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ABSTRACT 

 
Large aperture space telescopes are built with low F#’s to accommodate the mechanical constraints of launch vehicles 
and to reduce resonance frequencies of the on-orbit system.  Inherent with these low F#’s is Fresnel polarization which 
affects image quality.  We present the design and modeling of a nano-structure consisting of birefringent layers to 
control polarization and increase contrast. Analysis shows a device that functions across a 400nm bandwidth tunable 
from 300nm to 1200nm.  This Fresnel compensator device has a cross leakage of less than 0.001 retardance. 
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1. INTRODUCTION 
 
Direct imaging of terrestrial exoplanets requires a telescope/instrument system capable of controlling and suppressing 
unwanted star light to approximately one part in 1012 over a wide wavelength bandpass spanning the UV to near IR 
spectrum1-4. Terrestrial exoplanets are faint, requiring large aperture telescopes to record their image. Because of the 
required size of the aperture (3 to 8 meters), coronagraph designs that fit into launch vehicles employ low F#’s (typically 
1 to 1.5) to collect and focus the radiation. These low F# systems require a highly reflective coated steeply curved mirror 
that introduces spatially varying polarization effects across the mirror surface. This polarization effect reduces system 
transmittance and increases scattered light. The properties of metal and coating anisotropic have been largely overlooked 
in the analysis and performance characterization of low F# telescopes for exoplanet missions5. Several coronagraph 
architectures have been proposed,1-4 but each one of these have degraded performance because of Fresnel polarization 
apodization. This paper addresses the modeling and mitigation of Fresnel polarization effects in space-based 
coronagraphic telescopes using an innovative device (a Spatially Variable Retardance Plate or SVRP) that incorporates 
birefringent nanolayers6 to control the amplitude and phase of polychromatic white light wavefronts. The SVRP device 
provides control of the broadband white-light optical polarization and retardation to maximize coronagraph system 
transmittance, contrast, and to minimize losses to scattered light. As will be shown in Section 2, this device can be 
located at a much smaller pupil plane (~10-cm diameter) and will be much smaller, lighter, and easier to fabricate than 
an optical element located on or next to the primary mirror. 
 
An understanding of the sources of partial polarization in full-scale coronagraphs is necessary for accurate performance 
modeling, specification of mirrors and coatings, and to design necessary alternatives to mitigate the effects of the 
internal polarization produced by Fresnel effects. Scattered light control to better than one part in 109 has been 
demonstrated1-4 over a 10% optical bandwidth using wavefront sensing and control with an adaptive optics device in the 
High Contrast Imaging Testbed (HCIT) located in a vacuum system at JPL.  However, this system functions at an F-
number of 28.5 and does not include an optic representative of a large (2-8 m), low F#, primary mirror characteristic of 
modern space coronagraph designs (e.g., ATLAST, PECO, EPIC, ACCESS, and TPF-C).  
 

2.  CORONAGRAPH SYSTEM CONSIDERATIONS 
 

Direct imaging  of  terrestrial  exo-planets  requires  a coronagraph. Several  coronagraph  architectures have been 
poposed1-4. Typical designs employ low F# large aperture telescopes necessary to collect and focus radiation. A 
schematic of an imaging coronagraph telescope system is shown in Figure 1.  Referring to the figure, the chief ray is 



 
 

 

 

dotted and the marginal ray is dashed. The location where the marginal ray crosses the optic axis is the image plane. The 
location where the chief ray crosses the optic axis is the pupil plane (an image of the pupil).  As with most astronomical 
telescopes, the entrance pupil is co-located with the telescope aperture.  Powered optical elements are shown at planes 1, 
3 and 5.  The ring mask, shown at plane 4 is not a powered element. Although the telescope primary optic may be quite 
large (8 meters as planned in NASA exoplanet missions)2,8, the mitigation of Fresnel Polarization can be done at a much 
smaller and convenient pupil plane such as at plane 4 where the ring mask is located.  The functions of the polarization 
compensator and ring mask can be combined.  The diameter of the pupil in the NASA testbed system is on the order of 3 
cm.  For future exoplanet missions using an 8-m telescope, the ring mask would be much larger than 3 cm.   
 
