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Ice, Cloud, and land Elevation Satellite (ICESat) / Geosciences Laser Altimeter

System (GLAS) waveform data are used to estimate biomass and carbon on a 1.27

� 106 km2 study area in the Province of Québec, Canada, below the tree line. The

same input datasets and sampling design are used in conjunction with four differ-

ent predictive models to estimate total aboveground dry forest biomass and forest

carbon. The four models include non-stratified and stratified versions of a multiple

linear model where either biomass or (biomass)0.5 serves as the dependent variable.

The use of different models in Québec introduces differences in Provincial dry

biomass estimates of up to 0.35 G, with a range of 4.94� 0.28 Gt to 5.29� 0.36 Gt.

The differences among model estimates are statistically non-significant, however,

and the results demonstrate the degree to which carbon estimates vary strictly as a

function of the model used to estimate regional biomass. Results also indicate that

GLAS measurements become problematic with respect to height and biomass

retrievals in the boreal forest when biomass values fall below 20 t ha-1 and when

GLAS 75th percentile heights fall below 7 m.

1. Introduction

The forestry Light Detection and Ranging LiDAR community, having demonstrated

the utility of airborne LiDAR systems for forest measurement and monitoring, must

now consider doing so from space. One civilian space LiDAR, the Ice, Cloud, and

land Elevation Satellite (ICESat) carrying the Geosciences Laser Altimeter System

(GLAS) LiDAR, is currently in orbit. The US may launch three additional space

LiDAR systems over the next decade. This article briefly describes these proposed

space LiDARs, the configurations of which are all under discussion and subject to
change. We also introduce two concerns associated with space and airborne LiDAR

instruments that must be addressed by our community if we hope effectively to

monitor global forest resources with lasers. In order to monitor forest change at the

regional, national, continental, or global scale, our estimates at time 1 (t1) and time 2

(t2) must be consistent. Spurious changes may be noted or actual changes may be

missed if our t1 and t2 estimates are not comparable. Assuming the use of the same

sampling design, inconsistencies may be introduced by the use of different predictive

models at t1 and t2 and/or they may be introduced by sensor changes over time, which
might result in systematic measurement differences. The primary objective of this

paper is to address the former, i.e. model consistency, providing one example of the

degree to which the use of different predictive models impacts upon regional estimates

of biomass and carbon made using space LiDAR measurements. A secondary
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objective is to report possible measurement limitations of the current space LiDAR,

ICESat / GLAS, with respect to measuring forest height and biomass.

1.1 US space LiDARs – current thoughts on future missions

The US National Research Council (NRC), in a document known as the Decadal

Survey (National Research Council 2007), has identified 17 space missions of para-

mount importance to the US scientific community for monitoring the status and

function of the biosphere. The NRC suggests that these 17 missions be launched in the

2010–2020 time frame. Three of these Earth remote-sensing missions incorporate

space LiDARs capable of measuring forest structure. These missions include: (1)

ICESat II, a follow-on to the current ICESat satellite (Abshire et al. 2005), designed
to monitor ice-sheet elevation changes; (2) Deformation, Ecosystem Structure, and

Dynamics of Ice (DESDynI), primarily a solid Earth mission that couples an L-band

radar and LiDAR to map surface deformation; and (3) Laser Imaging for Surface

Topography (LIST), a swath mapping LiDAR for global topography and hydrology.

All will be in near-polar orbits.

The specific designs of ICESat II and DESDynI are currently topics of much

discussion, so the descriptions below may not resemble the configurations that ulti-

mately reach orbit. In addition, the launch of these three satellites is by no means
assured, given the prerequisite that the US Congress must find the funds needed to

build and operate this hardware. However, the Decadal Survey carries much weight at

NASA, and the current expectation is that ICESat II will be launched somewhere in the

2016–2018 time frame in a flight configuration markedly different from ICESat I.

ICESat I was a single beam, near-infrared (1.064 mm), 40 Hz waveform profiler with

50–70 m footprints and an along-track post-spacing of 172 m. The current design for

ICESat II calls for the use of a multi-beam, 10 kHz micropulse LiDAR system that will

collect ranging data from individual green (0.532 mm) photons every 70 cm along-track.
The 2016–2018 launch window is notable in that the third and final laser on ICESat I

failed on 19 October 2008. The second of three lasers, which previously had dropped

below acceptable power levels, was subsequently brought back online to acquire low-

power ranging observations over ice, but the laser power available makes the utility of

these measurements questionable for vegetation assessment. Thus we can expect an

ICESat I 1/N ICESat II observational hole of ,9 years.

