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1.0  INTRODUCTION AND BACKGROUND 
Crew health and performance are critical to successful human exploration beyond low Earth orbit.  
The Human Research Program (HRP) is essential to enabling extended periods of space exploration 
because it provides knowledge and tools to mitigate risks to human health and performance.  Risks 
include physiological effects from radiation and hypogravity environments, as well as unique 
challenges in medical support, human factors, and behavioral or psychological factors.  The Human 
Research Program (HRP) delivers human health and performance countermeasures, knowledge, 
technologies and tools to enable safe, reliable, and productive human space exploration.  Without 
HRP results, NASA will face unknown and unacceptable risks for mission success and post-mission 
crew health. 
This Integrated Research Plan (IRP) describes (1) HRP’s approach and research activities that are 
intended to address the needs of human space exploration and serve HRP customers and (2) the 
method of integration for risk mitigation. The scope of the IRP is limited to the activities that can be 
conducted with the resources available to the HRP; it does not contain activities that would be 
performed if additional resources were available. The timescale of human space exploration is 
envisioned to take many decades.  The IRP illustrates the program’s research plan through the 
timescale of early lunar missions of extended duration. 
The IRP serves several purposes for the Human Research Program.  The IRP… 

• provides a means to ensure that the most significant risks to human space explorers are being 
adequately mitigated and/or addressed; 

• shows the relationship of research activities to expected outcomes and need dates; 
• shows the interrelationships among research activities that may interact to produce products 

that affect multiple HRP Elements, Projects or research disciplines; 
• accommodates the uncertain outcomes of research and technology activities by including 

decision points that lead to potential follow-on activities; 
• shows the assignments of responsibility within the program organization and, as practical, 

the proposed acquisition strategy; 
• shows the intended use of research platforms such as the International Space Station (ISS), 

NASA Space Radiation Laboratory (NSRL), and various spaceflight analog environments; 
and 

• shows the budgeted research activities of the HRP, but does not show all

 

 budgeted activities, 
as some of these are enabling functions, such as management, facilities, and infrastructure. 

In 2011 the content of what was formerly Appendix A was transferred to the Human Research 
Roadmap:  http://humanresearchroadmap.nasa.gov/. 

1.1 CONTEXT OF THE INTEGRATED RESEARCH PLAN 
There are three foundational documents to the HRP:  

1. Program Requirements Document (PRD) 

2. Evidence Book 

3. Integrated Research Plan (IRP) 
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The relationship of these HRP documents is illustrated in Figure 1.1; the content and purpose of 
these and other documents are described in the sections that follow.   
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1.1.1 MANAGEMENT ARCHITECTURE 
The development of Human Research Program content has been formulated around the “management 
architecture” of: 

 
 

Reviews of the accumulated evidence from medical records, spaceflight operations and research 
findings are compiled into the Human Research Program Evidence Book.  These findings provide the 
basis for identifying the highest priority human risks in space exploration. At present, the HRP has 
identified 31 risks and risk factors that require research. These 31 risks and risk factors are listed in the 
HRP Program Requirements Document. 

The NASA Chief Health and Medical Officer is responsible for maintaining NASA’s Space Flight 
Human Systems Standards ((NASA-STD-3001, Vols 1 & 2). The Chief Medical Officer developed a 
system to review and document all instances where standards cannot be met, and the plan to mitigate 
the risks associated with unmet standards. All instances where standards are not met can be categorized 
as risks to the human system.  A Risk Management Analysis Tool (RMAT) was developed to describe 
each risk in greater detail, including: context, evidence,  likelihood, consequence, and mitigation 
strategy.  Information in the RMAT is provided within the context of different mission scenarios. To 
complement the RMAT, a Master Logic Diagram (MLD) is developed to identify the most important 
factors that contribute to a particular risk. 

For each risk requiring research, HRP identifies gaps in knowledge about the risk and the ability to 
mitigate the risk. The degree of uncertainty in understanding the likelihood, consequence and/or 
timeframe of a particular risk as well as its criticality to the mission(s) are the major factors that drive 
which research gaps are listed in the Integrated Research Plan (IRP). Ideally gaps listed in the IRP 
should correspond to one or more risk factors outlined in the MLDs.  However, in many cases the 
subject matter experts selected research and development activities they considered most important 
prior to the availability of MLDs.  The RMAT and MLD are defined in greater detail in section 1.4.1. 

The IRP also defines the tasks that will provide the deliverables required to fill the gaps. Research tasks 
are targeted at better defining a risk, or developing mitigation strategies to reduce the risk to an 
acceptable level.  Common deliverables include recommended standards (such as Permissible Exposure 
Limits), flight rules (such as avoiding certain exposure levels), processes, countermeasures and 
technology.  A major criterion for selection of a specific task is how well the proposed research 
provides deliverables toward closure of the gap.  Specifications for the deliverables are agreed upon 
with customers and stakeholders of HRP products through the use of Customer-Supplier Agreements. 
Tasks are solicited through NASA Research Announcements, the Small Business Innovation Research 
program (SBIR), NASA Request for Proposals, etc., or are directed by HRP management. 

After the deliverables are provided, the gap is reassessed for the need for more a) knowledge or b) 
mitigation capability. Further rounds of research are performed until HRP and its customers agree that 
the gaps are adequately closed. 
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1.2 PROGRAM REQUIREMENTS DOCUMENT 
The HRP’s top-level requirements are maintained in the Exploration Systems Mission Directorate 
(ESMD) Exploration Architecture Requirements Document (EARD), ESMD-EARD-08-07, Rev.-D.  
The purpose of the EARD is to translate the expectations of stakeholders, both inside and outside 
NASA, for the next generation U.S. space exploration missions, into requirements that will flow down 
to the implementing organizations.  The EARD allocates the following top requirements to the HRP. 

• [Ex-0061] NASA's Human Research Program (HRP) shall develop knowledge, capabilities, 
countermeasures, and technologies to mitigate the highest risks to crew health and performance 
and enable human space exploration. 

• [Ex-0062] NASA's HRP shall provide data and analysis to support the definition and 
improvement of human spaceflight medical, environmental and human factors standards. 

• [Ex-0063] HRP shall develop technologies to reduce medical and environmental risks and to 
reduce human systems resource requirements (mass, volume, power, data, etc.). 

The PRD decomposes those requirements into lower level requirements that are then allocated to the 
HRP Elements.  The requirements in the PRD are divided into three categories: requirements related to 
human system standards, requirements related to human health and performance risks, and 
requirements related to provision of enabling capabilities. The HRP comprises the following major 
Program Elements: Behavioral Health and Performance (BHP), Exploration Medical Capability 
(ExMC), Human Health Countermeasures (HHC), ISS Medical Project (ISSMP), Space Human Factors 
and Habitability (SHFH), and Space Radiation (SR).  Each Element incorporates its respective PRD 
requirements into its specific Element management plan. The research Elements subsequently derive a 
research plan to address the requirements.  

 

1.2.1 STANDARDS 
The PRD requires that the HRP make recommendations for updates to the Space Flight Human System 
Standards, NASA-STD-3001, Volumes I (Crew Health) and II (Human Factors, Habitability and 
Environmental Health), and the Human Integration Design Handbook (HIDH, NASA/SP-2010-3407).  

NASA-STD-3001 Volume I describes Levels of Care required for human spaceflight missions, 
Permissible Exposure Limits, Permissible Outcomes, and Fitness for Duty Standards for crewmembers 
on exploration missions, among other things, and was first baselined on March 5, 2007, by the Office 
of the Chief Health and Medical Officer (OCHMO). Essentially, these are the definitions of acceptable 
levels of risk for human health and performance associated with spaceflight. By comparing these 
requirements with the existing evidence and knowledge base, the HRP can identify and quantify the 
risks associated with human exploration missions, and derive the research necessary to lower the risk.  

NASA-STD-3001 Volume II provides the comprehensive set of human factors, habitability and 
environmental health requirements. These requirements must be met by all NASA programs in the 
development of vehicles and supporting equipment utilized in human spaceflight exploration. The 
HIDH is the companion document to Volume II.  The HIDH is not a standard, yet provides background 
data, lessons learned and offers recommended design solutions for meeting the requirements of Volume 
II.  Through comparison of the requirements in Volume II (and the content of the HIDH) with the state 
of the art in engineering design, the HRP can identify areas where research is necessary to help system 
development programs meet these requirements. 
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The HRP has two main responsibilities regarding these standards. In some cases, a NASA-STD-3001 
requirement is written in generic terms to ensure its applicability to a wide range of mission 
environments (such as microgravity in orbit, lunar surface habitation, or transit to Mars). HRP research 
can serve to inform the standard, refine the requirement, and help define processes or methods to meet 
the requirement (cutting edge or state of the art). Where emerging evidence or knowledge may indicate 
that the standards are not written in a way that captures a complete set of relevant considerations, 
additional research may be conducted to facilitate an update.    

1.2.2 RISKS 
The HRP identifies risks relevant to the Chief Health and Medical Officer and to the health and human 
performance aspects of the exploration program. The HRP utilizes the Chief Medical Officer’s Human 
System Risk Board (HSRB) to identify risks requiring research.  The PRD allocates requirements to 
quantify, mitigate, or monitor these human system risks to the appropriate Element within the HRP.  
The PRD, however, does not establish priority for the risks. 

1.3 EVIDENCE BOOK 
The HRP Evidence Book documents WHY the risks are contained in the PRD.  It is a record of the 
state of knowledge for each risk in the PRD and, therefore, provides bases for analyses of the 
likelihoods and consequences for each of the risks.  As such, the Evidence Book, a compilation of all 
the evidence-based risk reports, makes important data accessible and available for periodic review. The 
HRP has published all evidence-based risk reports, which are available at the following link: 
http://humanresearch.jsc.nasa.gov/elements/smo/hrp_evidence_book.asp. 

The documentation of evidence for each risk is in the form of a review article that is aimed at a 
scientifically-educated, non-specialist reader.  The documentation is broken into the following parts: 

The body of each risk review contains a narrative discussion of the risk and its supporting evidence: 

1. Declarative statements concerning the risk are supported by a description of the evidence, 
whether published or unpublished. 

2. Relevant published references are listed at the end of the report. 
3. Data that are significant or pivotal are summarized in text, tables, and charts in sufficient detail 

to allow the reader to critique and draw conclusions, especially when a published reference is 
not available.   

4. In a similar fashion, the authors indicate, as appropriate, whether the data are from human, 
animal, or tissue/cell/molecular studies.   

5. Evidence from spaceflight (including biomedical research, Medical Requirements Integration 
Document [MRID] data, and operational performance or clinical observations) is presented 
first, followed by ground-based evidence (including space analog research and non-space 
analog biomedical or clinical research).   

6. When evidence is from ground-based studies, authors discuss why these results are likely to be 
applicable in the space environment, offering available validation information for the use of 
these ground-based systems.  

The National Academies of Sciences Institute of Medicine (IOM) reviewed the risk reports to validate 
that they provide sufficient evidence that the risk is relevant to long-term space missions.  Their 
conclusions and recommendations are given in the IOM publication, Review of NASA’s Human 

http://humanresearch.jsc.nasa.gov/elements/smo/hrp_evidence_book.asp�
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Research Program Evidence Books. A Letter Report, Washington DC: The National Academies Press, 
2008. 

As new evidence is gathered, the Risk Reports will be updated.  If new evidence indicates that a risk 
should be retired or that a new risk should be added, the HRP will, after thorough review with the 
HSRB, take the appropriate action to modify the PRD and update the Evidence Book accordingly. 

