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Abstract Food security exists when people have access to sufficient, safe and nutri-
tious food at all times to meet their dietary needs. The natural resource base is one of
the many factors affecting food security. Its variability and decline creates problems
for local food production. In this study we characterize for sub-Saharan Africa
vegetation phenology and assess variability and trends of phenological indicators
based on NDVI time series from 1982 to 2006. We focus on cumulated NDVI over
the season (cumNDVI) which is a proxy for net primary productivity. Results are
aggregated at the level of major farming systems, while determining also spatial
variability within farming systems. High temporal variability of cumNDVI occurs in
semiarid and subhumid regions. The results show a large area of positive cumNDVI
trends between Senegal and South Sudan. These correspond to positive CRU rainfall
trends found and relate to recovery after the 1980’s droughts. We find significant
negative cumNDVI trends near the south-coast of West Africa (Guinea coast) and
in Tanzania. For each farming system, causes of change and variability are discussed
based on available literature (Appendix A). Although food security comprises more
than the local natural resource base, our results can perform an input for food secu-
rity analysis by identifying zones of high variability or downward trends. Farming
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systems are found to be a useful level of analysis. Diversity and trends found within
farming system boundaries underline that farming systems are dynamic.

1 Introduction

Local agricultural production is a key element of food security in many African
countries (Alexandratos 1999). Despite globalization and food trade, access to food
remains a major problem for an important part of the population of sub-Saharan
Africa (SSA). Organizations that monitor food security in Africa often use satellite
remote sensing as a key indicator of variation in food production (Brown 2008). The
normalized difference vegetation index (NDVI) as derived from coarse-scale satellite
imagery is often used because it provides observations at a daily time step, allowing
for frequent updating of the vegetation status. NDVI is defined as the difference
between the near-infrared and red reflections divided by the sum of the two (Tucker
1979). Although NDVI is affected by soil background, atmospheric scattering, and is
relatively insensitive to high biomass levels, it provides sufficient stability to capture
seasonal and inter-annual changes in vegetation status (Huete et al. 2002). Organi-
zations like the European Joint Research Centre (JRC), the United State’s Famine
Early Warning System Network (FEWS-NET), and the United Nations Food and
Agriculture Organization (FAO) use NDVI time series for early warning of po-
tential food production problems in African countries (e.g. Rojas et al. 2005).

The vigor and development of vegetation depends on available natural resources.
For the African continent particularly water and nutrient availability are limiting
factors. Vegetation development can be studied by looking at its phenological
characteristics including germination, leaf emergence, and start of senescence. Land
surface phenology is defined as the spatio-temporal development of the vegetated
land surface as observed by synoptic satellite sensors (de Beurs and Henebry 2005a).
At an aggregated level, NDVI time series from satellite data can approximate
phenological stages and thus characterize the general vegetation behaviour within
its spatial footprint (Justice et al. 1985; Reed et al. 1994). NDVI-derived measures
characterizing the vegetation’s temporal behavior are referred to as phenological
metrics. Phenological metrics have also been used to assess food production (Funk
and Budde 2009). A phenological metric of special interest is the seasonally cumu-
lated NDVI (cumNDVI) as it is related to net primary productivity (NPP: Awaya
et al. 2004; Lo Seen Chong et al. 1993).

The Advanced Very High Resolution Radiometer (AVHRR) provides the long-
est NDVI record with global coverage (Tucker et al. 2005). Using the AVHRR
instrument on multiple satellites since 1981, the resulting 26-year vegetation data
record permits the examination of variability between years as well as trends
(de Beurs and Henebry 2005b). In relation to farming systems trends and variability
in NDVI records can give information on the stability of the natural resource base of
the system. For example, areas experiencing frequent droughts will likely show high
variability in one or more phenological metrics. For Africa, AVHRR time series have
been used extensively for trend analysis (e.g. Fuller 1998; Herrmann et al. 2005),
but to a more limited extent in relation to phenology. An exception is Heumann
et al. (2007) who found positive cumNDVI trends in 250–1100 mm rainfall regions
of West-Africa for 1982–2005, but did not analyze areas outside the 4◦–18◦N range.
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Tateishi and Ebata (2004) found similar positive cumNDVI trends for the 1982–2000
period.

Dixon et al. (2001) classified 72 global farming systems (GFS) in six developing
regions worldwide. They define farm systems as the household, its resources, and
the resource flows and interactions at the individual farm level. A farming system is
defined as a group of individual farm systems that broadly contain a similar resource
base, enterprise patterns, household livelihoods and constraints. The main goal of
their work was to provide a framework within which agricultural development strate-
gies may be determined. Their classification was based on the available natural re-
source base and the dominant pattern of farm activities and household livelihoods.

The purpose of this study is to characterize nine of the farming systems (FS)
identified in sub-Saharan Africa with respect to land surface phenology as measured
by the AVHRR record. Based on a consistent processing for the period 1982–2005 we
determine phenological variability and trends. The main focus is on cumNDVI. We
aggregate our results from 8-km pixels to farming system polygons. Because Dixon
et al. (2001) stress that sharp boundaries between neighboring farming systems do
not occur, we first subdivide the polygons to encompass spatial variability within each
system. Although the study deals with farming systems we choose to not specifically
focus on agricultural areas only, but to evaluate the total natural resource base of
each system. A consequence of that choice is that observed trends cannot merely
be attributed to changes in vegetation phenology, but also to land cover conversions
(Brink and Eva 2009). Hence, we show where consistent trends occur which indicate
a change in the natural resource base. Potential drivers of change are identified based
on literature and we compare our phenology results with rainfall and temperature
trends for the same time period. We discuss possible implications for food security.