The DESDynI and LIST missions will fly later, DESDynI perhaps in 2019.

Expectations are that DESDynI will most likely be some sort of multi-beam wave-
form profiling LiDAR with ,25 m footprints and a 25–30 m post spacing, i.e., near-

contiguous profiles along-track. Each of the five parallel profiles may be separated

from adjacent, simultaneously acquired profiles by approximately 850 m, thus the

left- and rightmost outer beams will be 3.4 km apart across-track, assuming a mission

design life of five years. If, due to budget concerns, the DESDynI LiDAR is designed

to operate for 3 years, the distance between adjacent beams may be 940 m, leading to

an across-track swath dimension of ,3.8 km. The DESDynI mission is currently

configured as two free-flying satellites, one an L-band radar and the second a multi-
beam LiDAR. Many aspects of this joint radar-LiDAR mission are being discussed,

including orbital repeat times, orbital baseline issues regarding the radar acquisitions,

the radar acquisition capabilities, e.g. Synthetic Aperture Radar (SAR) versus

Interferometric SAR (InSAR), LiDAR beam spacing, number of beams, off-nadir
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pointing capabilities and pulse width.* LIST is currently configured as a swath mapper,

collecting global wall-to-wall coverage over its 5 year design life. The footprint of the

contiguous pulses will be of the order of 5 m, as will the post spacing of adjacent

footprints both along- and across-track. Given LIST’s late launch, most effort is going

into research to address the ICESat II and DESDynI flight configurations.

1.2 Using ICESat / GLAS to measure forests

In the context of the current ICESat profiler and the possibility of an ICESat II

follow-on, the forestry LiDAR community may, in about 6 years, enter a period

where space-based LiDAR measurements are routinely collected globally and system-

atically. With this capability comes questions concerning how we might best use these

satellite ranging observations to measure, and more importantly, monitor forest
biomass and carbon resources at regional, national, continental and global scales.

Although the ICESat / GLAS LiDAR is not optimally configured for or operated as

a vegetation assessment tool, these data have proved useful for biomass and carbon

assessments across areas spanning hundreds of thousands of square kilometres. Nelson

et al. (2009a) and Boudreau et al. (2008) report results of studies that employ the

ICESat / GLAS LiDAR to estimate forest volume, biomass and carbon in south central

Siberia (just north of Mongolia) and in Québec, Canada, respectively. Nelson et al.

(2009a) used 101 831 GLAS waveforms acquired along 55 orbits over a 10� � 12�, 811
414 km2 area just northwest of Lake Baikal to attribute 16 forest-cover type–canopy

density classes derived from Moderate Resolution Imaging Spectrometer (MODIS)

data. Using field observations acquired on 51 GLAS pulses, they developed a sparse

neural network relating GLAS waveform metrics to ground estimates of merchantable

volume (Ranson et al. 2007). If they constrain their data and use only those pulses

acquired on slopes of 10� or less as characterized using Shuttle Radar Topography

Mission (SRTM) topographic information, their regional estimate of merchantable

volume, 73.85 � 106 � 5.33 � 106 m3 (1 standard error), is within 1.1% of comparable
ground estimates, 74.63 � 106 m3 (Shepashenko et al. (1998), per hectare estimate in

conjunction with a percent forest-cover estimate of 63% from a 1990 Russian forest

map, Grasia (1990)). If GLAS pulses on all slopes are considered, the regional GLAS-

based per hectare estimate of volume increases from 163.4 � 11.8 m3 ha-1 to 171.9 �
12.4 m3 ha-1, a 5.2% increase. This apparent increase in area-based volume estimates

suggests that steeper slopes broaden the waveform response, increasing apparent

canopy height and inflating the volume estimates. Slopes, as noted by Lefsky et al.