1.4 THE INTEGRATED RESEARCH PLAN 

1.4.1 Risks 
 

The PRD defines the criticality metric for each HRP risk.  The criticality metric is based on the degree 
to which the current state of knowledge about a risk will prompt the HRP Program Manager to 
recommend, in a forum such as the Human System Risk Board (HSRB), “no-go” for undertaking a 
mission. 

Each risk heading in the Human Research Roadmap is labeled with an abbreviated version of the lunar, 
asteroid, and Mars criticalities. 

1.4.1.1. Risk Management Analysis Tool (RMAT) 
The HRP uses the Risk Management Analysis Tool (RMAT) to document information that influences 
the criticality rating of each risk and to provide a standard format to assess progress toward mitigating 
each risk. The RMAT is complemented by a Master Logic Diagram (MLD) that is a visual 
representation of the set of contributory risk factors and events.  

1.4.2   TASKS REQUIRED TO FILL THE GAPS (WHAT) 
For each risk, the appropriate HRP Elements identified gaps in the risk’s state of knowledge and 
NASA’s ability to mitigate the risk.  Further, the HRP Elements identified specific research tasks 
required to fill each gap and the product(s) resulting from the tasks. A “task” can range from activities 
that define research requirements or operational needs such as data mining and literature reviews to a 
three to four year NRA-funded research project.  This Integrated Research Plan lays out the risk, gaps, 
tasks, and resulting products in a notional schedule tied to the appropriate Exploration milestones for 
which the products will be needed.    Additional information for most currently funded tasks can also 
be found in the Task Book (http://taskbook.nasaprs.com/Publication/welcome.cfm) 

The rationale for the selected approach is documented in the text portions of the IRP. This plan 
includes activities that are more than research or technology development.  In some cases, the activities 
reported in this document are not explicitly “research” or “technology development,” but are included 
to ensure logical completeness in describing those activities necessary to mitigate the risks.  Examples 
are data mining activities, the results of which are pivotal in defining further steps in the research path, 
and hardware evaluations that would further the engineering approach to risk mitigation. 

Key Decision Points are built into the IRP, wherein the HRP will evaluate data with respect to closing 
the research gap, as well as the impact on the overall likelihood or consequence of the risk.  The results 
of this analysis will help formulate the next steps.  In some cases, likelihood with existing 
countermeasures will not be high enough to warrant proceeding with more research.  This risks-gaps-
tasks-deliverables detail is required to ensure completeness in addressing the risks. 
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1.4.3 SCHEDULE DRIVERS (WHEN) 
The Integrated Research Plan describes a plan of knowledge production and technology development to 
address risks associated with human spaceflight. As new knowledge is gained, the required approach to 
research and development may change. The IRP attempts to describe a plan of research looking 
forward many years into the future. The fidelity of the IRP is quite high in the near term (2010-2011), 
but decreases with time.  The IRP will be regularly revised and updated based on exploration mission 
development, achievement of key milestones, and consideration of new evidence gained from the 
previous year. 

1.4.4 RESEARCH PLATFORMS (WHERE) 
The HRP uses various research platforms and data sources to address gaps in knowledge.  Historical 
data derived from ground and spaceflight studies form the basis of the HRP Evidence Reports, with the 
intention of ensuring that the HRP does not duplicate effort already expended.  Many of these activities 
appear in this IRP as “data mining,” although not explicitly “research.”   

Data mining involves gathering and analyzing data from historical spaceflights via the Long-term 
Surveillance of Astronaut Health and other sources, spaceflight operational data such as landing 
performance and simulator performance data to identify possible correlation with physiologic or 
psychological function, and relevant data from ground studies (NASA─sponsored and otherwise). 

The HRP utilizes the Space Shuttle and the International Space Station to conduct research requiring 
the unique environment of space.  The spaceflight data primarily identify and/or quantify physiological 
and behavioral changes to the human system occurring in the microgravity environment. The ISS is 
utilized to both validate potential countermeasures and as an analog for long-duration Mars missions. 

The use of the Shuttle and ISS platforms, in several cases, is critical to obtaining the required 
knowledge to build products supporting longer, more challenging missions.  The Shuttle retirement in 
2011 and the uncertainty in replacement transport vehicles to ISS levy significant constraints on 
available flight resources; thus some research is accelerated to take advantage of these vehicles while 
they are available.  Where possible, the HRP will utilize ground-based analog environments to perform 
the research required to fill gaps in knowledge, preserving the limited flight resources for only those 
that cannot be addressed elsewhere.   

There are several analog environments utilized by the HRP, some owned and operated by HRP, some 
by NASA, and others operated by other agencies.  Each analog environment is assessed for its 
characteristics that mimic portions of the flight environment.  No ground-based analog can serve to 
simulate the flight environment completely; thus each analog to be used is selected based on its 
important flight-like characteristics specific to the task objectives.  Several analogs often will be 
required to fill a gap, and, in all cases, analog findings are validated in the spaceflight environment. 

The Flight Analogs Project coordinates utilization of ground based research analogs to complement 
space research.  Throughout the IRP, tasks requiring the use of specific analogs are identified.  The bed 
rest analog mimics some of the physiological changes induced by weightlessness, using a bed rest 
model with a 6o head-down tilt.  The NASA Extreme Environment Mission Operations (NEEMO) 
analog and Antarctic missions provide mission-like settings and interactions that incorporate the 
constraints of working in extreme environments.  The Haughton-Mars and Devon Island analogs 
provide rugged terrain and mission-like interactions to address specific lunar surface system concepts 
related to Extravehicular Activity (EVA) and other factors related to behavioral health and 
performance. In some cases, the HRP also utilizes operational mission environments, such as the 
Phoenix Mars Scout Lander, to obtain data relevant to the behavioral health and performance of the 
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ground crews supporting long─duration spaceflight missions. Such data provide valuable lessons for 
future exploration missions. Isolation chambers also provide mission-like ground-to-crew and crew-to-
crew interactions that facilitate behavioral studies of team cohesion, workload, fatigue, and sleep.  The 
NASA Space Radiation Laboratory (NSRL) is a unique ground-based analog.  This facility is owned 
and operated by the Department of Energy’s (DOE) Brookhaven National Laboratory, under a contract 
with the HRP.  HRP utilization of the NSRL is managed by the Space Radiation Program Element. 

1.4.5 FUNCTIONAL DEFINITION OF SPACE NORMAL 
As NASA prepares to send crewmembers on extended exploration missions, questions arise regarding 
the impacts of the spacecraft and surface exploration environment on the health, safety, and 
performance of the explorers.  For example, one of the environmental characteristics of concern is the 
relatively small force of gravity on the Moon, which is approximately one-sixth of that on Earth.  
“Space normal” is defined for this document as the normal human response to prolonged spaceflight. 
The normal human response to prolonged microgravity exposure during (and after) orbital spaceflight 
missions has received considerable research attention, but little is known about the human 
physiological responses to prolonged fractional gravity exposure.  Thresholds, non-linearities, and 
system-system interactions or dependencies are all likely to affect these responses.  These things will 
certainly be studied in crewmembers participating in exploration missions; however, it would be useful 
to know ahead of time whether any of the effects could be severe enough to cause functionally 
significant decrements in crew health, safety, or performance during these missions, so that appropriate 
countermeasures could be provided from the outset.  

All organ systems are affected by the environmental factors associated with spaceflight, although the 
time frame and degree of negative impact on astronaut health and performance is highly variable.  The 
spectrum of consequences to human health and performance ranges from catastrophic through steady 
loss or decrement, to short-term transitional adjustment, to benign with no meaningful impact.  
Currently the HRP approach for each physiological condition or organ system of concern is to: 

1) document the acclimated state, 
2) revise crew health standards if that state is medically unacceptable,  
3) if unacceptable, then determine physiological mechanisms of action, and 
4) develop countermeasures as appropriate.   

The acclimated state is understood to represent space normal, the newly adapted normal baseline 
physiological state. A rigorous definition of space normal must consider the presence or absence of pre-
existing clinical conditions and legacy countermeasures, as well as variability in incident space 
radiation, ambient atmospheric pressure, temperature and composition; acoustics; lighting; etc., in 
addition to the absence of apparent gravity.  In particular, all experiments currently defining space 
normal on ISS are conducted in the presence of an exercise prescription that has varied from mission to 
mission and astronaut to astronaut over the first decade of ISS operations. 

With an accepted definition of space normal, HRP would be in a position to recommend whether or not 
to allow acclimation to spaceflight conditions, and if so, to what degree: acclimation followed by 
treatment just prior to or after Earth return; acclimation accompanied by in-flight monitoring and 
countermeasures implementation at a predetermined degree of decrement; or no acclimation permitted 
whatsoever. 
Rigorous definition of space normal for any aspect of human physiology will ultimately require flight and 
post-flight data. Ground─based analogs are often used to prepare for, or in lieu of flight studies.  
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1.4.6 ELEMENTS AND PROJECTS RESPONSIBLE FOR THE RESEARCH (WHO) 
Each risk is allocated to one of the research Elements within the HRP, and the IRP identifies which 
Element is responsible for the identified risk.  Three of the HRP Elements are single-project Elements: 
Behavioral Health and Performance (BHP), Exploration Medical Capability (ExMC) and Space 
Radiation (SR), and the responsible Element is identified at the risk level, but they are responsible also 
for all gaps and tasks addressing the risks.  Two HRP Elements, Human Health Countermeasures 
(HHC) and Space Human Factors and Habitability (SHFH), are multi-project Elements.  Thus, the 
Element is identified at the risk level, and the responsible project within the Element is identified at the 
gap level.  The following HHC abbreviations are used throughout the IRP to designate the responsible 
project: ECP (Exercise Countermeasures Project), NxPCM (Non-Exercise Physiological 
Countermeasures), DA (Digital Astronaut), VIIP (Visual Impairment and Intracranial Pressure) and 
FAP (Flight Analogs Project).  The following abbreviations are used to designate the responsible SHFH 
project: AEH (Advanced Environmental Health), AFT (Advanced Food Technology), and SHFE 
(Space Human Factors Engineering). 

The HRP’s intent is that each study is procured through competitive means, i.e., a NASA Research 
Announcement (NRA), Request for Proposal (RFP), etc.  In some cases, due to timeliness of data, or 
close interconnectedness with operations or other NASA entities, the HRP will direct that a specific 
study be done.  Criteria for these decisions are given in the HRP Science Management Plan.  The 
current and planned procurement method for each task in this research plan is identified. Identification 
of any investigation as a directed study within the IRP does not signify a commitment on the part of the 
HRP to implement that study as a directed study without further consideration by the Program Scientist 
as specified in the Science Management Plan.  

It is the HRP’s policy that all investigations sponsored by the program will undergo independent 
scientific merit review.  This includes proposals submitted in response to NASA Research 
Announcements, all directed study proposals, and all unsolicited proposals.   
Each Element, Project or Discipline within the HRP will be reviewed by an independent Standing 
Review Panel.  The Panel’s primary responsibility is to review the Element Research Plan and provide 
recommendations on the scientific or technological approach and portfolio content.  Those Element 
research plans ultimately serve as the input to the IRP.  Modifications to Element research plans will 
result in modifications to the annual update of the IRP. 

1.4.7 DELIVERABLES OF THE RESEARCH AND TECHNOLOGY (DELIVERABLES) 
The focus of this document is to identify deliverables necessary to complete the exploration missions. 
The ISS is used as a platform to conduct research aimed at mitigating risks to the exploration missions.  
Some of the research may identify countermeasures, engineering, or operational solutions that would 
enhance the ISS and reduce risk in use (including to users) of that platform.  In those cases, the HRP 
identifies the necessary deliverables and insertion points for the ISS.   

