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In late winter in the Arctic stratosphere, ozone loss is closely tied to temperature: Ozone

depleting substances (e,g., CFCs) are activated on polar stratospheric clouds, which form 

only at very low temperatures, Variability in polar lower stratospheric temperature is highly 

correlated with the year-to-year variability in large-scale wave driving from the troposphere. 

Record ozone loss was observed in March 2011, This paper documents the dynamical 

conditions associated with this event: Weak wave driving in February preceded cold 

anomalies in the polar lower stratosphere in March and a relatively late winter-to-spring 

transition in April. The 2011 conditions were unusual with respect to the 1979-2011 satellite 

era, but not unprecedented. Similarly severe ozone loss, low temperatures and weak wave 

driving were observed in March 1997. 



In March 2011, EI Nino/Southern Oscillation was in its cold phase (i.e., La Nina) while the 

quasi-biennial oscillation (QBO), an alternating east-west wind pattern in the equatorial 

lower stratosphere, was in its westerly phase. Though both of these conditions are generally 

associated with a colder lower stratosphere in mid-winter, the respective cold anomalies do 

not persist through March. Therefore, the La Nina and QBO-westerly conditions cannot 

explain the observed cold anomalies in March 2011. In contrast, positive sea surface 

temperature anomalies in the North Pacific may have contributed to the unusually weak 

tropospheric wave driving and cold Arctic stratosphere in late winter 1997 and 2011. 
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11 Abstract 

12 Despite the record ozone loss observed in March 2011, dynamical conditions in the Arctic 

13 stratosphere were unusual but not unprecedented. Weak planetary wave driving in February 

14 preceded cold anomalies in the polar lower stratosphere in March and a relatively late breakup of 

15 the Arctic vortex in April. La Nina conditions and the westerly phase of the quasi-biennial 

16 oscillation (QBO) were observed in March 2011. Though these conditions are generally 

17 associated with a stronger vortex in mid-winter, the respective cold anomalies do not persist 

18 through March. Therefore, the La Nina and QBO-westerly conditions cannot explain the 

19 observed cold anomalies in March 2011. In contrast, positive sea surface temperature anomalies 

20 in the North Pacific may have contributed to the unusually weak tropospheric wave driving and 

21 strong Arctic vortex in late winter 2011. 
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1 Introduction 

In the Arctic stratosphere, chemical ozone loss takes place each year in the late winter (WMO, 

2011). Arctic ozone loss represents the interaction between chemistry and climate: 

heterogeneous ozone depletion on polar stratospheric clouds requires the presence of halogens, 

sunlight and low temperatures. Rex et al. (2004 and 2006) calculated that the severity of large 

ozone loss events has been increasing over the last few decades, and speculated that increased 

radiative cooling by greenhouse gases plays a role. 

Severe ozone loss was observed in the Arctic stratosphere in 201 L On March 14th
, the Alfred 

Wegener Institute (AWl) in Germany reported that "unusually low temperatures in the Arctic 

ozone layer have recently initiated maSSIve ozone depletion" 

(http://www.awi.de/en/news/pressJeleases). Figure la shows that March 2011 monthly mean 

total ozone value was the lowest of the satellite era (total ozone dataset updated from Stolarski 

and Frith, 2006). On April 8th
, Science Daily reported "unprecedented" Arctic ozone depletion, 

caused by unusual and persistent cold conditions III the Arctic vortex 

(http://www.sciencedaily.comireleases/20111041110406085634.htm). Researchers at AWL noted 

that the anomalous ozone loss and low temperatures in March 2011 were consistent with the 

estimated pattern of "cold winters getting colder" (Rex et al., 2004 and 2006). 

41 Two sources of interannual variability III the Arctic lower stratosphere in winter are El 

42 Nino/Southern Oscillation (EN SO) and the phase of the quasi-biennial oscillation (QBO). 

43 Holton and Tan (1980) and Lu et al. (2008) showed that the phase of the QBO modulates the 

44 region in which planetary waves can propagate in the stratosphere, thus affecting the strength of 

45 the l\rctic vortex in mid-winter. The vortex is strongest during the westerly phase of the QBO. 