(2005, 2007) and Rosette et al. (2008), negatively affect the height accuracy of the large-
footprint GLAS waveform data, convolving forest-canopy architecture with topogra-

phy, and increasing the vertical extent of the waveform. The tangent of the actual

topographic slope multiplied by the GLAS footprint diameter provides an upper limit

to the vertical pulse broadening expected due to slope (Lefsky et al. 2007;

A. Neuenschwander, personal communication, 24 February 2009).

Boudreau et al. (2008) uses a multi-phase sampling approach to relate GLAS wave-

form and SRTM topographic measurements to field estimates of total above-ground dry

biomass in Québec, Canada. They flew an airborne profiling LiDAR (the Portable
Airborne Laser System (PALS); Nelson et al. (2003)) over existing ground plots and

along GLAS orbital transects and developed two sets of equations. The first set relates

*This paragraph was updated at proof stage.
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field biomass estimates to airborne LiDAR metrics; the second set relates airborne

LiDAR estimates of biomass to GLAS waveform metrics. They estimate that, on

average, the forested areas of Québec that are south of the tree line support 38.9 � 2.2

t ha-1 of dry biomass. Botkin and Simpson (1990) report an average value of 41.8� 10.1

t ha-1 for all of the North American boreal forest based on stratified ground
measurements.

These studies report the accuracy and precision of statistical approaches that may be

used to conduct regional inventories using a space LiDAR. Of interest in this paper,

however is an assessment of the need for consistency in model selection when estimating

regional biomass repeatedly over time. The objective of this study is to quantify the

degree to which model differences may affect regional estimates of biomass and carbon.

Four different models are used to estimate standing dry biomass and carbon for all of

Québec below the tree line, an area encompassing 1.27� 10 6 km2. In addition, results
from the four models are compared to ground reference data to determine which of the

four most closely estimates biomass in the southern half of the Province.

2. Methods

The datasets and analysis procedures employed in this study are the same as those

described in detail in Boudreau et al. (2008). This study incorporates the following

datasets:

1. ICESat / GLAS LiDAR waveform data. In the autumn of 2003, 104 044 GLAS

waveforms were acquired along 97 orbits across all of Québec, acquisition L2a.

The spacing between adjacent near-N–S orbits are very variable but average

15.6 km.

2. Digital vegetation zone map of Québec (MRNFPQ 2003). An ecozone map
tessellates Québec into seven vegetation zones from south to north: (2.1) north-

ern temperate forest, (2.2) mixedwood forest, (2.3) southern boreal forest

(commercial forest), (2.4) northern Boreal forest (non-commercial forest),

(2.5) taiga, (2.6) treed tundra, (2.7) Southern Arctic. The Southern Arctic

vegetation zone, whose southern border is identified as the Provincial tree

line, is assumed to contain no forest biomass.

3. Landsat Enhanced Thematic Mapper Plus (ETMþ) land-cover map (Wulder

et al. (2003); GeoTiffs available online at http://eosd.cfs.nrcan.gc.ca). Up to 24
land-cover classes are identified in each vegetation zone. Forests are identified as

being conifer, hardwood or mixedwood, and each cover type is broken into three

canopy density classes. The classified Landsat data are resampled to a 25 m grid.

4. SRTM digital elevation data. The SRTM radar data are available up to 60� N

latitude. In Québec, the Provincial tree line tracks around 58�–59� N. A 3 � 3

window of 90 m SRTM pixels around each GLAS pulse is used to characterize

local topography.

5. Ministry of Natural Resources Québec (MNRQ) ground plots. The Ministry
divides the Province into commercial and non-commercial forestland along an

E–W line that roughly bisects the boreal zone, separating the three southern

vegetation zones, 2.1, 2.2 and 2.3 (above), from the smaller-stature, more open

forest to the north (Boudewyn et al. 2007). In the three southern zones, they

measured 16 814, fixed area, 11.3 m radius, 400 m2, temporary sample plots

between 1998 and 2004. Total above-ground dry biomass is calculated on each

plot using equations available in Lambert et al. (2005). A small portion of these
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plots, ones more recently measured in 2000 to 2004, are used to develop the

models reported below. All 16 814 plots are used to validate the models.

6. Profiling airborne LiDAR data. The profiling data are used to tie ground-plot

information to GLAS measurements. The PALS was flown over ,5000 km of

GLAS orbits and over 295 MNRQ ground plots during the summer of 2005. Of
the 295 plots, 207 were actually intercepted by the airborne LiDAR’s ground

track. The near-infrared (NIR) profiler acquired sequential first/last returns on

0.40 m footprints at 0.12 m post spacing across ground plots and GLAS pulses.