2 Materials and methods

2.1 Farming systems

The farming systems map for SSA was taken from Dixon et al. (2001). In this study
we address only the agricultural FS that are predominantly rainfed, as shown in Fig. 1.
Consequently, the arid, pastoral, irrigated, and urban classes were not considered.
Additionally the forest based system was discarded, because limited intra-annual
NDVI variability and the dominant shifting cultivation practices prevent effective
phenological characterization. This leaves nine farming systems, which we order as
in Dixon et al. (2001). The farming systems and their principal crops and livestock
are listed below:

– Tree crop (TC): cocoa, coffee, oil palm, rubber, yams, maize;
– Rice-tree crop (RT): rice, banana, coffee, maize, cassava, legumes, livestock;
– Highland perennial (HP): banana, plantain, enset, coffee, cassava, sweet potato,

beans, cereals, livestock, poultry;
– Highland temperature mixed (HT): wheat, barley, teff, peas, lentils, broadbeans,

rape, potatoes, sheep, goats, livestock, poultry;
– Root crop (RC): yams, cassava, legumes;
– Cereal-root crop mixed (CR): maize, sorghum, millet, cassava, yams, legumes;
– Maize mixed (MM): maize, tobacco, cotton, cattle, goats, poultry;
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– Large commercial and smallholder (LC): maize, pulses, sunflower, cattle, sheep,
goats;

– Agro-pastoral millet/sorghum (AP): sorghum, pearl millet, pulses, sesame, cattle,
sheep, goats, poultry;

Dixon et al. (2001) provide a more detailed description of the FS and their charac-
teristics. We use the two-letter codes above to refer to the systems.

Individual FS polygons often cover large areas. To address spatial variability
within farming systems we combine the FS map with sub-national administrative
layers. For this the first sub-national administrative units of FAO’s GAUL (Global
Administrative Unit Layers) database were used. Due to different political organi-
zation per country, the size of individual units may greatly vary. To obtain a fairly
homogeneous unit size, a combination of the FS map and GAUL was performed in
the following way. First, FS polygons of less than 40,000 km2 were conserved in their
present form and not subdivided. Second, an intersection was performed between the
remaining FS and GAUL polygons. Third, iteratively for resulting polygons smaller
than 20,000 km2 the smallest polygon was merged with the smallest neighboring
polygon having the same FS and preferentially falling within the same country. If
no neighboring polygon of the same FS was present in the same country, polygons of
different countries were merged. The final result is the same FS map but with a sub-
division of large FS units (the grey lines in Fig. 1). The area threshold values were set
in such a way that each polygon contained sufficient NDVI pixels for effective aggre-
gation (see Section 2.2).

2.2 NDVI data and phenology extraction

We used the AVHRR NDVI dataset from the NASA Global Inventory Monitoring
and Modeling Systems (GIMMS) group at the Laboratory for Terrestrial Physics

Fig. 1 Global farming systems
of sub-Saharan Africa
addressed in this article (after
Dixon et al. 2001). The thin
grey lines delimit the sub-units
used in our analysis. In most
cases country borders (black
lines) are respected, but a
sub-unit may occasionally span
two countries



Climatic Change

(Tucker et al. 2005). The dataset contains 15-day maximum value NDVI composites
at 8-km resolution for July 1981 to December 2006. It is based on six NOAA
(National Oceanic and Atmospheric Administration) satellites. SPOT Vegetation
NDVI is used for intercalibration between NOAA-14 and NOAA-16 and -17. The
dataset is corrected for factors not relating to vegetation, although some data prob-
lems remain in the current version (Pinzón et al. 2005). Due to AVHRR’s wide
spectral bands the presence of water vapor in the atmosphere lowers NDVI values,
although maximum-value compositing reduces this effect (Brown et al. 2008). To
remove residual cloud contamination, we applied the iterative Savitzky-Golay algo-
rithm (Savitzky and Golay 1964) as described by Chen et al. (2004). NDVI-values
below 0 and rises of more than 0.30 NDVI units in 15 days were masked out before
applying the filter. All subsequent analysis was based on the Savitzky-Golay filtered
data.

Several methods exist for extracting phenology from satellite data, but field-based
validation efforts are still limited (Reed et al. 2009). In North America ground-
measured plant phenology was compared with 10 extraction methods (White et al.
2009). The comparison showed that the start of the season was generally well
represented by the variable threshold method of White et al. (1997) and a harmonic
analysis model based on the Fourier-transformation by Roerink et al. (2000). For the
West African Sahel, Brown and de Beurs (2008) compared a quadratic method with
ground measured sowing dates and obtained good results. However, the quadratic
method may be less robust for other environments (White et al. 2009) and bimodal
seasons. We selected the variable threshold method White et al. (1997) to extract
phenology from the NDVI time series. This method determines per year and per
pixel the annual maximum and minimum NDVI. The average between both is taken
as the threshold. Onset and offset of the season are the points where the NDVI
profile passes the threshold value in upward and downward direction respectively.
We call these points start of season (SOS) and end of season (EOS).

Phenology extraction for the entire SSA is somewhat complex since seasons
span different calendar years and double seasons occur. To limit strong artificial
phenology fluctuations between years, we extended White’s method with a searching
algorithm. First, a long term average NDVI-profile was constructed per pixel (i.e. the
NDVI climatology). Based on this profile the occurrence of maxima and minima was
documented. A maximum for a pixel is the point where it has a) the highest value in
a window ranging from three values before and three values after, and b) is higher
than the average value of absolute maximum and minimum for that pixel. For the
minimum a similar logic was applied. Two seasons occur for a pixel if two maxima and
two minima separate each other. Based on the NDVI climatology per pixel and its
corresponding maxima and minima, we then extract phenology from the yearly data.
For that purpose, we search per season and pixel the SOS in the range of three values
before minimum and three values after corresponding maximum. This procedure is
illustrated in Fig. 2. EOS is then the first moment after the yearly maximum where
the profile attains the threshold value. The values of SOS and EOS are interpolated
between different 15-day periods, if needed.