46 Similarly, planetary wave driving is stronger during El Nino (ENSO warm phase) events than 

47 during La Nina (ENSO cold phase) events (e.g., Garfinkel and Hartmann, 2008). 

48 

49 The goals of this paper are to document the dynamical conditions in the Arctic stratosphere in 

50 March 2011 and attribute these conditions to known sources of dynamical variability. Section 2 

51 will describe the datasets and diagnostics used to perform this analysis. In Section 3, March 

52 2011 will be examined in the context of the satellite era. The relationship of March conditions in 



53 the Arctic stratosphere to ENSO and the phase of the QBO will be considered. In addition, the 

54 possible role of North Pacific sea surface temperature variability in the anomalous dynamical 

55 conditions in the Arctic vortex in March 2011 will be examined. Section 4 will provide a brief 

56 summary and discussion. 
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2 Data and diagnostics 

Sea surface temperature (SST) and atmospheric diagnostics are used to understand conditions in 

the Arctic stratosphere in March 2011. The present analysis spans the satellite era (1979-2011) 

and focuses on the Northern Hemisphere mid- to late winter (January through March). Zonal 

winds, temperature and eddy heat flux fields are derived from the National Centers for 

Environmental Prediction (NCEP)-U.S. Department of Energy (DOE) reanalysis (NCEP-2) 

(Kanamitsu et aI., 2002). The NCEP-2 reanalysis has 2.5 0 x 2.5 0 horizontal resolution and 

vertical coverage up to 10 hPa. 

67 The phase of the quasi-biennial oscillation (QBO) is characterized by zonal winds in the 

68 equatorial region at 50 hPa. Monthly mean values of the 50-hPa QBO index 

69 (http://www.cpc.ncep.noaa.gov/dataiindices/qbo.u50.index) are used in this study. 

70 

71 The springtime breakup of the Arctic vortex is calculated for each year. On the 450 K isentropic 

72 surface (i.e., in the lower stratosphere), the breakup date is defined as the date when the five-day 

73 running mean of zonal winds at the vortex edge falls below approximately 15.2 m S·l, following 

74 the criteria of Nash et al. (1996). The present analysis considers breakup dates based on the 

75 NCEP-l (Kalnay et aI., 1996), NCEP-2 and NOAA Climate Prediction Center (CPC) (Gelman 

76 et aI., 1986; Nagatani et aI., 1988; Finger et aI., 1993) meteorological reanalyses. 

77 

78 Monthly mean SST fields are taken from the Hadley Centre Global Sea Ice and Sea Surface 

79 Temperature (HadISSTl) dataset (Rayner et aI., 2003). Sea surface temperature anomalies in the 

80 eastern equatorial Pacific are characterized by the Nino 3.4 index (see 

81 http://www.cpc.noaa.gov/data/indices). Trenberth (1997) defines a conventional El Nino event 

82 as a sustained period (usually six months or more) when the Nino 3.4 index exceeds 0.4, while a 

83 La Nina event is defined as a sustained period when the Nino 3.4 index is less than -0.4. 



84 

85 3 Results 

86 3.1 March 2011 in a historical context 

87 In March 2011, the Arctic vortex was colder, stronger and more persistent than usual. Figure 1 

88 shows histograms of the polar cap temperature, breakup date of the Arctic vortex, ENSO index, 

89 QBO index and North Pacific SST index in the Arctic late winter 2011 with respect to the 1979-

90 2011 period. A histogram of March mean temperatures for the Arctic polar cap at 50 hPa is 

91 shown in Figure lb. The March 2011 temperature of 208.5 K (indicated by the red outline) is 

92 more than two standard deviations lower than the climatological mean value (216.8 K) and is the 

93 second-lowest value in the 1979-2011 period. The lowest value (206.1 K, indicated by the blue 

94 outline) occurred in 1997. 