These six datasets are used within a multi-phase sampling framework. Ground

estimates of biomass were regressed against the airborne profiler measurements in

order to develop predictive regressions based on the airborne measurements. One

non-stratified equation (coefficient of determination, R2 ¼ 0.65) and a set of seven

stratified ground–air equations (R2 values range from 0.51–0.73, see table 2 in

Boudreau et al. (2008)) are developed based on the Landsat land-cover strata. The

ground–air equation(s) is (are) then used to calculate airborne laser-based estimates of

biomass on 1325 GLAS pulses measured by the airborne profiler.
Four different models are constructed (number of observations, n ¼ 1325) to

predict dry biomass as a function of GLAS waveform and SRTM topographic

measurements. The four models follow:

l linear, non-stratified:

bair;ns ¼� 4:52þ 3:85wGLAS � 6:59fGLAS � 0:75rSRTM;

R2 ¼ 0:60;RMSE ¼ 32:0 t ha�1;
(1)

l linear, stratified:

bair;st ¼� 2:37þ 3:63wGLAS � 5:92fGLAS � 0:73rSRTM;

R2 ¼ 0:58;RMSE ¼ 31:7 t ha�1;
(2)

l square-root, non-stratified:
ffiffiffiffiffiffiffiffiffiffiffiffi
bair; ns

p
¼2:67þ 0:27wGLAS � 0:83fGLAS � 0:06rSRTM;

R2 ¼ 0:59;RMSE ¼ 2:40
ffiffiffiffiffiffiffiffiffiffiffiffi
t ha�1

p
;

(3)

l square-root, stratified:
ffiffiffiffiffiffiffiffiffiffiffi
bair; st

p
¼2:98þ 0:26wGLAS � 0:65fGLAS � 0:06rSRTM;

R2 ¼ 0:53;RMSE ¼ 2:55
ffiffiffiffiffiffiffiffiffiffiffiffi
t ha�1

p
;

(4)

where bair, ns is an airborne profiling estimate of biomass calculated using the non-

stratified ground–air equation; bair,st is an airborne profiling estimate of biomass

calculated using the stratified ground–air equations; wGLAS is the vertical extent of

the GLAS waveform, signal start to signal end; fGLAS is the slope of the leading edge

of the GLAS waveform; rSRTM is the range (in metres) of the topographic difference

found in a 3� 3 pixel SRTM window centred on a GLAS pulse; and RMSE is the root

mean square error.

The variance inflation factors for all four models are less than 1.61; multi-
collinearity is not an issue (Myers 1989). The square-root transform is used in an

attempt to control marked heteroscedasticity; the transform only marginally
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improved residual patterns. The square-root biomass values are back-transformed

using the unbiased back-transformation technique reported by Gregoire et al. (2008).

In the context of this study, stratification refers to the development of equations, by

cover type and vegetation zone, in the ground–air phase, not in the air–satellite phase.

In other words, the bair dependent variables in equations (2) and (4) above were
calculated using stratified ground–air equations; the bair in equations (1) and (3)

were calculated using a generic or non-stratified ground–air equation (table 2 in

Boudreau et al. (2008)). Attempts were made to develop stratified GLAS equations

for the linear and square-root models, but R2 decreased significantly as the latitude of

the vegetation zones increased and as the average height of the trees decreased.

Stratified GLAS equations in the taiga and the treed tundra had R2 values in the

0.1–0.2 range, and were deemed unusable. This finding is not unexpected given the

ground height–GLAS height comparisons reported in the literature. Sun et al. (2008)
compare various GLAS height metrics to coincident airborne LiDAR estimates and

report RMSEs of 3–5.5 m (their table 2) in the temperate forests of the eastern US.