Human health and performance risks can best be mitigated through space system design.  The HRP 
works closely with the human exploration programs to communicate the areas of human health and 
performance risks, and to help inform engineering and development of the vehicle systems.  Mitigation 
of many human health and performance risks can be accomplished through engineering design and 
operational constraints, and does not need further research.  Decision points in the research schedules 
are placed to evaluate the adequacy of the approach, research results, and deliverables to meet the 
intended application.  
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The first and most desirable approach to mitigating a human health and performance risk is to engineer 
the risk out of the system.  HRP research is intended to reduce the uncertainty in the risk and free 
mission timelines and design from unnecessary conservatism.  To facilitate risk avoidance, the HRP 
identifies requirements for crew selection, and for vehicle or mission design. 

Some human health and performance risks can be mitigated through application of special space 
medicine operations procedures.  The HRP works closely with the Space Medicine Division at The 
Johnson Space Center (JSC) to evaluate the relative risks and to determine if the risks can be mitigated 
through known procedures.  This coordination occurs through HRP participation on the HSRB.  This 
board was established by the Chief Health and Medical Officer with chairmanship delegated to the JSC 
Chief Medical Officer.  Members of this board consider the range of human health and performance 
risks, and identify those that can be mitigated through operational procedures vs. those that require 
further research.  The risks addressed in this IRP are those identified by the HSRB as requiring 
research.  The “inform medical operations” deliverables are the results of board discussions, and 
research results are integrated into medical requirements or flight operations procedures.  The HSRB is 
also used to evaluate the “deliver countermeasure” deliverable to ensure countermeasures can be 
adequately transitioned to medical practice.  

The HSRB is also used to evaluate data at various decision points in the research.  The deliverables 
identified in the plan as “updates to the HSRB” utilize the board to concur with the next steps in the 
research plan.  

Several other deliverables are identified throughout this IRP.  Two designations are used for standards 
deliverables.  The deliverable to “inform standards” represents the HRP’s intent to communicate 
information to the OCHMO and medical operations that may help interpret the existing standard.  The 
“recommend update for standard” deliverable is used when the research results are expected to change 
the standard. 

2.0  ORIENTATION SUMMARY OF THE RESEARCH PLAN 
The IRP describes a plan of research that addresses both human physiology and the interconnected 
system of the human and spacecraft in a highly integrated manner. It is often not possible to address the 
risks simply as stand-alone units. The knowledge or mitigation gaps often appear in multiple risks. 
Many of the specific research tasks address multiple gaps across risks.   
In the following sections, the PRD risks are first listed by HRP Element.  Within each Element the risks 
are generally organized by the type of consequence:  short-term health (loss of crew), mission 
performance (loss of mission), and long-term health.  Sections 2.1 through 2.5 provide a high-level 
view of the research approach to the risks.  Section 3.0 arranges the detailed research plans, including 
text and graphics, for each PRD risk. The HRP Elements are arranged in the following order: 

1) Behavioral Health and Performance 
2) Exploration Medical Capability 
3) Human Health and Countermeasures 
4) Space Human Factors and Habitability 
5) Space Radiation 

 Detailed information about gaps and tasks for each risk is located in the Human Research Roadmap 
(HRR):  http://humanresearchroadmap.nasa.gov/.  

The interactions between the risks, gaps, and tasks are not readily shown in a printed book.   In the 
HRR database, the user will be able to search for such items as gaps associated with a risk, the tasks 

http://humanresearchroadmap.nasa.gov/�
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associated with a given gap, the cross-integration of a task across multiple gaps or risks, and 
deliverables associated with a gap or task. 

2.1 BEHAVORIAL HEALTH AND PERFORMANCE (BHP) 
All BHP risks are highly interrelated.  Occurrence or mitigation of a risk can be a contributing factor 
affecting another.  

2.1.1 Shor t-Term Health 

2.1.1.1 Risk of Adverse Behavioral Conditions and Psychiatr ic Disorder s (Shor t Title: Bmed) 
Early detection of stress or other risk factors during spaceflight is imperative to deter development of 
behavioral or psychiatric conditions that could seriously harm and negatively impact the individual or 
the crew, and pose serious consequences for accomplishing mission objectives or jeopardizing the 
mission altogether.  Toward this end, BHP is developing methods for monitoring behavioral health 
during lunar and Mars missions, and adapting and refining various tools and technologies for use in the 
spaceflight environment.  These measures and tools will be used to monitor, detect, and treat early risk 
factors.  BHP will utilize analogs to test, further refine, and validate these measures for Exploration 
Missions.  BHP also develops countermeasures for maintaining behavioral health and enhancing 
performance during long-duration isolated, confined, and highly autonomous missions and provides 
updates for behavioral health and performance standards.   

 

2.1.2 Mission Performance 

2.1.2.1 Risk of Performance Decrements Due to Inadequate Cooperation, Coordination, 
Communication, and Psychosocial Adaptation within a Team (Shor t Title:  Team) 

While few empirical data have been collected regarding the impact of interpersonal and intrapersonal 
factors on spaceflight performance, it is possible that crew conflict could jeopardize long duration 
Exploration Missions.  Reports from Mir reveal that several missions may have been terminated earlier 
than planned due to frictions between crewmembers, and some veteran NASA astronauts have reported 
crew conflict during previous space travels.  Understanding the potential negative impacts of 
interpersonal and intrapersonal issues from spaceflight and relevant, high fidelity analog environments 
is important for identifying countermeasures to aid crewmembers (ground and space) during 
exploration missions (e.g., Moon and Mars) where operations will require more autonomy. 

BHP will conduct literature reviews and interviews of crew and operations personnel to determine the 
most likely and most serious threats to crew cohesion, crew performance, and crew-ground interaction 
that might be expected for exploration missions. 

The interviews will be used to formulate objective measures for monitoring crew cohesion and develop 
approaches to enhance current training and build upon the current highly successful in-flight support 
services and countermeasures.  These measures will be tested for feasibility and acceptability in the 
appropriate analog environment(s).  These tests will be followed by studies of ISS crew composition 
and crew cohesion/performance. 

As crews begin operations for long-duration missions beyond low Earth orbit, they will need to 
exercise increasing command and control of their daily activities.  The distance for Mars missions will 
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result in loss of capability for real-time communication, downlink, and commanding.  Likewise, the 
crew will have to augment and adapt their schedules based on real time changes in their schedules.  The 
extreme distance and the duration of the planned Mars mission are at the boundaries of our current 
knowledge. A better understanding of how to approach and address autonomous operations and its 
impact on crew dynamics and performance will help inform standards and countermeasures. BHP is 
collaborating with Space Medicine in a study of crew autonomy while we are still in low Earth orbit, to 
identify the impact (if any) of increased autonomy on crew dynamics and performance. The BHP will 
test conflict management approaches in ground and analog environments, and subsequently on the ISS. 

 

2.1.2.2 Risk of Performance Er rors Due to Fatigue Resulting From Sleep Loss, Circadian 
Desynchronization, Extended Wakefulness, and Work Over load (Shor t Title:  Sleep) 

Ground evidence clearly demonstrates that performance impairments can occur when sleep is attained 
in quantities similar to that attained by astronauts in flight.  A correlation between sleep quantity and 
performance during spaceflight, however, has not been documented.  BHP research aims to accurately 
characterize and quantify this Risk by implementing studies on ISS that utilize validated measures for 
assessing performance relative to fatigue. 
BHP research efforts further investigate contributors to sleep loss, fatigue, circadian desynchronization, 
and work overload, by evaluating environmental factors, individual vulnerabilities, and various aspects 
of mission operations.  Such investigations help to inform the optimal countermeasure strategy for 
mitigating the health and performance effects of sleep loss and related issues in flight.  As an example, 
preliminary studies indicate that light exposure can correct difficulties in sleep patterns that occur with 
shift work, jet lag and sleep disorders.  Current efforts aim to investigate optimal lighting requirements 
for the space vehicle, as well as safe and efficacious methods for implementing lighting as a 
countermeasure.  Other countermeasures that are currently being investigated include recommendations 
around sleep hygiene, optimal work-rest schedules, flight rules and requirements, and the effectiveness 
and safety of sleep-wake medication use in flight. 

 

2.2 EXPLORATION MEDICAL CAPABILITY (ExMC) 

2.2.1 Shor t-Term Health 

2.2.1.1 Inability to Adequately Recognize or  Treat an Ill or  Injured Crewmember  (Shor t Title:  
ExMC) 

To address this broad risk, the ExMC has broken it down into seven categories that correspond with the 
seven requirements allocated to the ExMC from the HRP Program Requirements Document (PRD).  
Each of the seven categories is then analyzed individually to determine where gaps exist in satisfying 
the PRD requirements.  Below are the seven categories into which the risk has been separated and an 
explanation of the strategy for addressing the different categories of gaps. 

1.0 Validate Standards:  The NASA Headquarters (HQ) OCHMO Standards for Crew Selection 
and Retention will require changes as new medical information and spaceflight technology 
become available.  Additionally, NASA exploration missions may require new knowledge 
and/or new technology development either to support current standards or to modify standards 
for mission success.  In either situation, the ExMC Element Scientist, through Space Medicine, 
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will determine research needs and develop the research requirements and/or tasks necessary to 
fulfill this responsibility.  The NASA HQ OCHMO standards that pertain to this risk are Crew 
Selection and Retention Criteria.  The Space Medicine Medical Operations Lead for standards, 
working with the ExMC Element Scientist, determines gaps in knowledge in the current Crew 
Selection and Retention Criteria.  Tasks are then identified to close those knowledge gaps. 

2.0 Quantify the Risk:  Because of the limited available operational and research data, incidence 
rates and outcomes for relevant medical conditions have large uncertainties associated with 
them.  The Space Medicine Exploration Condition List is analyzed to determine gaps in our 
knowledge about medical conditions’ incidence rates and outcomes in spaceflight.  Tasks are 
then assigned to further study, model, and use analog population data to better quantify the 
medical conditions.  

3.0 Mitigate the Risk:  Gaps in this section deal with our knowledge about effective training and 
telementoring programs for Exploration missions.  The Space Medicine Medical Operations 
Lead for training, working with the ExMC Element Scientist, determines gaps in knowledge 
and techniques for developing future training and telementoring programs for crew, flight 
surgeons and biomedical ground controllers.  Tasks are then identified to close those knowledge 
gaps. 

4.0 Monitor and Treat the Unmitigated Risk:  For all Vehicle /Mission Definition and 
Development Programs with a Design Reference Mission (DRM), each condition on the Space 
Medicine Exploration Condition List is analyzed for the capabilities required to monitor and 
treat the condition.  An analysis is performed to determine where gaps exist in current 
technologies and where efficiencies could be realized in the future.  Based on when a 
technology needs to come online, a technology watch is implemented or a technology 
development project is initiated to deliver the technology to enable the mission. 

5.0 Provide Enabling Capabilities:  Provide data integration and management for HRP to ensure 
proper handling of data (e.g. Life Sciences Data Archive, Mission Extended Medical 
Enterprise).  Gaps exist where these capabilities are either insufficient or incomplete. 

6.0 Comply with Agency Standards:  Follow best practices and programmatic guidelines as 
levied by the HRP PRD.  There are currently no gaps associated with this requirement. 

7.0 Reduce Resource Requirements:  Wherever possible, reduce in-flight and funding resources.  
There are currently no gaps associated with this requirement. 