95 

96 The breakup of the Arctic vortex occurs in late winter. A histogram of breakup dates at 450 K is 

97 shown in Figure 1c. The breakup date in 2011 was 19th April in the NCEP-2 reanalysis, later 

98 than the mean date of 20th March in the NCEP reanalyses and 10th April in the CPC reanalysis. 

99 The breakup date in 2011 was, depending on the zonal wind dataset, either the third or fourth 

100 latest of the satellite era. The late breakup of the Arctic vortex is consistent with the low 

101 temperatures and total ozone observed in March 2011 (see Figures 1a and 1b). 

102 

103 Unusually cold conditions in the Arctic stratosphere in March 2011 correspond with unusually 

104 weak planetary wave driving in February 2011. Newman et al. (2001) found that polar lower 

105 stratospheric temperature is correlated with mid-latitude eddy heat flux at 100 hPa, with a 1-2 

106 month lag; this finding suggests that weaker than usual eddy heat flux in February should 

107 correspond with a colder than usual Arctic lower stratosphere in March. Figure 2 shows that 

108 February eddy heat flux and March polar cap temperature at 50 hPa are indeed well correlated, 

109 and highlights the unusually low values observed in 201 I. 

110 

111 March temperature anomalies in 2011 and 1997 are shown in Figures 3a and 3b. In both 1997 

112 and 2011, the Arctic stratosphere cooled strongly while the mid-latitudes and Arctic troposphere 

113 warmed weakly. Consistent with the temperature differences, zonal winds were relatively 

114 stronger at high latitudes; peak wind differences exceeded 20 ill at 10 hPa at latitudes 



115 (not shown). The magnitnde of the stratospheric cooling was larger in 1997 than in 2011. 

116 February eddy heat flux was weaker in 1997 than in 2011 as well (see Figure 2). 

117 

118 3.2 Influence of ENSO and the QBO on the Arctic stratosphere in March 

119 La Nifia and QBO-westerly conditions persisted through March 2011. The Nifio 3.4 index was 

120 strongly negative in January through March 2011, indicating La Nifia conditions (Figure 1d). In 

121 March 2011, equatorial zonal winds at 50 hPa were approximately 6 m S-l (Figure Ie), indicating 

122 the westerly phase of the QBO. 

123 

124 This section compares the temperatnre anomalies observed in March 2011 with those observed 

125 during typical La Nifia conditions and during the westerly phase of the QBO. The March 

126 temperatnre response to La Nifia events is estimated by comparing years when the Nifio 3.4 

127 index is equal to or less than -1 (as in 2011) with years when the Nifio 3.4 index is between -0.5 

128 and 0.5 (i.e., ENSO neutral). Figure 3c shows that, in the Arctic stratosphere, the typical March 

129 temperatnre response to a La Nifia event is a weak warming. The La Nifia response is 

130 inconsistent with the observed temperatnre response in both 1997 and 2011. 

131 

132 The QBO was in its westerly phase during the 2010-2011 winter season (Figure Ie). The March 

133 temperatnre response to the phase of the QBO is estimated by comparing composites of QBO-

134 westerly years and QBO-easterly years. The typical March temperatnre response is a relative 

135 warming of the Arctic stratosphere that increases with altitnde (Figure 3d). As for the La Nifia 

136 response, the temperatnre response to QBO-westerly conditions is inconsistent with the observed 

13 7 temperatnre response in both 1997 and 2011. 