 
 

 
 
Figure 1. Schematic view of an imaging coronagraph-telescope. The coronagraph is used to control scattered light in optical 
systems built for high contrast stellar astronomy applications such as exoplanet and binary star atmospheric interaction research.  

 
Breckinridge and Oppenheimer5 showed  that polarization  introduced  in  the  telescope-coronagraph  system  increases  
scattered light to limit system performance. There are two sources of polarization.  One is a characteristic of the natural  
curved shape of the primary mirror, called Fresnel polarization7.  The other is a characteristic of the microstructure of     
high reflectivity coatings required for high efficiency, called anisotropy polarization. The curvature of the mirror             
introduces a polarization  apodization  across the pupil5,7  to produce aberrations which in turn  affects the system image 
quality and lowers contrast. Spatially non-uniform anisotropies in the deposited thin film structure introduce unwanted   
phase and amplitude errors on the wavefront to increase scattered light, degrade image quality and lower contrast.  
 
Fresnel polarization is introduced when a ray reflects from a tilted surface7.   The reflectivity Rp for that portion of the 
incident ray whose electric vector is parallel to the plane of incidence is less than that (Rs) for the ray whose vector is 

Entrance 

aperture 

Image 
plane 

Amplitude 

& phase 

mask 

Field 

lens 

Ring 

mask 
Relay 

optic 

Image 

plane 

1 

2 
3 

4 

5 

6 

Marginal ray 

Chief ray 



 
 

 

 

perpendicular to the plane of incidence. For a concave telescope mirror, the marginal ray angle deviation  is given by 
 

 
 
            (1) 
 
For a typical space telescope with F# = 1.3, the angle is approximately 20 degrees. At this angle, for the case of the ray 
reflecting from a silver substrate, ~2% of the light is polarized. This means that at the highest angular resolution of the 
system ~2% of the light at the edge of the pupil is not contributing to an image, but rather to the background. 
 
2.1 Polarization Analysis 
 
There are several methods used to characterize the polarization in an optical system and optical devices.  All of these 
methods are useful (or not so useful) depending on specific quantatative applications. Jones calculus8-9, which 
characterizes a birefringent network, is a powerful technique in which the state of polarization is represented by a two-
component column vector, and each optical element (or layer) is represented by a 2x2 matrix. The stokes vector and 
Muller matrix are based on the same physical approximations as the Jones vector8-9, but relate to the irradiance the 
detector sees and are often used in remote sensing applications.  The Stokes vector and Muller matrix also include 
depolarization explicity in the matrix.  Since both Jones and Muller calculus are based on the same physics models, both 
methods are limited to normally incident and paraxial rays only. For example, the two polarization states of light 
incident on an anisotropic material (mirror, coating, and SVRP layer) are in general not mutually orthogonal for off-axis 
light. Both the Jones and Muller calculus methods neglect the Fresnel refraction and reflection at the surfaces11-12. These 
methods do not offer an explanation of the light leakage for off axis light. Hence other polarization techniques such as 
the extended Jones vector, Berreman's 4x4 matices, or Finite Difference Time Domain (FTDT) are used instead10. 
 
2.1.1 Extended Jones and Berreman’s 4x4 Method 
 
The telescope primary mirror in a coronagraph system for space flight is typically a low F#.  These low F# systems 
require a steeply curved highly reflecting mirror which introduces a spatially varying polarization effect across the 
aperture (or exit pupil). To accurately calculate the polarization effect, reflection at the highly reflecting metal coating 
interfaces cannot be ignored. The Berreman 4x4 method10-12 is a powerful technique for treating the transmission of light 
in a complex system by treating the polarization as a general birefringent network. Exact solution can be obtained by the 
4x4 matrix method as discussed in the literature10-12. The 4x4 matrix method takes into account the effect of refraction 
and multiple reflections between interfaces. If the effect of multiple reflections can be neglected, the Berreman’s method 
reduces to the extended Jones matrix methods11. The extended Jones matrix is easier to manipulate mathematically and 
yet accounts for the Fresnel refraction and single reflection at the interfaces.  For this paper the extended Jones method 
has been used for the telesope  mirror and the Berremans method for the SVRP device. 
 