We discarded arid areas, dense forests, and areas with limited intra-annual vege-
tation variability by masking pixels that had an average NDVI outside the range 0.2–
0.7 or a coefficient of variation of less than 0.1. To avoid problems of seasons span-
ning different calendar years, we always assessed two years at a time. This resulted
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Fig. 2 Illustration of searching algorithm to extract phenology. For the NDVI climatology the
maximum and minimum are determined. Then for individual years the maximum is determined
within a temporal search window (three periods before and after). Subsequently we find the first
preceding minimum, which should be between three periods before average minimum and the year
maximum. Finally, we find SOS where the NDVI profile reaches the 50%-value between yearly
maximum and minimum

for each pixel in a time series of phenology metrics, ranging from 1982 to 2005. The
metrics extracted and used in further analysis are SOS, length of season (LOS),
maximum NDVI value (maxNDVI), and cumulated NDVI over the season (cum-
NDVI). These are illustrated in Fig. 3 and are the same as in Brown et al. (2010). The
extraction of the additional metrics is straightforward based on SOS, EOS, and the
filtered time series. LOS is the difference between EOS and SOS. We defined that
LOS should be at least more than a month to be valid, and before calculating other
metrics. If present, the metrics were also calculated for the second season. For the
purpose of the analysis described here, we combined the cycles for LOS, maxNDVI,
cumNDVI. If two cycles are present, per pixel we take LOS as the sum of the two
LOS values for cycle 1 and 2. The same was done for cumNDVI, while for maxNDVI
the maximum value of both cycles was taken.

Fig. 3 Phenology metrics
addressed in this article, i.e.
start of season (SOS), end of
season (EOS), length of
season (LOS), maximum
NDVI value (maxNDVI), and
cumulated NDVI over the
season (cumNDVI)
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The phenology metrics were aggregated 1) per farming system divided in north
and south of the equator, and 2) for the polygons defined in Section 2.1. Such
aggregation could be done based on a crop mask to focus on agricultural areas
only. Vrieling et al. (2008) combined AfriCover (http://www.africover.org/), FAO
crop zones, and GLC2000 (Global Land Cover: Bartholomé and Belward 2005) to
obtain an optimal crop mask for Africa, and aggregated phenology based on this
mask. More sources for crop masks exist (e.g. Bicheron et al. 2008; Biradar et al.
2009; Friedl et al. 2002; Ramankutty et al. 2008). However, datasets show strong
discrepancies between them (Fritz and See 2008) while many products contain a
large number of mosaic classes (Bicheron et al. 2008). Our experience learns that
for areas erroneously omitted as crops no aggregated phenology results could be
obtained, or aggregated values were only based on a very limited number of pixels.
Our choice for not using a crop mask in this study is based on the following reasons: 1)
we choose to evaluate the total natural resource base of the farming systems (see also
Section 1), 2) an accurate well-validated crop mask does not exist for the region while
using a mask of limited or unknown accuracy can strongly bias our results, and 3)
crop distribution changes over time which is not accounted for in existing stationary
crop masks. Averaging the derived metrics (i.e. pixels) inside a polygon thus gives
us per year the phenology metrics for the average resource base. To obtain a valid
representative value for a specific polygon and year, at least 25 pixels with valid
phenology metrics should be present. A second season was only documented for SOS
if the number of pixels with valid phenology metrics for the second season were at
least 50% of pixels for the first season. Hence below 50% a second season was judged
not representative for the polygon.

2.3 Variability and trend calculation

Summary statistics per farming system were derived for each phenology metric. We
divided the farming systems in above the equator (N) and below the equator (S).
SOS is not included in these statistics because of high differences that may occur for
the same farming system in different areas (e.g. Agro-Pastoral in Kenya and Mali).
For the other three metrics this problem does not occur. We give the aggregated
multi-year average and two measures of standard deviation. The temporal standard
deviation σt refers to the dispersion of the phenology metric through time. Per pixel
the standard deviation for a time series of a phenology metric is calculated and
subsequently averaged for all pixels falling within the farming system. The spatial
standard deviation σs indicates the dispersion of the phenology metric in space. It is
the standard deviation of the (temporal) mean phenology pixel values that fall within
the farming system. High values of σs indicate that the phenology metric is spatially
heterogeneous within the farming system. High values of σt indicate that the metric
has high temporal variability.

At the more detailed polygon level (Section 2.1) we evaluated the multi-year aver-
age, the temporal variability, and the presence of a trend for each metric. Variability
for SOS was assessed using temporal standard deviation (σt: in days). For LOS,
maxNDVI, and cumNDVI we evaluated variability with the (temporal) coefficient
of variation (CVt), which is a normalized measure dividing σt over the mean. Possible
trends were assessed with the non-parametric Spearman rank correlation with only
time (year) as the explanatory variable (Spearman 1904). The Spearman correlation

http://www.africover.org/
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is based on rank values of the variables and consequently does not assume a linear
relation. Trends were classified based on sign of the correlation (positive or negative)
and significance level (p < 0.05 and p < 0.10).

2.4 Climate data

To assess whether climate is an important driver for the NDVI-derived trends,
we analyzed gridded monthly precipitation and mean temperature time series data
(TS3.0) from the Climate Research Unit (CRU) of the University of East Anglia
(Mitchell and Jones 2005). The 0.5◦ cells were spatially aggregated for the same
polygons of Section 2.1 by averaging. Temporal aggregation was then applied based
on the multi-annual average SOS/EOS dates derived from the NDVI time series.
This resulted in a single value for each year (season) and polygon. Generally a time
delay occurs between the onset of rainfall and vegetation green-up. Therefore we
temporally aggregate between SOS minus 30 days until EOS (i.e. SOS is shifted to
30 days earlier). Trends in the aggregated climate data were determined for 1982–
2006 following the same procedure as described in Section 2.3.