138 

139 In summary, the patterns and magnitudes of the March 2011 temperatnres differences from 

140 climatology are similar to those seen in March 1997, but different from the Arctic response to 

141 both La Nifia events and to the phase of the QBO. March zonal wind and February eddy heat 

142 flux differences are consistent with these conclusions. That is, the weak eddy heat flux in 

143 February and low temperatures in March 2011 are not related to either ENSO or the QBO. 

144 

145 3.3 Influence of North Pacific SSTs on the Arctic stratosphere in March 



146 This section considers the influence of extra-tropical SSTs on the Arctic stratosphere in March. 

147 March lower stratospheric temperature and February planetary wave driving should be most 

148 influenced by SST variability in the mid- to late winter. As noted in Section 3.2, 

149 January/February SSTs in the tropical Pacific and March polar cap temperatures are not 

150 correlated. However, SSTs in the North Pacific, poleward of 400N and close to the dateline, are 

151 strongly negatively correlated with March polar cap temperatures. This region corresponds with 

152 the dominant mode of SST variability in the North Pacific in boreal winter i.e., the 'subarctic 

153 mode' identified by Nakamura et ai., (1997). The subarctic mode is associated with SST 

154 variability at decadal timescales, caused by variability in the Kuroshio and Oyashio currents, and 

155 is not influenced by variability in the tropical Pacific (i.e., variability related to ENSO). 

156 Furthermore, the subarctic SST mode is not related to the Pacific Decadal Oscillation (PDO) 

157 (index updated from Mantua et aI., 1997; Zhang et aI., 1997). 

158 

159 The positive phase of the subarctic SST mode tends to weaken the Aleutian low and thus the 

160 Pacific-North American (PNA) circulation pattern. Garfinkel et al. (2010) found that variability 

161 of the Aleutian low modulates the strength of the Arctic vortex in mid-winter, with a similar 

162 relationship in late winter (not shown). 

163 

164 In this study, the subarctic SST index is defined as the January/February mean SST anomaly 

165 from the 1979-2011 climatology, in the 40-50oN, 160-200oE region. The subarctic SST index 

166 was strongly positive in both 1997 and 2011 (Figure It). Figure 3e shows the difference 

167 between March temperatures in years when the subarctic SST index is strongly positive as 

168 compared with years when the index is strongly negative: The Arctic stratosphere is relatively 

169 colder (by approximately 6 Kat 50 hPa), while below 500 hPa the Arctic is approximately 2 K 

170 warmer. The structure and magnitude of these temperature differences are broadly consistent 

171 with the March temperature anomalies observed in 1997 and 2011 (Figures 3a and 3b), 

172 suggesting that North Pacific SST variability strongly contributed to variability in the Arctic 

173 stratosphere in March 1997 and 2011. 

174 

175 4 Discussion 



176 Unusual dynamical conditions were observed in the Arctic stratosphere in March 20 II. 

177 Tropospheric planetary wave driving was unusually weak, consistent with a strong, stable Arctic 

178 vortex in late winter and a relatively late vortex breakup. From a zonal mean perspective, the 

179 dynamical conditions observed in 2011 were not unprecedented: February eddy heat flux was 

180 weaker and March polar cap temperature was lower in 1997 than in 2011. 

181 

182 Recent cooling of the Arctic lower stratosphere has been reported by e.g., Randel et al. (2009) 

183 and Kennedy et al. (2010). In the NCEP-2 reanalysis in March, polar cap temperature at 50 hPa 

184 decreased 1.6 ± 1.3 K year- 1 during the 1979-2011 period. During this period, cooling of the 

185 Arctic lower stratosphere can be largely attributed to increased radiative forcing by greenhouse 

186 gases and to ozone depletion (Shine et aI., 2003; Stolarski et aI., 2010). However, this modest 

187 linear trend in March does not explain the anomalous conditions in 1997 and 2011, when the 

188 Arctic lower stratosphere was more than 10 K below the climatological mean. 

189 

190 Similarly, the phase of the II-year solar cycle does not account for the anomalous conditions in 

191 March 2011. The solar cycle can be characterized by the solar flux at 2800 MHz 

192 (ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATNSOLAR_ RAD IO/FLUX/Penticton _ Observed/mon 

193 thly/MONTHLY.OBS); both 1997 and 2011 were within a few years of solar minima. Since the 

194 QBO was easterly in 1997 but westerly in 2011, the product of the solar cycle and QBO 

195 anomalies had the opposite sign in 1997 as compared with 2011. Though this quantity is well 

196 correlated with polar variability (Haigh and Roscoe, 2006), it does not explain the anomalously 

197 strong vortex events in both 1997 and 2011. 