Rosette et al. (2008) report ground–GLAS height RMSEs of 2.86 m after correcting

for topography. Lefsky et al. (2005) report RMSEs associated with ground–GLAS

maximum canopy-height comparisons of ,4.5 m, and Lefsky et al. (2007), after

correcting for local topography using trailing-edge measures, illustrate an RMSE of

5 m across diverse study sites in their figure 3. Given this height scatter and the open,

sparse, stunted, coniferous nature of Québec’s northern forests near the tree line, one
might conclude that GLAS does not have the measurement sensitivity to accurately

measure high-latitude forests. As a result, stratified GLAS equations were not

employed in this study due to the lack of the predictive power of some of the northern

equations. The stratified models, i.e. equations (2) and (4) above, were processed

differently from the non-stratified models 1 and 3. Every GLAS shot was assigned to

one of the Landsat land-cover classes based on the plurality of the land-cover types in

a 3 � 3 Landsat ETM window that surrounded a given GLAS pulse. The non-

stratified models were applied to all 104 044 GLAS shots collected over Québec
regardless of the land-cover identity of that GLAS pulse. So, GLAS pulses judged

(by the Landsat classification) to have illuminated barren areas, rock, moss, herb, and

so on, could still contribute to Provincial biomass if non-zero heights were measured

by GLAS. In effect, in the non-stratified models, GLAS measurements superseded

Landsat land-cover identities, and a GLAS pulse could contribute to the biomass

estimate, even if the Landsat classification suggested that no forest biomass should

exist on that spot illuminated by the GLAS pulse. Just the opposite was true with

respect to the stratified models. Models 2 and 4 were used only on those GLAS shots
judged to be capable of supporting forest biomass. In the case of the stratified models,

then, specific cover types could never contain forest biomass, regardless of what

the GLAS pulses intercepting that cover type may have measured. The net result

of this processing rule is that the non-stratified models have higher biomass

totals for the Province because they accumulate estimates across larger areas.

The lack of sensitivity in short-stature forests, noted above, calls into question the

accuracy of the GLAS-based biomass and carbon estimates near the tree line. In order

to better characterize this apparent phenomenon, the training dataset used to develop
the airborne LiDAR–GLAS regressions was employed to assess the strength of two

models as a function of latitude. The 6226 quality-assessed GLAS pulses overflown

with the airborne profiler were subdivided into 13 1� subsamples, i.e. 45� N, which

included all observations between 45.0�–45.99� N, 46.0� N, 47� N, . . ., up to 57� N. The
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14th latitude subsample included all airborne profiler–GLAS observations between

58.0� N and 60� N in order to avoid consideration of the 58� N latitude bin that

contained only four samples. Only non-saturated GLAS pulses acquired on terrestrial

(non-water) surfaces with slopes , 10� and airborne profiling heights , 50 m were

considered. The strengths of two linear relationships as characterized by the R2 value
were tracked in each latitude subsample: (1) h75, GLAS¼ f(h70, airborne LiDAR), where h75,

GLAS refers to the 75% height, i.e. the height where 75% of the energy lies between it and

the signal end, and h70, airborne LiDAR refers to the height below which 70% of pulse

heights along a profile that intersects a given GLAS pulse lies and (2) the non-stratified

linear biomass model, equation (1). The objective of this portion of the study was to

determine if there were height or biomass limits below which GLAS proved to be

relatively insensitive to forest structure.

3. Results

3.1 Model effects on regional GLAS biomass and carbon estimates

Table 1 reports per hectare and total biomass estimates for the entire 1.27 � 106 km2

Province of Québec south of the tree line. The models are ranked largest to smallest in

terms of total Provincial biomass, and, as one would expect due to processing rules,

the non-stratified models report the largest Provincial biomass totals.

The exact same data are input into each model to calculate model coefficients.

Based on model differences alone, Provincial biomass and carbon estimates vary by

approximately 7%, even under the ideal circumstance that all of the data input into the

various models are identical. No such ideal circumstance would exist if one were

monitoring regional biomass over time, since the input data would certainly change
between t1 and t2. The 7% difference amounts to, in Québec, a model-induced

difference of 0.35 Gt of biomass, or 0.18 Gt of carbon, assuming a conversion factor

of 0.5 t C per 1 t dry biomass (Gower et al. 1997, Houghton et al. 2000). None of the

models are significantly different from any of the others at the 95% level of con-

fidence. However, if these model-driven differences were added to differences induced

by changing sensors or changing sampling frameworks, statistical insignificance

might not be assured. Given a current carbon credit price of ,15 euros per ton of

carbon, this scenario might result in an undeserved carbon penalty or an unearned

Table 1. Provincial estimates of total aboveground dry biomass on 1.27 � 106 km2 south of
the tree line in Québec. Model estimates are ranked largest to smallest, top to bottom. All
standard errors are calculated assuming simple random sampling, covariances are included,
prediction errors are not. In the leftmost column, numbers in parentheses correspond to the

models reported in §2.