 

2.3 HUMAN HEALTH AND COUNTERMEASURES (HHC) 

2.3.1 Shor t-Term Health 

2.3.1.1 Risk Factor  of Inadequate Nutr ition (Shor t Title:  Nutr ition) 
As mission duration increases, the risk of nutrient deficiencies becomes greater.  Nutrient requirements, 
delivery requirements, and the need to preserve the nutrient content in food will increase as the 
frequency and duration of EVAs increase on lunar and Mars missions.  Nutritional countermeasures 
can influence all systems. 

Space normal must be defined for this risk; a comprehensive nutrition study (Nutrition Supplemental 
Medical Objective (SMO)) is ongoing.  Once space normal is defined, the data will be presented to the 
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HSRB and it will be decided if countermeasures need to be developed.  In addition, several studies are 
ongoing to determine the optimal dose of vitamin D and the effects of oxidative damage. 

2.3.1.2 Risk of Bone Fracture (Shor t Title:  Fracture) 
Risk of Bone Fracture (Fracture) and Risk of Early Onset Osteoporosis due to Spaceflight

These two risks are highly interrelated; the occurrence or mitigation of one risk possibly affects the 
other.  The combined research risk approaches are presented below. 

 (Osteo) 
 

It is currently possible to 1) track the course of changes in bone mineral density and bone quality 
during long duration missions, 2) determine if bone losses will occur during a Mars visit, and 3) know 
such information to determine the risk of fracture upon return to Earth after a Mars mission.  However, 
these capabilities are not a part of any requirements documents for lunar or Mars missions. Currently 
there are indications that, even after 6-month missions, bone quality/strength does not recover as 
quickly as bone mineral density.  This may represent a long-term health effect (increased osteoporosis 
and fracture risk) related to this discordant recovery dynamic.  This information is required for 
assessing long-term health risks to returning crew. 

While bone atrophy during spaceflight is known and requires mitigation, the time course of in-flight 
bone changes, the time course of post-flight recovery, and individual susceptibilities have not been 
determined.  The NASA Research Announcements are utilized to solicit and select proposals to gather 
these space normal data.  In addition, work is ongoing with the Space Medicine Division to obtain 
long-term recovery data.  The long-term goals are to develop and deliver countermeasures for long-
term missions while tracking the efficacy of these countermeasures to prevent increased lifetime health 
risk.  Due to schedule constraints, countermeasure development has been started in parallel with space 
normal data collection and technology development. 

The fracture risk for bone is related to the applied load-to-bone ratio and to the fracture load of bone.  
Thus, the increased fracture risk induced by spaceflight is suggested collectively as an adaptive 
response to the accelerated loss of bone mass, to weightlessness, and to reduced gravity fields 
experienced during missions, as well as to the loads and torques that the skeleton is subjected to while 
tasks are performed during the missions.  The most critical work needed for this risk is the measures of 
in-flight changes in bone mass over the course of ISS missions.  This allows the prediction of temporal 
changes in bone mass during Mars missions.  Those data will provide a basis for evaluating whether the 
expected loads/torques to bone during human performance on a mission will exceed the failure load of 
bone (i.e., fracture load).  This knowledge will drive mission operations planning. 

The Risk of Bone Fracture deals with a fracture occurring during a mission.  A fracture considered of 
“high” risk is characteristic of osteoporosis, a disease characterized by losses in bone mass and by 
structural deterioration.  Therefore, gaps and tasks that fall under the Risk of Early Onset Osteoporosis 
are also mapped to the Risk of Bone Fracture.  The only current independent gap for the Risk of Bone 
Fracture is the unknown incidence of vertebral compression fractures.  The task associated with this 
independent gap is being completed by the Space Medicine Division. 

2.3.1.3 Risk of Cardiac Rhythm Problems (Shor t Title:  Arrhrythmia) 
Heart rhythm disturbances have been seen among astronauts.  Most have been related to cardiovascular 
disease, but it is unclear whether this was due to pre-existing conditions or to the effects of spaceflight.  
It is believed that advanced screening for coronary disease has greatly mitigated this risk.  Other heart 
rhythm problems, such as atrial fibrillation, can develop over time, necessitating periodic screening of 
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crewmembers’ heart rhythms.  Beyond these terrestrial heart risks, some concern exists that prolonged 
exposure to microgravity may lead to heart rhythm disturbances.  Although this has not been observed 
to date, further surveillance is warranted. 

Space normal must first be defined for this risk and data mining tasks are ongoing.  Once the definition 
is determined, the data will be presented to the HSRB and it will be decided if countermeasures need to 
be developed. 

The HRP will conduct a comprehensive study that integrates the objectives of two NRA investigations 
and a Supplemental Medical Objective (SMO), involving both intramural and extramural investigators.  
In-flight testing will require Holter monitoring, two-dimensional (2D) echocardiography, and 
ambulatory blood pressure monitoring.  After completion of the study, the clinical expression of 
cardiac atrophy during long- duration spaceflight will be defined clearly, and its significance for 
cardiac systolic and diastolic function at rest and during gravitational transitions will be elucidated.  In 
addition, preliminary information will be obtained regarding ventricular conduction and re-polarization 
that will provide either strong clinical reassurance, or pathophysiologic insight into the risk for cardiac 
arrhythmias.  Based on the outcome of this investigation, the HRP will determine if countermeasures 
are necessary to prevent these conditions. 

2.3.1.4 Risk of Compromised EVA Performance and Crew Health due to Inadequate EVA Suit 
Systems (Shor t Title:  EVA) 

Performance of spaceflight EVA consists of placing a human in a micro-environment which must 
provide all the life support, nutrition, hydration, waste, and consumables management functions of an 
actual space vehicle, while allowing crewmembers to perform as closely as possible to a 1-g shirt-
sleeved environment. Improperly designed EVA suit systems can result in the inability of the crew to 
accomplish planned mission objectives and can cause acute and long-term adverse impacts to crew 
health. Past EVA Suit Systems have already presented significant limitations and challenges for suited 
crewmembers including the fact that not all crewmembers were capable of performing EVA. This was 
not required in the context of their role during Shuttle and ISS missions, however, during the 
exploration program, all crewmembers will need to perform at a high level of competence in the suit. 
 Therefore, it is critical to understand the relationships among suit parameters, subject characteristics, 
and health and performance. 
  
Mitigation of this risk will require a testing program to collect the objective data needed to make 
informed design decisions, which will lead to the creation of EVA systems that optimize human health 
and performance across the spectrum of anticipated exploration operational concepts.   Multiple 
analogue facilities will be required due to the ability of each to simulate only certain characteristics of 
true micro- and partial-gravity environments. 

2.3.1.5 Risk Of Injury From Dynamic Loads (shor t Title:  Occupant Protection) 
With the retirement of the Shuttle, future spacecraft systems may include launch-abort systems and 
parachute-assisted, capsule landings. Because of these design features, dynamic loads transmitted to the 
human may result in higher forces than currently experienced during spaceflight. The current standards 
and requirements do not adequately document the acceptable limits of forces and/or direction of force 
vectors which can be transmitted to the human without causing injury. Injuries may impair or prevent a 
crew-member from unassisted evacuation of the spaceflight vehicle after landing. Development of 
Agency-level human health and performance standards appropriate to occupant protection from 
dynamic loads as well as development of the method(s) of meeting those standards in the design,  
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development, and operation of mission systems would reduce the likelihood of this risk so that crew 
injury or Loss of Crew (LOC) may be avoided or reduced. In addition, the Columbia Crew Survival 
Investigation Report cited inadequate upper body restraint and protection as a potential lethal event and 
recommended that future spacecraft suits and seat restraints should use state-of-the-art technology in an 
integrated solution to minimize crew injury and maximize crew survival in off-nominal acceleration 
environments (L2-4/L3-4) and should incorporate conformal helmets and neck restraint designs similar 
to those used in professional auto racing (L2-7).  Because all crewmembers must endure dynamic 
phases of flight, detailed understanding of the human body response to such environments is critical.  
In addition, because spaceflight deconditioning causes decreases in bone strength, decreases in muscle 
strength, and increases in bone fracture risk, the criticality of this understanding is greater with longer 
duration spaceflight missions.   

The Occupant Protection Team at NASA has developed a forward plan to develop new standards for 
protecting the crew during dynamic phases of flight.  In collaboration with external peers in industry, 
academia and other government agencies, the Team will develop and validate the standards using a 
combination of data mining, testing, analysis, simulation and expert opinion.  

 

2.3.1.6 Risk of Crew Adverse Health Event due to Altered Immune Response (Short Title:  
Immune) 

There are no procedures currently in place to monitor immune function or its effect on crew health.  
Immune dysregulation has been demonstrated to occur during spaceflight, yet little in-flight immune 
data have been generated to assess whether or not this may be a clinical problem.  Thus, HRP will 
conduct the “Integrated Immune SMO” to assess the clinical risks resulting from the adverse effects of 
spaceflight on the human immune system and will validate a flight-compatible immune monitoring 
strategy.  The correlation between in-flight immunity, physiological stress and a measurable clinical 
outcome (viral reactivation) will be determined for long- vs. short-duration spaceflight.  Data from this 
study will be combined with the results from Shuttle-based immune studies to inform and update health 
standards.  Additionally, ground analogs such as NEEMO will be evaluated to determine if they 
represent a good analog for short-duration spaceflight.  This immune dysregulation analog will be 
validated for some aspects of that dysregulation if it is observed in the NEEMO crews (similar to that 
already observed in flight crews during/following spaceflight).  Data from ground studies and the 
Integrated Immune SMO will be assessed to determine countermeasure development needs. 

2.3.1.7 Risk of Interver tebral Disc Damage (Shor t Title:  IVD) 
Evidence from medical operations indicates that astronauts have a higher incidence of intervertebral 
disk damage than the general population. Current studies are examining the incidence of intervertebral 
disc damage. Once completed, the findings will be used to guide the design of re-entry and post-flight 
protocols, as well as future re-entry spacecraft, as appropriate. 

 

2.3.1.8 Risk of Renal Stone Formation (Shor t Title: Renal) 
HHC delivered a countermeasure to space medicine and there is no current work in this risk. 
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2.3.1.9 Risk of Therapeutic Failure due to Ineffectiveness of Medication (Shor t Title:  Pharm) 
Better recordkeeping of medication use, its effectiveness, and the side effects produced should be 
instituted.  This will provide evidence for and should be a precursor to a formal assessment of 
pharmacokinetics and pharmacodynamics (PK/PD) on orbit.   It is believed that gastrointestinal (GI) 
motility and function is not an issue after the first few days of flight.   In general, Space Medicine 
avoids prescribing oral medications during this period of the mission.  It is not known to what extent 
different volumes of distribution might be a factor in flight.  Drugs selected for the PK/PD studies 
should be commonly used, and have few side effects, and different metabolic pathways.  External 
consultants should be used to determine which drugs to test and to design testing protocols.  Space 
Medicine needs to develop a process and procedures to systematically track crew medication use, 
including subjective comments on efficacy and side effects, particularly for ISS.  It is very important to 
know what pharmaceuticals are taken prior to in-flight tasks. 

The overarching strategy for this risk is to obtain better record keeping of medication use, efficacy, and 
side effects.  This includes several data mining tasks, which will provide evidence for or against this 
risk.  If evidence indicates the ineffectiveness of medications, a PK/ PD study will be performed in 
flight to obtain further information. 