3 Results

Table 1 provides summary statistics of three phenology metrics (LOS, maxNDVI,
cumNDVI) by farming system. Mean values of LOS and cumNDVI of Table 1 are
strongly correlated (r = 0.98) at this coarse aggregation level. Correlation coeffi-
cients for mean maxNDVI vs cumNDVI are 0.93, and 0.86 for LOS vs maxNDVI. At

Table 1 Summary statistics for phenological metrics length of season (number of days), maximum
NDVI, and cumulative NDVI aggregated per farming system

Farming system Length of season Maximum NDVI Cumulative NDVI

Mean σt σs Mean σt σs Mean σt σs

Tree crop N 170 33 46 0.73 0.08 0.07 7.68 1.45 1.86
Tree crop S 210 30 41 0.73 0.06 0.08 9.58 1.18 2.33
Rice-tree crop S 162 32 22 0.67 0.04 0.09 6.88 1.12 1.24
Highland perennial N 196 33 41 0.74 0.06 0.07 9.37 1.44 1.98
Highland perennial S 179 34 46 0.71 0.06 0.07 8.19 1.40 2.09
Highland temp. N 148 28 40 0.66 0.06 0.12 6.32 1.00 2.41
Highland temp. S 181 30 30 0.64 0.05 0.09 7.48 1.02 1.90
Root crop N 202 28 26 0.74 0.05 0.08 9.27 1.08 1.49
Root crop S 219 28 21 0.75 0.04 0.06 10.28 1.10 1.38
Cereal-root crop N 155 25 26 0.67 0.05 0.08 6.47 0.85 1.37
Cereal-root crop S 205 29 28 0.71 0.05 0.09 9.21 1.11 1.96
Maize mixed N 185 30 44 0.70 0.06 0.11 8.34 1.22 2.84
Maize mixed S 187 30 30 0.70 0.05 0.08 8.32 1.15 1.85
Large comm. S 138 31 31 0.53 0.07 0.14 4.87 1.00 2.05
Agro-pastoral N 111 22 19 0.51 0.07 0.10 3.56 0.67 0.95
Agro-pastoral S 162 31 31 0.59 0.06 0.11 6.11 1.08 1.87

N includes all pixels above the equator, while S all pixels below. Temporal standard deviation σt is
the mean σ ’s of all pixels in a farming system, with each pixel’s σ is calculated for the 25-year period.
Spatial standard deviation σs is the σ of all pixel means within a farming system
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the sub-FS aggregation level described in Section 2.1 (sub-units of Fig. 1) these corre-
lations get slightly lower (r = 0.94, 0.91, 0.74 respectively). Most variables contained
in Table 1 have positive correlations (although in some cases not significant), except
for the σt and σs of maxNDVI. The strongest negative correlation (r = −0.73) is
between mean(maxNDVI) and σs(maxNDVI). This indicates that more arid farming
systems (lower maxNDVI) have higher spatial variability of (maximum) vegetation
cover.

The farming systems of the semiarid zones (Large Commercial, Agro-Pastoral)
show the lowest mean values of LOS, maxNDVI, and cumNDVI. Table 1 displays
important differences between the same farming systems found above and below
the equator for mean LOS (and consequently cumNDVI). For most farming systems
that occur in western Africa, mean LOS and cumNDVI are lower in the northern
hemisphere than the same systems in the southern hemisphere. Mean maxNDVI is
more consistent between north and south. Maize Mixed is very similar in both hemi-
spheres, except for the higher σs values in the north. This higher spatial variability
is probably due to the stronger importance of bimodal rainfall patterns found in
Maize Mixed areas above the equator, making the aggregation a mixture of single
and double season values.

Figure 4 displays the mean SOS, σt of SOS, and the SOS Spearman trend. Polygons
for which a second season was identified (Section 2.2), are shown on the lower part.
On average for the polygons displayed, 87% of the pixels inside the polygon area
contained valid phenology metrics. Here, σs is omitted because we now represent
spatial variability by using smaller units. A smooth gradient of mean SOS can be
discerned from the line Senegal-Central Sudan southwards. Here, SOS for the Agro-
Pastoral farming system is around July, for the Cereal-Root crop system around June,
and in April-May for the Root and Tree Crop systems. For East Africa (Ethiopia,
Kenya, Uganda, Somalia) polygons with a significant separable second season
are found. These correspond to areas in Maize Mixed, Agro-Pastoral, Highland
Perennial and Highland Temperate systems. The areas with two seasons towards
the west correspond to the Tree Crop farming system. In Southern Africa, SOS is
generally between October and January, except for the Western Cape and part of

Fig. 4 Mean start of season (left), σt of SOS (middle; in days), and Spearman trend of SOS (right)
based on AVHRR NDVI time series. The lower part shows the values for the second season for
places where a second season occurs
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Northern Cape provinces of South Africa, having a Mediterranean climate (Cs) and
SOS is in June.

Temporal variability of the aggregated SOS values (σt) ranges from less than a
week to more than three weeks. Large Commercial and Agro-Pastoral in Southern
Africa and Maize Mixed in Tanzania are the most variable systems.

Several regions show significant trends of SOS for the 1982–2005 period. The most
striking are the positive trends in Tanzania, Malawi, and northern Mozambique,
corresponding to Maize Mixed, Root Crop, and Cereal-Root crop farming systems.
The positive trend means SOS is gradually delayed. When applying linear regression,
slope parameters in this area are around 1.0 (p < 0.05), implying that in 25 years SOS
is delayed by 25 days.

The mean, CVt, and Spearman trend of the combined seasons of cumNDVI are
presented in Fig. 5. The mean cumNDVI is simply the addition of 15-day NDVI
values during the season plus interpolated values if SOS or EOS falls between two 15-
day periods. For Agro-Pastoral and Large Commercial systems, the mean cumNDVI
values are low, similar to the results presented in Table 1. Nonetheless, the mean of
Fig. 5 also displays strong spatial variability within farming systems. For example,
the high σs value for cumNDVI of the Maize Mixed system from Table 1 translates
into a high range of mean cumNDVI values in Fig. 5, i.e. from less than 6.0 in Kenya
(two seasons) to more than 10.0 in northern Uganda, western Ethiopia, and southern
Tanzania. The line Senegal-Central Sudan southwards shows a smooth gradient of
increasing cumNDVI values, while particularly Eastern Africa shows more complex
mean cumNDVI patterns.