Dry biomass estimates Provincial biomass totals

Model
Mean

(t ha-1)
Standard

error (t ha-1)
Coefficient of
variation (%) Total (Gt)

Standard
error (Gt)

Non-stratified,
Square-root (3)

41.72 2.82 6.8 5.29 0.36

Non-stratified, Linear (1) 40.63 5.21 12.8 5.15 0.66
Stratified, Linear (2) 39.73 3.32 8.4 5.04 0.42
stratified, Square-root (4) 38.94 2.17 5.6 4.94 0.28
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carbon credit of up to 2.64 � 109 euros for Québec, depending on which model was

used at t1 and which at t2. The results in table 1 indicate that LiDAR-based biomass

and carbon monitoring will require model consistency between measurement epochs

or, alternatively, a post-processing statistical methodology that would equate current

estimates with ones previously made using a different model or LiDAR sensor.
The accuracy and precision of the four models can be assessed, at least in the three

southern vegetation zones, by comparing GLAS-based estimates to biomass estimates

on the 16 814 ground plots, accumulated across Landsat vegetation classes (table 2). All

four models underestimated ground-based southern provincial estimates by amounts

ranging from –7.3 to -12.4%. Models (2) and (4), the stratified linear and stratified

square-root models, were, respectively, the most accurate and most precise at the

regional level. The ground reference information and the stratified GLAS model results

are reported in table 2, by forest-cover type within vegetation zone and for the entire
southern portion of the Province. This result argues for using optical imagery,

e.g. Landsat, to identify those land-cover types capable of supporting forest biomass

and using the GLAS measurements to estimate biomass only in forested cover types.

3.2 GLAS height and biomass retrievals, by latitude

The first evidence that the GLAS waveform LiDAR may not be able to measure

short-stature forest is illustrated in figure 1. A total of 272 GLAS pulses measured by
the airborne profiling LiDAR were quality-assessed for Landsat ETMþ cover-type

homogeneity, low SRTM slopes and lack of GLAS signal saturation. Figure 1 illus-

trates the expected decrease in average forest height as measured by the airborne and

space LiDARs, with increasing latitude. The airborne profiler measures the average

height of all pulses acquired on a given GLAS pulse. The GLAS height reports the

vertical location of that portion of the waveform above the ground peak, where 50%

of the waveform energy lies above the height and 50% below. The northern tree line in

Québec varies from approximately 56� N in western Québec on the Hudson Bay, to
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Figure 1. Scatter plots of airborne and space LiDAR estimates of canopy height: (a) airborne
laser profiling average height (PALS HTA) versus north latitude and (b) GLAS mean canopy
height (GLAS MEANH, 50% waveform energy level to ground peak) versus north latitude for
272 GLAS pulses in Québec. The 272 areas measured by the airborne laser and by GLAS are
coincident.
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,58�–59� N across central and eastern Québec. On northerly plots near or at the tree

line, where the profiling LiDAR was essentially measuring zero heights, GLAS was

recording tree heights of up to 8 m.

Figure 2 further quantifies this decorrelation and illustrates two relationships that

quantitatively describe the capability of the ICESat I / GLAS LiDAR to: (1) estimate
biomass and (2) measure height in northern temperate and boreal forests. The reader can

use her/his own subjective judgment in conjunction with the R2 values plotted in figure 2

to determine at what point GLAS height and biomass retrievals fall below an ‘acceptable’

level. The figure and numbers unambiguously demonstrate that GLAS height retrievals

deteriorate markedly as average canopy height decreases. GLAS versus airborne laser

(AL) heights R2 fall below 0.2 at an average h70, AL value of 6.6 m and an AL maximum

height value (average of three largest heights) of 11.9 m. The corresponding GLAS

values are h75, GLAS¼ 6.2 m and h14, GLAS¼ 17.5 m. At h70, AL and AL maximum heights
values of 1.3 m and 6.8 m respectively, the ability of GLAS waveforms to measure or

infer airborne measurements of canopy height essentially falls to zero. In north central

Québec, this occurs at ,53� N, immediately north of the commercial–non-commercial

forest boundary delineated by the Québec Ministry of Natural Resources.