2.3.2 Mission Performance 

2.3.2.1 Risk of Impaired Control of Spacecraft, Associated Systems and Immediate Vehicle 
Egress Due to Vestibular /Sensor imotor  Alterations Associated with Spaceflight (Shor t 
Title:  Sensor imotor ) 

Evidence from 30 years of shuttle flight indicates that research on impaired control of spacecraft due to 
sensorimotor disturbance is not a high priority for Shuttle or ISS.  However, since Mars operational 
scenarios are still to be determined (TBD), it is agreed that the ISS should be utilized to gather the data 
required to define the research that might be needed to enable future Mars mission operations.  It first 
must be determined what relevant spaceflight data exist and if they are accessible.  If so, they must be 
analyzed; if not, the data must be collected.  In addition, performance related to neurosensory 
dysfunction should be used to determine the need for further research and countermeasure 
development.   

Space normal must first be defined for this risk; data mining tasks are ongoing.  Once the definition is 
in place, the data will be presented to the HSRB, and a determination made on whether 
countermeasures need to be developed.  In addition, the NRA solicitation process was utilized to obtain 
proposals to determine any manual and visual control deficits. 

2.3.2.2 Risk of Impaired Performance due to Reduced Muscle Mass, Strength and Endurance 
(Shor t Title:  Muscle)  

2.3.2.3 Risk of Reduced Physical Performance Capabilities due to Reduced Aerobic Capacity 
(Shor t Title:  Aerobic)  

These two risks are highly interrelated.  Occurrence or mitigation of one risk can be a contributing 
factor affecting the other. Their research approaches are given together. 

Human physiology’s normal response to spaceflight has not been determined for these risks.  Several 
studies have been implemented to determine how muscle and aerobic capacity are affected by 
microgravity; these studies include the new Integrated Resistance and Aerobic Training study, the 
Functional Task Test and the VO2max study.   
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The Integrated Resistance and Aerobic Training study will apply principles learned from ground-based 
flight analogs to an in-flight platform in order to improve exercise countermeasures efficacy and 
efficiency by increasing exercise intensity and reducing exercise volume.   Bed rest and flight data will 
guide the decision about efficacy of current exercise countermeasures and will determine if improved 
countermeasures are needed. The Functional Task Test will be implemented as a flight study as well as 
a bed rest study. The goal of this study is to develop and evaluate an integrated set of functional and 
physiological tests and then use these tests to determine how postflight changes in sensorimotor, 
cardiovascular and muscle physiology impact postflight functional performance.  These tests will be 
performed pre and postflight on astronauts exposed to short- and long-duration spaceflight. The 
Functional Task Test will assess operational relevance of these changes by measuring the performance 
of specific exploration tasks (e.g., simulated seat egress, ladder climb, hatch opening, etc.). 
Additionally changes in functional performance will be mapped for standard muscular, neurological, 
and cardiovascular measures. Data obtained from this study will facilitate the design of 
countermeasures that specifically target the physiological systems responsible for impaired functional 
performance.    

The specific aims of the VO2max study are to measure VO2max during and following long duration 
missions and to assess the validity of using submaximal measurements of heart rate (HR), and oxygen 
consumption (VO2) to track changes in aerobic capacity. In addition, non-invasive measurements of 
cardiac output (Qc) will be performed during exercise to determine if measurement of Qc will improve 
the accuracy of the submaximal estimations of VO2max.  Results from this study will determine if the 
current countermeasures are protective and need only optimization (e.g., reduced volume, time) or if 
improved countermeasures and flight validation studies are needed.  Due to scheduling constraints with 
the loss of the Mars transit analog in 2020, several concurrent studies are ongoing. 

2.3.2.4 Risk of Orthostatic Intolerance dur ing Re-Exposure to Gravity (Short Title:  OI) 
Twenty percent of Shuttle crewmembers and up to 83% of returning ISS crewmembers suffer 
hypotension and presyncope or syncope during 10 minutes of upright tilt on landing day.  This may 
constitute a risk when crewmembers experience Earth's gravity after exposure to microgravity.  
Currently available countermeasures are not effective in all crewmembers; in particular, women are 
more susceptible to orthostatic intolerance than men are.  While it is well known that crewmembers can 
be incapacitated by orthostatic intolerance after six-month missions when they return to Earth’s gravity, 
the degree to which this may be ameliorated in the gravity environment on the Martian surface is not 
known.  Early surface operations may require astronauts to be upright and active soon after landing on 
Mars.  A combination of countermeasures, both physical and pharmaceutical, should be pursued for 
this risk.  It is not known if exposure to 1/6 g and 3/8 g will cause orthostatic intolerance or will have 
mitigating effects on orthostatic intolerance upon return to 1 g. 

Space normal has been defined for this risk.  Current research efforts are investigations to determine the 
efficacy of new countermeasures (i.e., Jobst stockings and pharmacological agents).  The new lunar 
analog currently under development will be utilized to understand the role of the lunar gravity as 
protection from orthostatic intolerance.  In addition, gender effects and the possibility for gender-
specific countermeasures are also being investigated. 
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2.3.3 Long-Term Health 

2.3.3.1 Risk of Ear ly Onset Osteoporosis due to Spaceflight (Shor t Title:  Osteo) 

2.3.3.2    Risk of Microgravity-Induced Visual Impairment/Intracranial Pressure (Short Title:  
VIIP) 
Some crewmembers on long duration ISS missions experienced ophthalmic anatomical changes and 
visual performance decrements of varying degrees, which were temporary in some cases and permanent 
in others. In addition, persistent increased post-flight intracranial pressure (ICP) has been inferred in 
several cases, consistent with a root cause of intracranial hypertension (IHT) possibly secondary to 
microgravity-induced fluid shifts. A summit was conducted in February 2011 with national and 
international experts in ophthalmology, neuro-ophthalmology, neurosurgery, neurophysiology, and 
cardiology. Participants provided suggestions for pre, in, and post-flight operations as well as research 
areas with respect to detection, monitoring, treatment, imaging, susceptibility, computer modeling, 
and/or use of analogs. Results from the summit reinforced the existence of multiple contributing factors 
with no clear cause identified.  

 

A team was established with Medical Operations and HRP representatives to effectively integrate tasks 
and progress with this risk. Medical Operations continues to approach the risk from a clinical 
perspective, monitoring and treating, as needed. Research will be conducted by the HRP to further 
quantify and mitigate the risk. The VIIP Risk research plan is in formulation, focusing on risk 
characterization to more clearly identify long-term health impacts as well as any potential mission 
performance impacts.  

 

2.3.4 Infrastructure 
The Human Health and Countermeasures Element also owns gaps related to Element infrastructure that 
is related to multiple risks.  These gaps capture development of knowledge and technologies, including 
but not limited to spaceflight analog development, artificial gravity and animal studies, that are related 
to integrated physiological systems.  These gaps are listed as HHC1-3 and HHC5 in the Human 
Research Roadmap.   

 

2.4 SPACE HUMAN FACTORS AND HABITABILITY (SHFH) 

2.4.1 Shor t-Term Health 

2.4.1.1 Risk of Adverse Health Effects due to Alterations in Host-Microorganism Interaction 
(Shor t Title:  Microhost) 

While current preventative measures limit the presence of many of the medically significant 
microorganisms during a mission, infections cannot be completely eradicated.  Evidence indicates that 
certain microbial characteristics of microorganisms when microbes are cultured in spaceflight. These 
alterations include changes in virulence (disease-causing potential). As a result of this evidence, the 
HRP plans to compare microbial diversity, microbial characteristics, and specific host-microorganism 
interactions between spaceflight and ground-based conditions. This comparison, in combination with 
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evidence from investigations of potential changes in crew susceptibility will be used to determine the 
risk of microbiologically-induced adverse health effects during a spaceflight mission. Using this 
microbial risk assessment, the HRP will determine if current operational and engineering controls used 
to mitigate these microbiological risks during human exploration of space are adequate or whether 
additional countermeasures should be developed.  

2.4.1.2 Risk Of Adverse Health Effects Of Exposure To Dust And Volatiles Dur ing Exploration 
Of Celestial Bodies (Shor t Title:  Dust) 

The toxicological effects of lunar dusts have not been studied in sufficient detail to develop an 
exposure standard for operations on the lunar surface. Lunar dust has properties that raise concerns for 
human health. Lunar dusts have a high content of respirable size particles, have large surface areas that 
are chemically reactive, and "nano-particles" of highly reactive elemental iron (Fe0) are imbedded in a 
“rind” at the surfaces of the particles. These unusual properties may cause the respirable dusts to be at 
least moderately toxic to the respiratory system, and the larger grains to be abrasive to the skin and eye. 
NASA needs to set a permissible exposure limit (PEL) for airborne lunar dusts that is based on 
scientific evidence so that designs of vehicles and habitats will include features that restrain 
concentrations of airborne dust within safe limits. Operations must be designed to minimize the risk of 
abrasion to skin and eyes. 
 
Research will evaluate and characterize factors that contribute to toxicity of the lunar dust, and then a 
recommendation for a PEL that accounts for these factors will be developed in collaboration with the 
Lunar Airborne Dust Toxicity Assessment Group (LADTAG). The HRP has committed to 
recommending this standard in 2010, when it is needed to support development of lunar operations 
concepts. 
 
Studies will determine size distributions, shape characteristics, and chemical composition of lunar 
particulates. Studies of the activation of lunar dust will utilize analogs of processes that activate dust on 
the lunar surface to reactivate lunar samples that have been passivated by exposure to air.  Grinding 
will be used as a surrogate for micrometeorite bombardment, hydrogen and helium ion implantation 
will simulate the effects of solar wind, and lamps will substitute for the sun as sources of ultraviolet 
radiation. Understanding the processes of activation, and of passivation of reactive dust in a habitable 
environment (for example, by water vapor and oxygen), are essential to assessment of the potential 
health effects of exposure to lunar dust and establishing appropriate limits for exposures that could 
occur subsequent to mission-related tasks. Activation and rates of passivation will be assessed by 
measuring the generation of reactive oxygen species (ROS) in solutions containing dust, and by 
electron paramagnetic resonance spectroscopy.  Activated and passivated dusts will be tested in 
toxicology studies to determine the extent to which chemical activation may contribute to toxicity of 
the lunar dust. 
 
Research on the unique properties of lunar dust will also advance our understanding of the mechanisms 
by which contact with or inhalation of lunar dust may affect human systems. 
 
In vivo studies will include inhalation toxicity and intratracheal instillation (ITI) testing of lunar dust. 
Gross pathology and histopathology will be performed to gather evidence of the degree and nature of 
the pulmonary toxicity of lunar dust.  The biochemical and cellular responses of the lung to insult by 
lunar dust will be determined by examination of markers of toxicity measured in bronchial alveolar 
lavage fluid.  
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Several crewmembers reported dermal and ocular issues resulting from exposure to lunar dust during 
the Apollo missions. Although there are anecdotal reports, there are no objective scientific data to 
provide a basis for estimating the extent of dermal and ocular hazards that may be present during lunar 
operations.  Therefore, ground studies, in which simulants and authentic lunar dust will be utilized with 
tissue-equivalent models and animal models, will be conducted to provide a basis for estimating the 
extent to which acute and chronic contact with lunar dust might impair crew vision or compromise the 
barrier function of the skin. Data from these studies will also be made available to operations personnel 
and clinicians so they may be considered in the formulation of operations procedures or guidelines for 
treatment of injuries resulting from contact with lunar dust.  
 
The threat from surface dust on an asteroid will depend on the size of the asteroid and non-gravitational 
properties that allow the dust to adhere to the asteroid surface.  Martian dust is likely to be reactive 
(Viking evidence) and of a size to be easily respirable. The respirability is a consequence of global and 
local dust storms that cause collisional breaking of dust grains into smaller grains.  Dust will be brought 
into the habitat on EVA suits and on hardware brought back into the habitat.  
 