An inverse relationship can be observed between mean cumNDVI and the CVt

for 1982–2005. Drier areas with low cumNDVI generally show a higher CVt, which
implies a higher temporal variability in semiarid farming systems (i.e. Agro-Pastoral,
Large Commercial). Of course this is partly because CVt is σt normalized by the
mean, thus lower means increase CVt. However, a combination of relatively low
means and low CVt also occurs (e.g. parts of Ethiopia and South Africa). Low to
moderate CVt values are found for Rice-Tree, Highland Perennial, Highland Tem-
perate, Root Crop, and Cereal-Root crop systems.

The cumNDVI Spearman trend map (Fig. 5c) displays a clear grouping of sig-
nificant positive and negative trends. Between Senegal and Ethiopia a large area of
positive trends is found. This area corresponds to Agro-Pastoral, Cereal-Root, and

Fig. 5 Mean cumulative NDVI (left), temporal coefficient of variation (CVt) of cumNDVI (middle),
and Spearman trend of cumNDVI (right) based on AVHRR NDVI time series. The total cumNDVI
is displayed summing the seasons in case two seasons occur
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Root Crop farming systems with some inclusion of Maize Mixed in southern Sudan
and Ethiopia. Results for LOS and maxNDVI indicate that the positive trend relates
to a positive maxNDVI trend for Agro-Pastoral, and more frequently a positive LOS
trend for Cereal-Root and Root Crop. We also find significant positive cumNDVI
trends in several locations of southern Africa, comprising different farming systems.
Significant negative trends occur in the south-coast of West Africa (Tree Crop and
minor Root Crop), Tanzania (Maize Mixed and Root Crop), Rwanda (Highland
Perennial), and Madagascar (Rice-Tree).

Figure 6 shows the trends of precipitation and temperature for the 1982–2006
period. Large areas with positive (wetting) precipitation trends can be observed.
These are caused by the drought experienced in the 1980’s (Nicholson 1993), i.e.
the start of the time series studied. The highest concentration is found in the zone
between Senegal and Ethiopia. A drying trend can only be observed for small parts
of Tanzania and South Africa. For temperature, a warming trend is dominant. This
positive trend is found in East and Central Africa, Madagascar, and in West Africa
between Ivory Coast and Senegal. The most striking cooling trend is located in Benin,
Togo, and southwest Nigeria. There is no uniform relationship between temperature
and cumNDVI trends across Africa. A substantial part of the areas with a negative
cumNDVI trend, also show a warming trend (parts of Tanzania, Madagascar, and
between Sierra Leone and Ivory Coast). This could indicate reduced water availabil-
ity due to higher evaporation losses caused by higher temperatures. Alternatively,
warming could be induced by vegetation removal resulting in warmer land surfaces
(Bounoua et al. 2002). For other zones the warming trend does not have a negative
effect on cumNDVI. For several areas warming and positive cumNDVI trends
occur simultaneously. Partly these areas also have wetting trends (Central African
Republic, south Chad, east Sudan, Senegal, west Guinea), but in other cases not (e.g.
east Angola, south Sudan).

The relationship of cumNDVI trends with LOS and maxNDVI trends (p < 0.10)
is shown in Fig. 7a. For most polygons positive cumNDVI trends are supported by a

Fig. 6 Spearman trend of aggregated values of precipitation (left) and average temperature (right)
based on CRU TS3.0 data for 1982–2006. Green colors indicate wetting or warming trends, while
purple colors indicate drying or cooling trends



Climatic Change

Fig. 7 Multi-variate maps (based on Teuling et al. 2010) showing the relation of cumNDVI trends
with trends of other variables. The left shows whether LOS and maxNDVI trends occur for polygons
having cumNDVI trends. Positive trends are shown as +, negative trends as −, and no trend as 0. For
ease of interpretation, LOS and maxNDVI trends are not shown if no cumNDVI trend is present.
Black boxes in the legend mean that the combination is not present in the data. The right figure
shows how cumNDVI trends relate to CRU precipitation trends. All depicted trends are significant
at p < 0.10

positive trend in either LOS or maxNDVI. Positive cumNDVI trends never cor-
respond with negative LOS trends but do not exlude the possibility of negative
maxNDVI trends (e.g. Root Crop systems in Angola, Cameroon, Central African
Republic). A good part of the Agro-Pastoral systems in the Sahel show positive
maxNDVI trends without LOS trends. For the Cereal-Root crop system and partly
the Root crop system north of the equator many polygons have positive LOS trends.
At several locations positive cumNDVI trends occur while no significant trends in ei-
ther LOS or maxNDVI (e.g. in parts of Burkina Faso, Eritrea, Ethiopia, and Sudan).
Negative cumNDVI trends never coincide with positive maxNDVI or LOS trends.
Large parts of Tanzania (mostly Maize Mixed) and Tree Crop systems in Liberia
and Ivory Coast show negative trends for all three metrics.

Figure 7b displays the combined trends for cumNDVI and precipitation (p <

0.10). A large part of the positive cumNDVI trends between Senegal and Ethiopia
can be explained by a wetting trend in the CRU precipitation data. However, in
places such as south-east Sudan a wetting trend is absent, while cumNDVI increases.
Polygons with decreasing cumNDVI generally do not show precipitation trends. The
only exception is a part of the Tree Crop system (Liberia, Ivory Coast) that shows
decreasing cumNDVI with increasing precipitation. The few polygons with drying
trends do not show trends in cumNDVI.