Biomass retrievals are similarly limited. The ability of GLAS and SRTM to predict

airborne LiDAR estimates of biomass generally decrease with increasing latitude. R2

values fall below 0.2 when biomass values fall below 20 t ha-1; however, we note the

weak biomass relationships in southern zones between 47� N and 52� N, correspond-
ing to zonal biomass averages of 30–90 t ha-1.
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Figure 2. Coefficient of variation (R2) as a function of latitude in Québec for two linear
relationships. Solid line: GLAS–SRTM estimates of biomass (model 1) compared with biomass
estimates from PALS. Bold numbers show average PALS estimates of total aboveground dry
biomass (t ha-1) in 1� latitude increments. Dashed line: GLAS 75th percentile heights as a
function of airborne profiling LiDAR estimates of 70th percentile heights. Non-bold numbers
report average airborne profiling LiDAR estimates of the 70th percentile heights in 1� latitude
increments. Number of GLAS pulses with coincident airborne profiling LiDAR measurements,
by latitude zone, south to north: n ¼ 429, 607, 609, 995, 818, 480, 477, 676, 585, 134, 136, 146,
68, 66 (total ¼ 6226 pulses). The y-axis is extended to –0.2 to facilitate labelling.
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The results, perhaps, paint a bleaker picture of GLAS measurement capabilities

than may actually be the case when sources of error are considered. The primary

sources of error in this analysis are as follows:

l Airborne laser estimates of height are based on a laser profile across the GLAS

footprint. Much of the GLAS footprint was not measured by the airborne profiler

(see figures 2 and 4 in Boudreau et al. (2008)). That said, airborne profiles across
GLAS footprints are repeatable. Sixty-five GLAS footprints were overflown

twice during the 2005 airborne campaign. Comparison of airborne laser measure-

ments of quadratic mean height (hqa), overpass 1 versus overpass 2, resulted in an

equation of the following form: hqa, overpass 1 ¼ 0.46þ 0.86qa, overpass 2; R2 ¼ 0.74,

RMSE ¼ 2.1 m, with heights measured in metres.

l The L2a GLAS footprint is an ellipse with major and minor axes of approxi-

mately 110� 70 m, with the major axis canted ,45� to the direction of the GLAS

orbit and the laser aircraft’s flight track. Airborne LiDAR measurements were
extracted for a 65 m profile coincident with the GLAS footprint in the direction

of the orbit, not in the direction of the major axis of the footprint.

l Airborne laser estimates of biomass, which serve as ground reference in this

analysis, are themselves inherently noisy (see figure 5 in Boudreau et al. (2008)).

For instance, the non-stratified AL biomass equation has an R2 ¼ 0.65 and an

RMSE ¼ 25.5 t ha-1. In other words, the ground reference biomass values are

estimates, not ‘truth’.

l Both the airborne profiling LiDAR and the GLAS LiDAR shots contain
geolocation error. Both are of the order of 15 m (1 standard deviation).

Nevertheless, these results are of particular concern because they illustrate the

current limitations of the ICESat / GLAS waveforms that measure the response of
forest to 6 ns pulses. Even with ambiguities introduced by the sources of error listed

above, the results indicate that short, open boreal forests near the tree line are not

adequately measured by the GLAS LiDAR onboard ICESat I. The importance of

space LiDAR altimetry for measuring and monitoring boreal forest structure in

remote, inaccessible areas where climate change will be most rapid cannot be over-

stated. Scientists currently designing the ICESat II / GLAS LiDAR are contemplating

a GLAS instrument with a 50–70 m circular footprint and a 10 ns pulse width. They prefer

the longer pulse duration so that they can increase pulse power to help ‘punch through’
clouds and fog that commonly plague the coastal margins of major ice sheets such as

Greenland, areas that are currently quite dynamic. However, such an increase may further

exacerbate the capability of GLAS to monitor high-latitude forests by effectively ‘smear-

ing’ structures in the waveform that allow us to retrieve canopy height. It is an open

question and further research is needed, quickly, to quantify trade-offs between pulse width

and forest height retrievals, with particular attention paid to short-stature, open forest.