 Volatiles are unlikely to be a problem during exploration of rocky asteroids; however, carbonaceous 
asteroids, which comprise about 1/3 of near-earth asteroids, are known to have volatiles such as water, 
carbon monoxide and carbon dioxide that could be released upon heating for industrial processes such 
as propellant production. Because volatiles will be a key target for utilization and, surface samples will 
be brought into the habitat for study. Volatiles released during experiments within the habitat could 
pose a hazard to the crew. The presence of volatiles adds the possibility that central nervous system 
effects could be elicited by exposure to structurally simple, polar compounds (alcohol like). 
 
Given the unique properties of dust and volatiles on celestial bodies such asteroids Mars, and the moon, 
and minimal data on health effects of contact or airborne exposure, and the lack of a viable exposure 
standard, there is a possibility that exposure could lead to serious respiratory, cardiopulmonary, ocular, 
central nervous system, or dermal harm during lunar exploration-class missions, resulting in immediate 
or long-term health effects. 
 
A first approach to address risks posed by dust and volatiles, of asteroids and Mars is to study materials 
from those celestial bodies.   For example, dust can be made by grinding meteorites that are already in 
the JSC curatorial facility that originated from Mars or asteroids of different types.  These materials 
could also provide some information about volatiles as well. Health effects could be estimated by 
measuring chemical reactivity, response of cellular systems, and animal toxicity in studies such as 
those performed, or currently planned, with lunar dust.  A sample return mission would add confidence 
that health-effects effect estimates based upon meteorite samples was representative. In situ, studies, 
perhaps using cellular systems, would provide information on the biological properties of dust once a 
human presence is established. 

2.4.1.3 Risk of Performance Decrement and Crew Illness Due To an Inadequate Food System 
(Shor t Title:  Food)  

Studies of the stability of food nutrients will identify vitamins and amino acids at risk for degradation 
in space food supply; identify changes in fatty acids of foods flown on ISS, and characterize 
degradation profiles of the unstable nutrients. A ground study uses radiation exposure to test the 
stability of various food and pharmaceutical components; the results of the study will be compared to 
ongoing flight data being collected. The shelf life of the current thermostabilized food products has 
never been determined. Food items with varied formulations and bulk ingredients are now in 
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accelerated shelf life testing. The approach will provide critical information about the susceptibility of 
vitamins in the space food system to adverse environmental factors and storage encountered during 
space missions. 
 
The Advanced Food Technology Project is responsible for optimizing methods required to preserve, 
package, and ship, stow, and prepare the food while still preserving the nutritional value. The 
nutritional content of the flight food items is not currently measured. However the retort, irradiation, 
and freeze-drying processes used to produce shelf stable products, reduce the nutrient content. The 
nutrient levels in prepared foods will be measured to ensure that they meet the requirements of nutrition 
as specified by the nutrition standards and as determined through the Nutrition SMO mentioned above. 
If the nutrient levels are not adequate, other preservation methods that maintain the nutrient content of 
the foods will be investigated. 
 
Reducing the flight resources required for the food system is a major goal due to the significant ratios 
of rocket size to mass per pound of cargo delivered on an exploration mission. Methods to reduce 
packaging mass and volume overhead will be studied. These studies must overcome challenges such as 
storing food for extended periods (i.e., 18 months for ISS, up to 5 years for a long duration mission 
having pre-positioned food). Food packaging materials must be developed that minimize the mass 
required, while providing an adequate oxygen and moisture barrier to maintain the required shelf lives. 

2.4.2   Mission Performance 

2.4.2.1 Risk of an Incompatible Vehicle/Habitat Design (Shor t Title:  HAB) 
This risk creates both short-term and long-term negative effects when a crewmember is engaged in 
performing an on-orbit task due to problems with aspects of the designed physical working and living 
environment. Examples of short term effects include overexertion, difficulty in reading a checklist due 
to spacecraft vibrations or inadequate lighting, high temperatures in a module due to inadequate and 
excessive co-location of habitability related hardware and activities, difficulty donning a suit due to 
inadequate habitable volume, difficulties communicating with fellow crewmembers due to high levels 
of noise in the cabin, diminished mental capacity and discomfort due to high CO2 levels, or short-term 
disabilities caused by exposure to environmental contaminants. Inefficiencies may include unnecessary 
translations between workstations to complete tasks and increased task completion time due to 
difficulty in accessing equipment.  Examples of the long-term effects include ergonomic injuries / 
cumulative trauma disorders that are a result of repetitive motions, sustained maintenance of awkward 
postures, inadequate workspace clearances resulting in frequent over-exertions, suit hardware requiring 
sustained performance at excessively high sub-maximal levels, and poorly designed work practices. 

2.4.2.2 Risk of Inadequate Design of Human and Automation/Robotic Integration (Shor t Title:  
HARI)  

This risk focuses on the appropriate assignment and integration of tasks among human and intelligent 
agents during crewed space missions. The scope of NASA's future missions will involve humans 
interacting with automated and robotic systems to accomplish mission goals. This will be the case for 
both near and deep-space exploration missions, as well as Near-Earth-Object and Planetary surface 
exploration. Varying classes of robotic systems (including dexterous, heavy-lift and mobility systems) 
will be employed for these missions. Automation will be an integral part of ground and flight systems, 
in addition to being utilized within Robotic systems. The level of complexity of the operations required 
to carry out NASA's vision will greatly increase over the paradigm of robotics and automation in use 
today. Human and Robot teaming will be the cornerstone of such operations. Systems will have to be 
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designed to support multiple operators, varying time delays and increasing reliance on automation. In 
addition, robotic systems and their human interfaces must be designed to support all levels of human 
operation (direct manual control, teleoperation shared control, and supervisory control), while also 
supporting multiple robot operators in multi-agent team configurations, with those operators separated 
by time, space or both. Similarly, the integration of automation systems with their human users requires 
supporting a variety of role divisions: authority and autonomy can be differently allocated between 
human and automation, and the allocation may change dynamically depending on task or context.  

2.4.2.3 Risk of Inadequate Human-Computer  Interaction (Shor t Title:  HCI) 
This risk focuses on human-computer interaction and information architecture designs that must 
support crew tasks, as well as how those interfaces will facilitate human performance and efficiency. 
Information is presented most effectively when the user's interests, needs, and knowledge are 
considered. If information displays are not designed with a fully developed operations concept, fine-
grained task analysis, and knowledge of human information processing capabilities and limitations, the 
format, mode, and layout of the information may not optimally support task performance. This may 
result in users misinterpreting, overlooking, or ignoring the original intent of the information, leading to 
task completion times that impact the timeline, necessitating costly re-planning and rescheduling, 
and/or task execution errors, which endanger mission goals, crew safety, and mission success. 

2.4.2.4 Risk of Poor  Cr itical Task Design (Shor t Title:  TASK) 
This risk relates to the definition and development of mission tasks, task flows, schedules, and 
procedures. Operations tempo is driven by the scheduling of mission tasks, and can affect workload and 
situation awareness of crewmembers. Low workload levels have been associated with boredom and 
decreased attention to task; whereas high workload levels have been associated with increased error 
rates and the narrowing of attention to the possible detriment of tasks. Tasks are driven by procedures, 
and when written direction, checklists, graphic depictions, tables, charts or other published guidance is 
inadequate, misleading or inappropriate, an unsafe situation results. Guidelines for designing task flow, 
schedules, and procedures are critical for ensuring task and mission success. 

2.4.2.5 Risk of Performance Error s Due to Training Deficiencies (Shor t Title:  TRAIN) 
This risk focuses on the training of crew and mission support personnel, both prior to and during flight. 
Historically, spaceflight operations have mitigated procedure execution errors in at least two ways: 
specially-trained crew members are assigned to missions and/or rotated into the operational 
environment when complex, mission-critical tasks must be performed; and, execution of such 
procedures is closely monitored and supported by flight controllers on the ground who have access to a 
broader and deeper pool of information and expertise than any individual operator.  However, emerging 
mission architectures include long-duration operations in deep space. Such operations do not allow for 
assignment of new crew or rotation of crew to ground for training. Further, delays in communication 
will have a disruptive effect on the ability of Earth-based flight controllers to monitor and support 
space operations in real time. As a result, it is necessary to develop an understanding of how training 
can be tailored to better support long-duration deep space operations (incl. the extent to which 
materials, procedures, and schedules of training should be modified). 
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2.5 SPACE RADIATION (SR) 
The radiation risks are highly interrelated.  The occurrence or mitigation of one risk can be a 
contributing factor affecting another, so the research approaches are given together.   

 The Space Radiation Element uses data from all funded studies and provides the integrating 
component through development of risks assessment tools and design tools.  When critical deliverables 
are needed such as at mission or vehicle System Requirements Review (SRR) or System Design 
Review (SDR) , or crew selection, or for key development of operational products, the Space Radiation 
Element will serve an advisory function, using the output of the latest independently verified and 
validated tools. Thus, the many deliverables will not usually map to the end of a specific study, but 
rather are planned to occur at the key milestones when they are needed.  However, tools utilized in the 
design and development of vehicles will be delivered prior to Preliminary Design Review (PDR) and 
Critical Design Review (CDR) to be utilized during the design and analysis cycles. 

2.5.1 Long-Term Health 

2.5.1.1 Risk of Radiation Carcinogenesis (Shor t Title:  Cancer) 
Near-term goals for cancer research focus on reducing the uncertainties in risk projections through the 
development of tissue specific models of cancer risks, and the underlying mechanistic understanding of 
these models, and appropriate data collection at the NSRL.  In the long term, extensive validation of 
these models with mixed radiation fields is envisioned and research on biological countermeasures and 
biomarkers will be pursued if needed.  Research on improving cancer projections has two major 
emphases: 1) testing the correctness of the National Council on Radiation Protection (NCRP) model 
and 2) reducing the uncertainties in the coefficients that enter into the cancer projection model.  
Research on the validity of the NCRP model relies on studies at the NSRL observing qualitative 
differences in biological damage between High Charge and Energy (HZE) nuclei and gamma rays and 
the establishment of how these differences relate to cancer risk.  There are distinct mechanisms of 
cancer induction across and within major tissue sites, and uncertainty reduction requires tissue specific 
risk estimates.  NRA and NASA Specialized Center of Research (NSCOR) proposal selections focus on 
these major sites: lung, breast, colon, stomach, esophagus, the blood system (leukemias), liver, bladder, 
skin, and brain.  There are differences in radiation sensitivity based on genetic and epigenetic factors 
and research in these areas aids the development of tissue-specific cancer models.  

The approach to risk quantification and uncertainty reduction is based on modifying the current model 
for projecting cancer incidence and mortality risks for space missions.  The cancer rate is the key 
quantity in the evaluation, representing the probability of observing a cancer at a given age and years 
since exposure.  The life-span study of the Japanese survivors of the atomic bomb is the primary source 
for gamma ray data.  More recently, however, meta-analysis of data for several tissue types from 
patients exposed to radiation or reactor workers has become available.  These newer data are being 
used to check or replace the Japanese data.  Other assumptions in the model are made with regard to the 
transfer of risk across populations, the use of average rates for the U.S. population, age, and age-after 
exposure dependence of risk on radiation quality and dose rate, etc. 