4 Discussion

The results of this study show that the farming systems of SSA may be characterized
by their phenological characteristics, although often substantial spatial variability
exists within the systems. This stresses the point of Dixon et al. (2001) that no
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sharp system boundaries exist. Results for average SOS (Fig. 4a) generally seem
realistic. The SOS pattern and values for West Africa compare well with the NDVI
analysis of Brown and de Beurs (2008). For Ghana and Burkina Faso our SOS values
are within one month after rainfall-based SOS analysis (Laux et al. 2008), which
can be explained by the delay between rainfall onset and vegetation green-up. For
Kenya the SOS in April corresponds with the start of the long rains maize cycle as
used in JRC (Rojas 2009). Zimbabwe shows again about a month delay between
rainfall-based SOS (Funk and Budde 2009) and vegetation green-up. The most
likely explanation for the SOS variability found in Tanzania is the large inter-annual
fluctuations of the short rains (October–December) that relate to ocean circulation
anomalies (Camberlin et al. 2009; Kabanda and Jury 1999). The dry period between
the short and long (March-May) rains is not strong enough to clearly separate two
seasons with NDVI time series, but reduced rainfall in the short rains causes a
significant delay in the season onset. For South Africa, Tadross et al. (2005) show
a similar pattern and high variability of season onset based on gridded rainfall data
which they explain by the El Niño Southern Oscillation (ENSO). Also Reason et al.
(2006) report a relationship between rainfall onset and ENSO for southern Africa.

The spatial map of mean cumNDVI (Fig. 5a) agrees with maps of net primary
production (NPP) derived from satellite and additional data (Awaya et al. 2004;
Goetz et al. 2000; Running et al. 2004). CumNDVI is used here as a proxy for NPP
and is strongly related to abundance of natural resources. Strong differences exist in
the amount of NPP that is used for human consumption (Imhoff et al. 2004). In most
of SSA, the main source of food is derived from local NPP. Especially in farming
systems where the ratio of population to local NPP is high, food insecurity tends
to prevail (Liu et al. 2008). This is true for example in densely populated Highland
farming systems and for the low NPP Agro-Pastoral system.

Vulnerability to food insecurity tends to increase when local NPP shows high
temporal variability (Milesi et al. 2005). In our study, cumNDVI variability was
particularly strong in the Sahelian zone, East Africa (especially Kenya and Somalia),
and Southern Africa (Botswana, Namibia, South Africa, Zimbabwe). However, food
security is not simply a function of local NPP, but also factors such as poverty,
market forces, conflict, and HIV/AIDS play an important role (Gregory et al. 2005;
Misselhorn 2005). Notwithstanding, analysis of climate and cumNDVI variability
provides an important input for food security analysis. Farmers have different ways
to cope with variability of available natural resources (Cooper et al. 2008; Maxwell
1996). When conditions such as drought attain unprecedented levels due to e.g.
climate change, existing coping strategies may not be adequate (Battisti and Naylor
2009; Glantz et al. 2009). Therefore studying variability and trends is important.
Current operational food security monitoring by organizations as FEWS-NET, JRC,
and FAO concentrates on mapping of NDVI anomalies deviating from a long-term
mean. However, anomalies compared to a mean do not take into account variability
(possibly coupled with good coping strategies) and the occurrence of persistent
trends in local NPP. Our study shows that such temporal variation in local NPP can
be significant. Anomaly-based food security monitoring could thus improve when
putting anomalies in perspective of normal variability and the presence of trends.

The most striking cumNDVI trend is a positive one stretching from Senegal to
western Ethiopia. This trend is likely a result of recovery of droughts in the 1980’s
(Dai et al. 2004; Hickler et al. 2005). For most of this area, drought recovery is also
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apparent from the wetting trend we observed based on the CRU climate products
(Fig. 7b). This trend is related to variability of Atlantic sea surface temperatures
which suggests oceanic forcing on monsoon rains (Brown et al. 2010; Giannini
et al. 2003; Philippon et al. 2007), although additional human factors are suggested
(Herrmann et al. 2005). Our results based on cumNDVI show positive trends to
extend further south as compared to what has been presented in other NDVI trend
studies that focused on the Sahel alone (Anyamba and Tucker 2005; Herrmann
et al. 2005; Olsson et al. 2005). Herrmann et al. (2005) performed a linear fitting
directly on the NDVI time series for 1982–2003. Anyamba and Tucker (2005) first
performed a seasonal integration for the fixed July–October period. Based on our
SOS analysis this period is not a valid generalization for regions more towards
the south. The analysis of Olsson et al. (2005) uses seasonal integration, but is
based on the AVHRR Pathfinder dataset for 1982–1999. The extent of positive
cumNDVI trends corresponds well to the pixel-based phenology study of Heumann
et al. (2007) for that part of Africa. Although they apply a different phenology
extraction algorithm, they also use seasonally integrated NDVI for 1982–2005 based
on SOS/EOS analysis. This correspondence suggests that the trend results are not
greatly influenced by the specific phenology extraction method chosen. The positive
trend supports an overall global trend of increasing NPP (Cao et al. 2004; Nemani
et al. 2003), which however is not apparent in most other parts of Africa based on our
results. Negative cumNDVI trends on the south-coast of West Africa correspond to
the negative NPP trends found by Nemani et al. (2003). However, they do not find the
negative trend observed in Tanzania, which could be due to the shorter time series
used (1982–1999).

Trends in phenological metrics suggest that boundaries and characteristics of
farming systems may change over time due to a variable natural resource base (e.g.
Fermont et al. 2008). Climate change is an important driver for such changes (Brown
and Funk 2008; Lobell et al. 2008), which has an impact on land surface phenology
(Brown et al. 2010; Zhang et al. 2005). Our analysis of CRU climate data shows that
trends in cumNDVI are related to precipitation and temperature trends, but that
these relationships are not uniform across Africa. Sub-Saharan African agriculture
is highly sensitive to climatic changes (Barrios et al. 2008; Ringler et al. 2010).
Consequently, it is expected to be hard hit following climate change scenarios (IPCC
2007; Kurukulasuriya et al. 2006; Parry et al. 2005). However, impacts can be highly
variable through space and time (Liu et al. 2008) and call upon local adaptation
strategies (Thornton et al. 2009).