4. Discussion

Within the next decade, the forestry LiDAR community can expect to have access to

extensive datasets that will enable us to conduct regional and national assessments

from space. Researchers have already demonstrated that, even with GLAS optimized

for ice rather than vegetation measurements, analysts can develop comprehensive,

extensive, timely estimates of forest biomass and carbon on areas encompassing

hundreds of thousands to well over a million square kilometres. The use of space-
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based laser altimetry, specifically GLAS waveform data, currently presents numerous

challenges, e.g. large footprints that convolve forest-canopy structure with topogra-

phy in the presence of slope, an apparent insensitivity to small, sparse woodland

heights, significant laser power changes over time (Abshire et al. 2005), data collection

epochs (late autumn, early spring) tailored to ice studies but which are non-optimal
from a vegetation measurement/monitoring standpoint, changing footprint shapes

and orientations and non-contiguous profiles. The space LiDARs currently under

design may mitigate some of these problems.

However, concerning GLAS, outstanding issues remain. These issues include: (1)

an inability to adequately deconvolve the topographic and forest-canopy signals in

large-footprint waveform data based solely on waveform attributes, although Lefsky

et al. (2007) have taken steps to mitigate this problem; (2) a temporal hole in GLAS

vegetation measurements between October 2008 and ca. 2017; (3) a reduced capability
to measure heights accurately in sparse boreal forests with maximum heights of the

order of 11.9 m and an essentially complete loss of height information in sparse boreal

forests with maximum heights of 6.8 m or less; and (4) the significant technological

differences between ICES at I and II that will completely change how forest structure

is measured.

Monitoring changes to above-ground biomass and carbon stocks over time using

airborne or space LiDARs raises its own set of issues, issues that will come to the

forefront and call into question the validity of those laser-based estimates if we do not
address them proactively. If LiDAR surveys at t1 and t2 are to be compared to assess,

for instance, compliance with carbon agreements or to provide the quantitative

estimates needed to purchase or sell carbon credits, then those t1 and t2 surveys

must be consistent. Consistency in this context involves the use of:

l the same ground-based allometry at t1 and t2;

l the same statistical framework, e.g., design, sample size, number of phases;

l the same predictive models; and

l the same sensor, or a different sensor with the same flight configuration with

respect to laser power, repetition rate, footprint size and pulse width.

The good news is that many of these factors are in our control: the allometry, the

statistical framework and the model selection. Furthermore, if an analyst wants to

update the allometry or improve/change predictive models, this can be done and the
old t1 data reprocessed with the improved versions to ensure comparability. What is

most likely not in our control is the sensor, i.e. the operational characteristics of the

airborne or space LiDAR. Airborne LiDAR technology is changing so rapidly that

commercial data providers commonly swap out their 1 or 2 year old scanners for

newer, faster, improved versions. In addition, the satellite LiDARs discussed in this

paper typically have design lives of 3–5 years. We can be fairly certain that most

regional surveys carried out every 5 to 10 years will be done with different sensors.

5. Conclusions

The results presented in this paper provide one example of the effects of allowing one

item on the consistency checklist to stray. Provincial estimates changed ,7% due only

to changes in model form and due to changes to the rules used to process the GLAS

data. The forestry LiDAR community should begin to address questions concerning

consistency and calibration in order to develop procedural or statistical techniques to
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ensure comparability of LiDAR-based surveys carried out years apart. These results

provide an impetus to develop statistical procedures that can effectively draw equiva-

lence between multi-temporal, regional LiDAR-based biomass or carbon estimates

that might not be directly comparable due, perhaps, to the use of different predictive

models, different allometry, or changing LiDAR sensors in different measurement
periods.

The ICESat / GLAS satellite, collecting well over 1 � 109 waveform measurements

over a 6 year period, has provided a rich dataset with respect to characterizing forest

structure globally. However, the results of this study indicate that the utility of these

waveform measurements with respect to accurately characterizing forest structure

may be greatest in tall, dense forests, e.g. the tropical and temperate forests, and least

in short-stature, sparse forests, such as those found near topographic and climatic tree

lines. It follows that estimates of above-ground carbon and biomass derived from
these measurements, such as those reported by Nelson et al. (2009b), should be viewed

with greater scepticism as one moves into the taiga and treed tundra vegetation zones.

Investigators may wish to consider alternate remote-sensing assets that perform well

in low-biomass situations, e.g. cross-polarized (HV) X, C and/or L-band space radars,

in order to estimate biomass and carbon in these northern ecotones.
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