Collaborative research with the Department of Energy (DOE) Low Dose Research Program is a key 
component of the strategy.  The DOE program focus is on low Linear Energy Transfer (LET) 
irradiation; collaborative grants are also being selected from proposals that contain one or more 
Specific Aims addressing NASA interests using the NSRL.  This research augments SR research with a 
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large number of grants that use state-of-the art approaches, i.e., genetics, proteomics, and transgenic 
animal models, etc.  The DOE research is an important part of the goal to identify biomarkers of cancer 
risk.  

Determining the shape of the dose-response model for cancer induction is a near-term focus that is 
enumerated in biological terms through various cancer Gaps.  In the NCRP model, the relationship 
between dose and response is linear and the slope coefficient is modulated by radiation shielding.  
Models of non-targeted cancer risk describe processes by which cells traversed by HZE nuclei or 
protons produce cancer phenotypes in regions of tissue not limited to the traversed cells.  Non-targeted 
effects are the major mechanism that has been identified that is in disagreement with the NCRP model, 
and they show a sub-linear dose response.  The implications of such a dose response for cancer risk are 
large since such a model predicts a reduced effectiveness for radiation shielding.  The importance of 
mission length is also affected by the sub-linear dose response.  Research in this area is a major focus 
of studies at NSRL.  For some cancer sites and exposure conditions, for proton exposures, the NCRP 
model may be adequate.  NSRL research is focused on reducing the uncertainties in the model through 
the establishment of tissue-specific models of human cancers, and on collection of data at NSRL for a 
variety of ground-based analogs for solar particle event (SPE) and galactic cosmic rays (GCR).   

Systems biology models provide a framework to integrate mechanistic studies of cancer risk across 
multiple levels of understanding (molecular, cellular, and tissue), and are the most likely approach to 
replace the NCRP model.  Systems biology models are being developed by the Risk Assessment 
Project and several NSCORs, and, in conjunction with data collection, will improve the descriptions of 
cancer risk, laying a framework for future biological countermeasure evaluations and biomarker 
identification. 

2.5.1.2 Risk of Acute or  Late Central Nervous System Effects from Radiation Exposure (Shor t 
Title:  CNS) 

A critical question for the current phase of research is to establish possible threshold doses for specific 
CNS risks.  Central nervous system (CNS) risks from GCR are a concern due to the possibility of 
single HZE nuclei traversals causing tissue damage as evidenced by the light-flash phenomenon first 
observed during the Apollo missions.  Also, as survival prognosis for patients irradiated for brain tumor 
treatment has improved, patients have shown persistent CNS changes at times long after treatment with 
gamma rays suggesting a possible CNS risk for a large SPE.  Furthermore, animal studies of behavior 
and performance with HZE radiation suggest detrimental changes may occur during long-term GCR 
exposures.  Currently, there is no projection model for CNS risks of concern to NASA.  The values of 
possible thresholds for CNS risks and knowledge on how to extrapolate possible thresholds to 
individual astronauts is a key milestone in the long-term research plan.   

2.5.1.3 Risk of Degenerative Tissue or  other  Health Effects from Radiation Exposure (Shor t 
Title:  Degen) 

Recently several epidemiological studies, including results from the atomic-bomb survivors and 
nuclear reactor workers, have identified an increased risk of stroke and coronary heart disease (CHD) 
for low-LET radiation at doses comparable to those of a Mars mission, or a lunar mission incurring a 
large SPE.  Because the risk of heart disease is a recent finding, preliminary studies in these areas are 
seeking to establish possible distinctions, in mechanisms for this risk, between protons, HZE nuclei, 
and gamma rays.  As an adjunct, SR will take advantage of studies by the European Union in this area, 
wherein the Union is supporting large-scale mouse studies of CHD.  These studies should present new 
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insights into the nature of the low LET (gamma-ray) risk at low dose-rates comparable to space 
conditions, and should identify appropriate mouse strains to be used in future SR studies.  

Cataracts have long been a research focus of the SR. An increased risk of cataracts associated with low- 
dose space radiation has been reported from past NASA missions, and is being followed up with a 
clinical study of cataract progression rates in current or retired astronauts.  Several NSRL studies of 
risks are supported to improve the understanding of how protons and HZE nuclei induce cataracts, and 
to identify possible countermeasure approaches. As well, SR continues to support studies to improve 
the understanding of how protons and HZE nuclei induce cataracts and to identify possible 
countermeasure approaches.  

2.5.2 Shor t-Term Health 

2.5.2.1 Risk of Acute Radiation Syndromes due to Solar  Par ticle Events (Shor t Title:  ARS) 
A variety of acute radiation syndromes are of concern following a large SPE exposure.  Radiation 
sicknesses, i.e., the prodromal risks, include nausea, vomiting, diarrhea, and fatigue.  These effects are 
manifested within 4 to 24 hours post-exposure for sub-lethal doses, with a latency time inversely 
correlated with dose.  Furthermore, there is a reasonable concern of a compromised immune system, 
due to high skin doses from a SPE leading to burns, or other flight factors, although the possibility of 
acute death through the collapse of the blood forming systems is negligible.  One research emphasis is 
to pursue the role of the immune system in acute risks.  Animal and cell culture models and possible 
countermeasure approaches to acute risks are expected to be distinct from those for cancer and other 
radiation risks. In the long-term, the SR will consider research on fertility, sterility, and hereditary risks 
from space radiation.  

 

3.0  DESCRIPTION OF HRP ELEMENTS CONTENT LOCATED IN THE 
HUMAN RESEARCH ROADMAP 

The format for the Elements’ inputs includes graphical depiction via Gantt charts and written discourse 
to clarify the Element approach.  Each input follows the same form.  Each risk in the purview of that 
Element is reported, along with its criticality to the Lunar Outpost mission and the Mars mission; the 
operational relevance is described; the strategy for mitigation is given; the gaps in knowledge are 
reported with a brief description; and the activity or activities necessary to address the gap are 
described.  For each activity, the resulting product/deliverable, the required delivery milestone for the 
deliverable, the required platform, and the Project or organization responsible for implementing the 
activity are all defined. 

3.1 RISKS 
Each text description has a statement of the risk.  These statements are verbatim from the PRD, and are 
reprinted in the IRP as a matter of convenience for the reader.  With the title of each risk, the criticality 
is given.  Criticality ratings correspond to the criteria given in Section 1.4.1 of this document. 

3.2 CONTEXT 
This section provides the context of how the research plan is built for that risk and describes the need 
for the research at a very high level. 
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3.3 OPERATIONAL RELEVANCE 
In this paragraph, a description of the relevance to the exploration mission is given.   

3.4 STRATEGY FOR MITIGATION 
The approach strategy for the mitigation of the risk is outlined in this section.  For instance, the strategy 
may be to first determine space normal physiology, then identify specific countermeasures.  

3.5 GAPS 
Gaps in our knowledge or in the evidence base exist for each risk.  These gaps have several different 
forms.  A gap may exist in our evidence base, which leaves greater uncertainty regarding the likelihood 
of the risk.  A gap may exist in the identification of the appropriate countermeasure.  For other risks, 
the gap may be in the flight validation of the appropriate countermeasure.  For the purposes of this IRP, 
the gaps are not delineated by type; rather they are simply identified as gaps that must be filled before 
the risk is mitigated.  In some cases, a gap may not require research to close it; the gap can be avoided 
altogether through selection of a specific Vehicle or Mission design. 

3.6 TASKS 
For each gap, the task(s) required to fill that gap are listed.  Each task is named and a short description 
is given.  In some cases, a task can address multiple gaps within a risk or across multiple risks.    In 
addition, the project responsible for implementation of the task is listed, along with the anticipated 
procurement method.  In some cases, the project is not within the Element responsible for the risk.  The 
responsible Element will coordinate with the appropriate project in those cases. 

 

3.7 DELIVERABLES 
A deliverable is an end product(s) to which the customer and supplier have agreed. The supplier is the 
primary provider of the deliverable(s).  The customer is the primary recipient that takes ownership of 
the deliverable(s).  A stakeholder is an entity with  interest in deliverable(s). 
 
Each task or progression of tasks is designed to ultimately culminate in a deliverable to a Vehicle or 
Mission Definition & Development Program, the Office of the Chief Health and Medical Officer, or the 
Mission Operations Directorate. Deliverables to these entities often affect mission planning or impose 
mission operations timelining constraints such as a new flight rule for sleep schedules or exercise 
timelines. Deliverables that impact mission planning or timelines influence the Mission Operations line 
shown in the blue section of the top of the Gantt charts.  
 
A deliverable from an individual task often fills a gap in some other HRP Element. Part of the IRP 
maturation process is to identify critical dependencies for each gap. These critical dependencies will 
include, in some cases, information developed under another gap. The need dates for these deliverables 
are determined by when the other Element needs the information.  
 
The deliverable categories are listed in the table below and briefly described in the text that follows. 
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Category 

Table 3.7 Category Options for Deliverables 
Subcategory Example Customers Example Deliverables 

        
Requirements Vehicle/Suit Design Vehicle/Mission Definition & 

Development Programs 
Suit Design Requirements 

  Flight Rule/ MRID/Practice 
Guidelines 

Medical/Mission Operations Questionnaires, Procedures 

      

Technology Systems Solutions, 
Prototype H/W 

Medical Operations ,  Vehicle/ 
Mission Definition & 
Development Programs 

Food Packaging Technologies, 
In-flight Blood Analysis 
Technology 

  Clinical Care, Medical 
Informatics 

Medical Operations Training Protocol for Effective 
Medical Operations 

        

Tools Computational Models, 
Software 

Medical Operations, OCHMO, 
Vehicle/Mission Definition & 
Development Programs 

Radiation  Risk Assessment 
Models, Digital Astronaut 

  Database Human Research Program Database created by gathering 
existing data, New database 
created for data input 

  Simulation Medical Operations,  Vehicle 
Mission Definition & 
Development Programs 

IMM Decision Support Tool 

    

Countermeasures Prescription Medical Operations, OCHMO Integrated Resistance and 
Aerobic Training Study 

  Protocol Medical Operations, OCHMO Consumables Tracking 
System, Prebreathe Protocol 
for Exploration Scenarios 

  Prototype H/W, 
Pharmaceutical/ Nutritional 
Supplement 

Medical Operations, OCHMO, 
Vehicle/Mission Definition & 
Development Programs 

Pharmaceutical 
recommendations resulting 
from Vitamin D Study 

        

Standards Update OCHMO Nutrition Standard Update 

  New OCHMO Lunar Dust PEL 

        

Risk 
Characterization, 
Quantification 

Evidence OCHMO NRA Final Report 

RMAT 

Evidence Report 

Conceptual model 

Study Customer Requested Study 
or Analysis 

Vehicle/Mission Definition & 
Development Programs 

Trade Study Analysis Results 
and Recommendations 

 

Comment [SS1]: Add new 
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The “Requirements” deliverable is chosen when a task will result in information that is relevant to a 
requirement (or requirements set) owned by another program or to another Element.  For example, the 
task may end up informing the requirements on the  lighting spectrum in the vehicle, or the results may 
apply to the radiation shielding design, or conclusions may be reached that apply to the food system 
from nutritional risk work.   These deliverables often feed the design of the vehicle and its sub-systems. 
As inputs to requirements, they primarily are applied in the Systems Requirements Review timeframe.  

Requirements  

 

The technology deliverable covers a broad spectrum of developments that includes hardware, systems 
solutions, new processes, inventions or innovative methods.  These deliverables support HRP research 
as well as external customers. 

Technology  

 

A tool deliverable can encompass design tools, software, databases, computational models or systems 
simulations. 