Since we opted not to apply a crop mask our phenology signal results from a
mixture of vegetation types within the FS polygons. Nonetheless, our study does
pinpoint areas of great interannual variability and where consistent changes occur in
the resource base of the farming systems. These may be caused purely by vegetation
(including crop) phenological changes, but also by other factors. Human-driven
land cover change, particularly cropland expansion, is among the factors explaining
phenological trends (Brink and Eva 2009). Land degradation in the form of soil
erosion or fertility decline may be an additional factor (Lal 2007). Dixon et al. (2001)
identified various general trends for sub-Saharan Africa that affect agriculture.
These include population growth, HIV/AIDS increase, diminishing tsetse infesta-
tion, increased cereal imports, and reduced government spending on extension and
agricultural training. The mentioned trends and changes affect natural resources
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and may thus be reflected by trends in phenology metrics. Change attribution is
an important but difficult part of land cover and land use change analysis. In
Appendix A we explore potential drivers of change for the selected farming systems
based on our climate analysis and published literature.

5 Conclusion

We determined average SOS, LOS, maxNDVI and cumNDVI, and their variability
and trends for nine farming systems of sub-Saharan Africa using AVHRR NDVI
time series between 1982 and 2005. Phenological characterization of the systems was
possible, although substantial spatial variation is present within systems. Seasonally
cumulated NDVI (cumNDVI) was the principal phenological metric in this paper
as it relates to net primary productivity. Temporal variation of cumNDVI is highest
in semiarid and subhumid farming systems, which implies important year to year
variation of available natural resources. Climate is an important driver for this
variation, as well as for trends. Positive cumNDVI trends are found in a large region
stretching from Senegal to South Sudan covering different farming systems. Drought
recovery since the 1980’s seems to be the strongest factor, which is supported by a
wetting trend obtained from the CRU data. Regions of negative cumNDVI trends
are concentrated on the south-coast of West Africa and in Tanzania. Drivers include
increased population pressure, decline of fertilizer use, land degradation, and mining
activities.

We discussed causes of change and variability based on available literature.
Although food security comprises more than the local natural resource base, our
results can provide an input for food security analysis by identifying zones of high
variability or downward trends. However, results presented here should be seen
as a starting point for more detailed fine-scale analysis. In view of current climate
scenarios predicting a large impact on African agriculture, continued monitoring and
time series analysis of phenology metrics seems indispensable. Coarse-scale analy-
sis based on high-frequency temporal information permits identifying large-scale
changes and areas/farming systems of particular concern for food insecurity. The
diversity and trends within farming system boundaries suggest that farming systems
are dynamic.
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Appendix A: Discussion of results per farming system

This appendix provides a short overview of the farming systems studied. Per system,
main characteristics are described and the results of the phenological analysis of
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this study are summarized. We explore potential drivers of change for the selected
farming systems based on our climate analysis and published literature. This ex-
ploration is not exhaustive, but intended as a potential starting point for other
researchers to conduct studies in their local areas of expertise and regions of study to
expand upon our results.

A.1 Tree crop (TC)

The TC farming system combines industrial tree crops with inter-planted food crops,
grown for subsistence. Crop failure is not common within TC (Dixon et al. 2001).
The negative cumNDVI trend that we find in TC of West Africa could be a result
of the increased population pressure on natural resources (Brink and Eva 2009), the
neglect of some industrial tree crops following decreasing profitability (Dixon et al.
2001), and deteriorating community controls on common lands (Ahuja 1998). While
many TC regions are rather stable, within Ivory Coast greater variability is apparent.
Although the negative trend here is significant, the higher CVt may partially be
caused by remaining cloud effects in the GIMMS dataset. In Ivory Coast and Liberia
negative cumNDVI trends co-occur with negative trends in LOS and maxNDVI.
CRU data show a wetting trend for Liberia, but more commonly a warming trend
(Sierra Leone, Ivory Coast, Cameroon southwards). Land cover conversions in this
farming system could well be a partial cause of this trend (Bounoua et al. 2002).

A.2 Rice-tree crop (RT)

The RT system is solely found in humid areas of Madagascar. Agricultural potential
is high, but small farm sizes, lack of suitable technologies, and poor markets cause
poverty to prevail (Dixon et al. 2001; Minten and Barrett 2008). CumNDVI results
show a spatially homogeneous system with little temporal variability. In Antana-
narivo and Toamasina provinces (center and east Madagascar) negative trends are
found, likely caused by deforestation and agricultural expansion (Harper et al. 2007;
McConnell et al. 2004). In addition, the CRU data show a significant warming trend
for the entire system which may indicate a decline of water availability through
higher evaporation losses. No precipitation trends are found.

A.3 Highland perennial (HP)

This system is situated in subhumid and humid highland zones of the East African
Highlands. Of all SSA farming systems, it has the highest population density with
consequently very small land holdings and high levels of poverty (Dixon et al.
2001). CumNDVI is relatively high and stable, although East-Congo, Rwanda, and
Burundi show somewhat lower levels. Significant negative cumNDVI trends are
only found in Rwanda, which match with a negative maxNDVI trend (Fig. 7a). A
possible explanation is the reported widespread ongoing land degradation (Lewis
and Nyamulinda 1996; Rutunga et al. 2007), which constituted the basis for the war
in the 90’s (Gasana 2002). The HP system has experienced significant warming since
1982 based on CRU data. However, a clear impact of this warming on phenology
cannot be discerned.
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A.4 Highland temperate mixed (HT)

The HT farming system has the second highest population density and is chiefly
found in the Ethiopian highlands. Problems include soil erosion, fertility decline,
and lack of inputs. Weather-related crop failures are common (Dixon et al. 2001).
Our results show varying levels of cumNDVI depending on location, but generally
little temporal variation and trends. This agrees with the reported absence of rainfall
trends over HT in Ethiopia (Cheung et al. 2008). However, the CRU analysis shows
for most of Ethiopia under HT a wetting and warming trend. The problems, crop
failures and climate trends described here do not imply a great reduction of overall
vegetation activity as observed from our AVHRR analysis. It is however possible
that finer-scale vegetation trends occur in the very heterogeneous environment
of Ethiopia. These may also be positive trends, for example due to reforestation
(Bewket 2002).