198 

199 ENSO and the QBO do not explain the unusual dynamical conditions in March 2011. While La 

200 Nifia conditions tend to strengthen the Arctic vortex in mid-winter, the La Nifia signal weakens 

201 and begins to reverse by March. In Goddard Earth Observing System Chemistry-Climate 

202 Model, Version 2 (GEOS V2 CCM) simulations (model formulation as described by Hurwitz et 

203 aI., 2011), the Arctic lower stratosphere is cooler in March under La Nifia and QBO-westerly 

204 conditions, as compared with ENSO neutral and QBO-easterly; however; the magnitude of this 

205 cooling is an order of magnitude less than observed in March 2011. Furthermore, the structure 



206 and magnitude of dynamical anomalies in the Arctic stratosphere were similar in March 1997 

207 and March 2011, despite different phases of the QBO. 

208 

209 Positive SST anomalies in the North Pacific may have contributed to the anomalous conditions 

210 in March 2011. Positive SST anomalies in the 40-50oN, 160-200oE region in January and 

211 February, such as those observed in 1997 and 2011, are strongly anti-corre1ated with polar lower 

212 stratospheric temperature anomalies in March. Positive SSTs in this region tend to weaken the 

213 Aleutian low, leading to a reduced eddy heat flux entering the stratosphere (Garfinkel et at, 

214 2010). The subarctic SST index in January/February and March polar cap temperature at 50 hPa 

215 are correlated at the 95% confidence level. However, the relationship between North Pacific 

216 SSTs and stratospheric variability is non-linear: While multiple linear regressions to either 

217 February eddy heat flux or March polar cap temperature show that the subarctic SST mode is, 

218 statistically, the dominant cause of dynamical variability, these linear regressions do not capture 

219 the extreme values seen in e.g., 1997 and 2011. A planned modelling study will, by comparing 

220 time-slice simulations of the positive and negative extremes of the subarctic SST mode, isolate 

221 the impact of North Pacific SSTs on Arctic dynamics and ozone in March. 

222 
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330 Figure Captions 

331 Figure 1. Histograms of total ozone and dynamical conditions during the 1979-2011 period: (a) 

332 March total ozone averaged between 60-80oN [DU]; (b) March Arctic polar cap temperature at 

333 50 hPa [K]; (c) Date of the Arctic vortex breakup at 450 K based on the NCEP-2 (black), 

334 NCEP-I (light gray) and CPC (dark gray) reanalyses, binned into 10-day intervals; (d) January-

335 February-March SST anomaly in the Nino 3.4 region [K]; (e) March zonal winds in the 

336 equatorial region at 50 hPa [m S·l]; (t) January/February SST anomaly in the 40-50oN, 160-

337 2000E region [K]. Red (blue) outlines indicate the location of 2011 (1997) conditions. Y-axis 

338 values indicate the mid-point of each histogram bin. 

339 

340 Figure 2. Meridional eddy heat flux at 40-80oN, 100 hPa [K m S·l] in February as a function of 

341 Arctic polar cap temperature at 50 hPa [K] in March. Eddy heat flux and temperature values are 

342 denoted by year number (e.g., "II" denotes 2011). 

343 

344 Figure 3. March temperature differences [K] in the NCEP-2 reanalysis: (a) 2011 from the 

345 1979-2011 climatological mean; (b) 1997 from the climatological mean; (c) composite of La 

346 Nina events from the climatological mean; (d) QBO-westerly as compared with QBO-easterly 

347 years. (e) March temperature differences for years when SSTs in the 40-50oN, l60-200oE 

348 region are more (less) than one standard deviation greater (less than) the climatological mean. In 

349 (c), (d) and (e) black Xs denote differences significant at the 95% confidence level. Zero 

350 difference contours are shown in white. 

351 
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