Tool 

 

A countermeasure is a specific protocol that is developed and validated to prevent or reduce the 
likelihood or consequence of a risk. Countermeasures may be medical, physical, or operational entities, 
such as pharmaceuticals, devices, or specific exercise routines, respectively. A countermeasure 
deliverable is usually specific and extensive enough to require validation in spaceflight.  For instance, if 
a ground task results in a spaceflight task that is called a “flight validation study,” it likely is a 
countermeasure. Note that in some cases the countermeasure will also affect mission operations (in 
areas like timelines). Some general direction on this, however, is that the countermeasure usually does 
not affect the design of the spacecraft, and is applied in the mission operations phase as a solution to a 
problem; thus, the countermeasure deliverables generally affect the mission operations PDR or CDR 
phases.  

Countermeasure  

 

A “Standards” deliverable often begins as a Risk Characterization/quantification activity. Preliminary 
information about a risk is often incomplete. HRP would not be in a position to recommend a standard 
update, but preliminary information would represent a significant step toward such a recommendation. 
Risk Characterization tasks can feed into other tasks that also have information for standards, or they 
can be combined with other “Standards” deliverables to result in a recommendation for a new or 
updated standard. 

Standards  

 
A Standard deliverable is mandated when the program is ready to provide the OCHMO with a new 
standard or a recommended update to an existing health or performance standard. A key test of the 
Standard as a deliverable is that the program is ready to write the text for the recommended standard 
update. Since the standards are applied in a broad spectrum for design and operations, these 
deliverables can be linked to any of the system design or mission operations milestones shown in the 
blue section at the top of the Gantt chart in Appendix A. They should be applied as early as possible in 
the design phase or mission operations development phase, so, most often, they are necessary prior to 
Systems Requirements Review (HRP-47065 Rev B 34). 
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When a task results in information that must be considered by the Human Systems Risk Board, medical 
operations community and/or OCHMO, this deliverable is used. This deliverable is applicable when it 
impacts the rating of the likelihood or consequence of a risk. It is also applied when the results of the 
study are anticipated by the space medical operations community.  

Risk Characterization/Quantification 

A study or analysis requested by an HRP customer or Element.  This is often a trade study that includes 
analysis, results and recommendations. Data mining or literature review tasks as defined in 1.4.2 
typically produce this type of deliverable. 

Study 

3.8 REQUIRED DELIVERY MILESTONE 
Key milestones within Vehicle or Mission Definition and Development Programs, or Medical or 
Mission Operations drive the required date for the HRP deliverables.  For instance, design requirements 
typically must be defined by the appropriate System Requirements Review.  Design solutions and 
technology typically must be defined to a Technology Readiness Level (TRL) 6 by the Preliminary 
Design Review. TRLs are defined in Appendix B. This section documents the schedule drivers for the 
delivery milestones. 

3.9 REQUIRED PLATFORMS 
This section defines the platform required to perform the research.  Platforms can be designated as 
ground analog environments, such as NEEMO, or Antarctica; or the platform may be a space-based 
one, such as the Shuttle or the ISS.  Also, the lunar surface is a platform that is anticipated in some 
research efforts.  If the ISS is required, a summary of the following resource requirements is given: 
number of subjects, initial upmass, upmass/subject, downmass, crew time per subject, and post-flight 
baseline data collection time. 

3.10 PROJECT OR ORGANIZATION RESPONSIBLE FOR THE IMPLEMENTATION OF 
ACTIVITY 

Within the HRP Elements, one or many projects are chosen to implement the Element research plan.  
The project is identified in this section.  In some cases, organizations outside the Element, such as the 
NSBRI or even an international partner, are responsible for implementation of the research.  These 
organizations are identified within this section. 

This section indicates the project with primary responsibility for implementing the activity.  In some 
cases, the project is not within the Element responsible for the risk.  The Element responsible will 
coordinate with the appropriate project in those cases.   

Discipline teams include the participation of operations personnel, the NASA research discipline 
experts, and the NSBRI.  In several cases, the primary responsibility is shown as that of NASA; 
however, that does not mean that the NSBRI is not participating at all.  The NSBRI participates through 
the discipline teams, as well as through future solicitations. 

3.11 GRAPHIC INPUT 
Each graphic is supported with text that provides a more thorough level of detail.  Figure 2 is an 
example of a Gantt chart, with each section of the chart labeled.  Each Gantt chart is associated with 
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one of the 31 PRD risks.  The Element to which the risk is allocated is identified in the upper left 
corner.  The research gaps are identified by name and number along the left side for each risk.  Under 
each gap are the identified activities required to fill the gap.  Each activity is identified by name and the 
abbreviation of the project or organization responsible for implementing the activity.  In some cases, 
the organization responsible for implementing the activity may not be directly controlled by the 
Element responsible for the risk.  The schedule of each activity is shown on the graphic and an arrow 
shows deliverables resulting from the activity.  The activities are color-coded per the legend given. A 
number on each text deliverable description relates the deliverable to the need date, shown by the gray 
numbered arrows at the top of the chart.  

3.12 DECISION POINTS 
Several key decision points have been placed in the plan.  At these key decision points, the appropriate 
forward path for the research will be reevaluated.  The decision points are cast in a “Yes/No” form, and 
it is anticipated that at these points, the responsible Element will review the overall, current state of the 
evidence, and review the appropriate approach to the forward plan.  Where applicable, the Science 
Management Office will concur and, if necessary, the appropriate Project Standing Review Panel may 
be convened to deliberate and make recommendations.  Criteria for making the decision will be 
determined on a case-by-case basis and will be consistent with the overall management structure 
documented in the Science Management Plan.    

3.13 HARDWARE DEVELOPMENT CYCLE  

Many HRP deliverables contribute to hardware development. A NASA hardware development 
proceeds through several stages, with reviews occurring between the stages. The exploration program 
goes through these stages as it designs the next crew capsule, a lunar lander, and the next generation 
space suit. Common reviews seen in the HRP documentation are the following: 

• System Requirements Review (SRR):  At the beginning of the project, establishes what the 
system will and will not do. 

• Preliminary Design Review (PDR):  At 10% design completion, is primarily to critique the 
architecture of the design and critical decisions made in the design. 

• Critical Design Review (CDR):  At 90% design completion, is primarily to make a last set of 
changes before the design is finalized. 

  

To make sure that all the organizations within NASA and its associated contractors are working from 
the same set of plans, NASA uses a rigorous “configuration management” system to obtain, review and 
implement changes to key documents. A change is initiated by a formal document called a Change 
Request (CR). A Change Request often solicits input from many stakeholders. That input is often 
provided in the form of a Review Item Discrepancy (RID). A RID is essentially a request to change 
part of a document and includes the rationale. The owner of the document decides whether or not to 
make the change. The Human Research Program often provides RIDs to CRs concerning exploration 
program documents. This is the NASA process that allows HRP results to change NASA’s plans for 
exploration vehicles. 
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4.0 GANTT CHART LEGEND 

Legend

G: ground study

F: flight study

FP: Flight Prep

DA&M: data analysis and modeling

AO: Add on to another study

NSBRI

L: Lunar

Early Start

Task to be determined 
after decision point

Stop

Planned/Unfunded

Major decision point

Major milestone
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Deliverables  

1. Risk Characterization
2. Information to/from another task (↓↑)
3. Information for Health Standards
4. Recommend Update to Health Standards
5. Informing Mission Operations
6. Technology/tool
7. Countermeasure (CM)
8. Information to/from another HRP element
9. Information to the Human System Risk Board (HSRB)
10. Requirements to other programs/elements

 
Deliverable arrows accommodate major HRP deliverable categories listed in Table 3. 7 as well as interim deliverables (milestones). 
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Risk Title from PRD

Gap Identified

Task Title

ISS ScheduleProject or Org 
responsible for task

Element owner 
of risk identified 
in PRD

Interim or final deliverable
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APPENDIX A- LINK TO HUMAN RESEARCH ROADMAP 

Risk, gap and task information that was formerly contained in Appendix A is now located 
in the Human Research Roadmap:  

HTTP://HUMANRESEARCHROADMAP.NASA.GOV/.  

 

 

 

HHC Infrastructure Gaps are not linked to any of the HRP risks; they may be found by 
searching “GAPS” for HHC1, 2, 3 or 5.

http://humanresearchroadmap.nasa.gov/�
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APPENDIX B- TECHNOLOGY READINESS LEVELS (TRL) 
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Definition of Technology Readiness Levels (TRL) 
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A 

AEH Advanced Environmental 
Health 

AFT Advanced Food Technology 

 
B 

BHP Behavioral Health and 
Performance 

 
C 

CDR Critical Design Review 

CNS Central Nervous System 

CO2 Carbon Dioxide 

CR Change Request 

 

D 

DA Digital Astronaut 

DOE Department of Energy 

DRM Design Reference Mission 

 

E 

EARD Exploration Architecture 
Requirements Document 

ECP Exercise Countermeasures 
Project 

ESMD Exploration Systems Mission 
Directorate 

EVA Extravehicular Activity 

ExMC Exploration Medical Capability 

 

F 

FAP Flight Analogs Project 

  

G 

g Gravity 

GCR Galactic Cosmic Rays 

GI Gastrointestinal 

 

H 

HHC Human Health 
Countermeasures 

HIDH Human Integration Design 
Handbook 

HQ Head Quarters 

HRP Human Research Program 

HRR Human Research Roadmap 

HSIR Human Systems Integration 
Requirements 

HSRB Human Systems Risk Board 

HZE High Charge and Energy 

 

I 

ICP Intracranial Pressure 



HRP-47065   REV C 

 

41 

IHT Intracranial Hypertension 

IOM Institute of Medicine 

IRP Integrated Research Plan 

ISS International Space Station 

ISSMP International Space Station 
Medical Project 

  

J 

JSC Johnson Space Center 

  

 

K 

L 

LADTAG Lunar Airborne Dust Toxicity 
Advisory Group 

LET Linear Energy Transfer 

LOC Loss of Crew 

LOM Loss of Mission 

  

M  

MLD Master Logic Diagram 

MRID Medical Requirements 
Integration Document 

N 

NASA National Aeronautics and Space 
Administration 

NCRP National Council on Radiation 
Protection 

NEEMO NASA Extreme Environment 
Mission Operations 

NRA NASA Research 
Announcement 

NSBRI National Space Biomedical 
Research Institute 

NSCOR NASA Specialized Center of 
Research 

NSRL NASA Space Radiation 
Laboratory 

NxPCM Non-Exercise Physiological 
Countermeasures 

 

 O  

O2 Oxygen 

OCHMO Office of the Chief Health and 
Medical Officer 

  

P 

PD Pharmacodynamics 

PDR Preliminary Design Review 

PEL Permissible Exposure Limits 

PK Pharmacokinetics 

PRD Program Requirements Document 

  

Q 

Qc Cardiac Output 

R 

REV. Revision 
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RFP Request for Proposal 

RID Review Item Discrepancy 

RMAT Risk Management Analysis 
Tool 

ROS Reactive Oxygen Species 

S 

SAR System Acceptance Review 

SBIR Small Business Innovation 
Research 

SDR System Design Review 

SHFE Space Human Factors 
Engineering 

SHFH Space Human Factors and 
Habitability 

SMO Supplemental Medical 
Objective 

SOMD Space Operations Mission 
Directorate 

SPE Solar Particle Event 

SR Space Radiation 

SRR System Requirements Review 

STD Standard 

  

 

T  

TBD To Be Determined 

TRL  Technical Readiness Level 

 

 

U 

 

V  

VIIP Visual Impairment and 
Intracranial Pressure 

VO2max 
 

Maximal oxygen consumption 

  

 

WXYZ  
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