A.5 Root crop (RC)

The RC system is found in humid areas. It has a limited risk to crop failure and low
poverty levels (Dixon et al. 2001). LOS, maxNDVI, and cumNDVI are among the
highest of all farming systems with slightly lower levels of maxNDVI and cumNDVI
in the West African portion. CumNDVI variability is relatively low. A big fraction
of the system experiences positive cumNDVI trends (Ghana to South Sudan, plus
Angola and southern Congo). These correspond to positive LOS trends (Fig. 7a),
which are also found by Heumann et al. (2007). Part of this area also shows positive
rainfall trends. Negative cumNDVI trends in Sierra Leone may be explained by
mining activities and consequent land use changes (Akiwumi and Butler 2008), while
those in Tanzania are discussed in Section A.7.

A.6 Cereal-root crop mixed (CR)

This farming system is situated in dry subhumid regions. It is marked as having
excellent prospects for agricultural growth due to abundant agricultural land and low
population densities, which makes the natural resource base underutilized (Dixon
et al. 2001). CumNDVI above the equator has significantly lower values than below,
due to a shorter LOS. Variability of cumNDVI is low to average, while the northern
part is fully included in the large region of positive cumNDVI trends. These are
supported both by positive maxNDVI and LOS trends and correspond to the
recovery of drought in the 1980’s (Dai et al. 2004; Heumann et al. 2007), which
also shows in our CRU rainfall analysis. South of the equator only Bié and Uíge
provinces of Angola and a part of north-western Zambia show positive cumNDVI
trends, supported by a positive LOS trend.

A.7 Maize mixed (MM)

The MM system is located in dry to moist subhumid regions. Although agricultural
prospects are judged to be good, the system is in crisis due to a sharp fall of input use
and high fertilizer prices (Dixon et al. 2001). Varying mean cumNDVI levels indicate
that high spatial variability is present within this system. Temporal variability (CVt)
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for MM has a strong negative relation with mean cumNDVI levels (r = −0.69), which
implies higher vulnerability to food insecurity in low cumNDVI areas, such as Kenya.
National maize production figures for Kenya support this high variability (Rojas
2007). Western Ethiopia MM areas fall in the large band of positive cumNDVI
trends. A large region of negative trends occurs in central Tanzania, which is
supported by negative trends of LOS and maxNDVI. These negative trends also
occur in the RC system (Section A.5). One causing factor is likely to be the strong
decline in fertilizer use since 1990 due to market liberalization and consequent price
increases (Malley et al. 2009; Skarstein 2005). Based on our own analysis of national
FAOSTAT fertilizer consumption data, most other MM countries show positive
trends in this time period, although more recent declines occur (e.g. Zimbabwe).
Nonetheless, positive trends in fertilizer consumption may be compensated for by
increasing crop areas, hence still lowering the fertilizer use per hectare. A second
factor for declining cumNDVI is a reported rainfall decrease and the increase of
dry spells (Enfors and Gordon 2007; Giannini et al. 2008; Schreck III and Semazzi
2004; Slegers 2008). Our CRU analysis does not show a decrease in rainfall for 1982–
2006, although a significant warming trend is observed, which may imply higher
evaporation losses and hence drier conditions. Other potential drivers are rapid
population growth and soil fertility decline (Enfors and Gordon 2007; Malley et al.
2009) causing an increased pressure on available natural resources. These processes
result in declining maize surpluses thus threatening national food security (Dixon
et al. 2001).

A.8 Large commercial & smallholder (LC)

The LC farming system comprises scattered smallholder and large-scale commercial
farming in semiarid and dry subhumid zones of South Africa and Namibia. Poverty
among smallholders is severe due to poor soils and frequent droughts (Dilley 2000;
Dixon et al. 2001). Mean cumNDVI is generally low, while temporal variability
varies from low in Eastern Cape and western provinces of South Africa (SA) to
high in the drier Northern Cape province (SA) and Namibia. CumNDVI is strongly
linked to annual rainfall (Helldén and Tottrup 2008; Wessels et al. 2007). Significant
positive trends of cumNDVI are found in Northern Cape, North West, and Free
State provinces (SA), which for the first two mentioned provinces are supported by
positive CRU rainfall trends. In semiarid systems, SOS variability is an important
characteristic affecting crop production (Brown and de Beurs 2008; Tadross et al.
2005). SOS temporal variability of Fig. 4 corresponds well with the SOS variability
map by Tadross et al. (2005) derived from a product based on rain gauge data only,
with lower values occuring in eastern SA.

A.9 Agro-pastoral millet/sorghum (AP)

Crop production and livestock are of similar importance in the AP farming system.
It is situated in semiarid zones and pressure on available natural resources is high.
Crop failures are mostly attributed to droughts and poverty is extensive (Dixon et al.
2001). Together with the LC system, mean cumNDVI values are among the lowest
(Table 1) and closely linked to rainfall and soil moisture availability (Nicholson et al.
1990). Furthermore, the cumNDVI temporal variation is generally very high (Fig. 5)
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due to high rainfall variability, thus impacting food security (Ifejika Speranza et al.
2008; Mishra et al. 2008). Farmers adapt their land management to this variability.
Yields can be improved through the use of soil and water conservation measures
which also increase soil fertility (Graef and Haigis 2001; Smaling and Dixon 2006),
although agricultural growth potential is modest (Dixon et al. 2001). The Sahel from
Senegal until Sudan is dominated by positive cumNDVI and rainfall trends. These
result from drought recovery, although land cover change in the form of agricultural
expansion can be an additional driver (Brink and Eva 2009; Tottrup and Rasmussen
2004).
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