the fitted slope

Results: Tolerance = 62% within EE; RMSE=0.212; $r^2=0.81$; Slope=1.00
For Low AOD (<0.2) Slope=0.3. For high AOD (> 1.4) Slope=1.54

FACETS OF DATA QUALITY
Quality Control vs. Quality Assessment

• Quality Control (QC) flags in the data (assigned by the algorithm) reflect “happiness” of the retrieval algorithm, e.g., all the necessary channels indeed had data, not too many clouds, the algorithm has converged to a solution, etc.

• Quality assessment is done by analyzing the data “after the fact” through validation, intercomparison with other measurements, self-consistency, etc. It is presented as bias and uncertainty. It is rather inconsistent and can be found in papers, validation reports all over the place.
Different kinds of reported and perceived data quality

- **Pixel-level Quality** (reported): algorithmic guess at usability of data point (some say it reflects the algorithm “happiness”)
 - Granule-level Quality: statistical roll-up of Pixel-level Quality
- **Product-level Quality** (wanted/perceived): how closely the data represent the actual geophysical state
- **Record-level Quality**: how consistent and reliable the data record is across generations of measurements

Different quality types are often erroneously assumed having the same meaning

Different focus and action at these different levels to ensure Data Quality
Percent of Biased Data in MODIS Aerosols Over Land Increase as Confidence Flag Decreases

*Compliant data are within $\pm 0.05 \pm 0.2\tau_{\text{Aeronet}}$

General Level 2 Pixel-Level Issues

- How to extrapolate validation knowledge about selected Level 2 pixels to the Level 2 (swath) product?
- How to harmonize terms and methods for pixel-level quality?

AIRS Quality Indicators

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Data Assimilation</th>
<th>Climatic Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Best Data Assimilation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Good Climatic Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Do Not Use</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MODIS Aerosols Confidence Flags

<table>
<thead>
<tr>
<th>Number</th>
<th>Ocean</th>
<th>Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bad</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Marginal</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Good</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Very Good</td>
<td>3</td>
</tr>
</tbody>
</table>

- **Purpose**: Use these flags in order to stay within expected error bounds
 - **Ocean**: $\pm 0.03 \pm 0.10 t$
 - **Land**: $\pm 0.05 \pm 0.15 t$

6/30/2011
Spatial and temporal sampling – how to quantify to make it useful for modelers?

MODIS Aqua AOD July 2009

MISR Terra AOD July 2009

• Spatial sampling patterns are different for MODIS Aqua and MISR Terra:
 • “pulsating” areas over ocean are oriented differently due to different direction of orbiting during day-time measurement → Cognitive bias
• Terminology: Quality, Uncertainty, Bias, Error budget, etc.

• Quality aspects (examples):

 – Completeness:

 • Spatial (MODIS covers more than MISR)
 • Temporal (Terra mission has been longer in space than Aqua)
 • Observing Condition (MODIS cannot measure over sun glint while MISR can)

 – Consistency:

 • Spatial (e.g., not changing over sea-land boundary)
 • Temporal (e.g., trends, discontinuities and anomalies)
 • Observing Condition (e.g., exhibit variations in retrieved measurements due to the viewing conditions, such as viewing geometry or cloud fraction)

 – Representativeness:

 • Neither pixel count nor standard deviation fully express representativeness of the grid cell value
Some differences in L3 are due to difference processing

• Spatial and temporal binning (L2 → L3 daily) leads to Aggregation bias:
 – Measurements (L2 pixels) from one or more orbits can go into a single grid cell → different within-grid variability
 – Different weighting: pixel counts, quality
 – Thresholds used, i.e., > 5 pixels

• Data aggregation (L3D → L3monthly → regional → global):
 – Weighting by pixel counts or quality
 – Thresholds used, i.e., > 2 days

While these algorithms have been documented in ATBD, reports and papers, the typical data user is not immediately aware of how a given portion of the data has been processed, and what is the resulting impact
Case 1: MODIS vs. MERIS

Different results - why?

A threshold used in MERIS processing effectively excludes high aerosol values. Note: MERIS was designed primarily as an ocean-color instrument, so aerosols are “obstacles” not signal.
Case 2: Aggregation

The AOD difference can be up to 40% due to differences in aggregation.

Mishchenko et al., 2007

Levy, Leptoukh, et al., 2009
Case 3: DataDay definition

MODIS-Terra vs. MODIS-Aqua: Map of AOD temporal correlation, 2008

A: MOD08_D3.005 Aerosol Optical Depth at 550 nm (unitless)
B: MYD08 D3.051 Aerosol Optical Depth at 550 nm

MODIS Level 3 dataday definition leads to artifact in correlation
6/30/2011
Conclusion

- Quality is very hard to characterize, different groups will focus on different and inconsistent measures of quality.
- Products with known Quality (whether good or bad quality) are more valuable than products with unknown Quality.
 - Known quality helps you correctly assess fitness-for-use
- Harmonization of data quality is even more difficult than characterizing quality of a single data product
References