The Berreman 4x4 matrix method relates the propagation of polarized light to stratified media that are uniform in their 
dielectric properties in one plane, which is taken to be the xy plane.  The  method  is discussed in this section and in 
more detail in the literature8-12. The components of the electric field E and the magnetic field H in the plane of the layer 
can be solved from Maxwell’s equations as: 
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Where  is a column vector and the angular frequency  is related to the wavelength in vacuum  and the speed of 
light c by: 
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Here, k=2  is the magnitude of the wave vector in a vacuum. For the sake of convenience, the x axis is chosen such that 

the light wave propagates in the xz plane which the plane of incidence. The x component of the wave vector is equal to 

 , meaning that  is proportional to the in-plane wave vector component. The column vector   satisfies the 

Berreman equation: 
 

·ψ                                         (4) 

 
where D is a 4x4 matrix generally referred to as the Berreman matrix (or simply the 4x4 matrix).  Assuming that the 
magnetic susceptibility can be neglected, the optical properties of the dielectric can be described by the dielectric tensor 
with components  , , , .  The expression for the Berreman’s matrix D is 
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Equation 4 and 5 are the central ones of the Berreman’s 4x4 matrix method.  There are several ways to solve these 
numerically as well as analytically11-12.  For the current work, the  Eidner-Olano13-15 method is used. 
 
Berreman’s method can be extended to compute the polarization apodization in terms of contrast  and retardance as a 
function of  angle of incidence  and wavelength λ across the aperture (or corresponding pupil). The metallic mirror is 
approximated as a perfect conductor.  In such a perfect conductor any electric field coming from external sources will be 
cancelled by the rearrangement of the freely moving charges. As a consequence the net electric field in the mirror must 
be zero, and at the interface Ex=Ey=0.   
 
For real metals the finite conductivity  must be taken into account. As a consequence, the dielectric constant  must be 

replaced by ,   thus, the refractive index   is complex11. For sufficiently large  the electric field is 

inversely proportional to the square root of  which implies that in the limit of a perfectly conducting metal ( ∞  
the electric field at the interface is restricted to the case of an ideal metallic mirror.  Using this Berreman’s extension,  S1 
is defined as 

S1 
H

V
                                                                           (6)  

 
where H and V are the intensities measured for the light polarized horizontally and vertically, respectively.  Figure 2(a) 
shows a three dimensional view of a plot of Log to the base 10 of S1 as a function of the light beam incidence angle, 
from zero to thirty degrees onto a tilted thin film aluminum coated mirror and as a function of wavelength. The extended 
Berreman’s 4x4 matrix approach can be used to calculate the retardance as a function of angle of incidence  and 
wavelength  as shown in  Figure 2(b). Referring to Figure 2(b),  the phase angle in degrees on the vertical axis between 
the H and the V components is a function of the incidence angle, from zero to thirty degrees on a tilted thin film 
aluminum coated mirror and is a function of wavelength.  These figures show the significance of the birefringence and 
phase on reflection from a highly reflecting metal film. The model agrees very favorably with Breckinridge and 
Oppenheimer’s results5 as shown in Figure 2(a). Moreover, the model provides the retardance induced by the mirror as 
shown in Figure 2(b). Figure 4 and 5 shows the significance of the birefringence and phase on reflection from a highly 



 
 

 

 

reflecting metal film. Although these graphs are for an ideal mirror, a compensator can be designed and fabricated for 
any polarization state. 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
Figure 2. Polarization contrast (left) and retardance (right) as a function of  angle of incidence  and wavelength λ. The 
plots represent a horizontal “slice” through half of the mirror. 
 
 

3. MITIGATING POLARIZATION USING A COMPENSATOR PLATE 
 
A spatially varying retarder plate (SVRP) can be placed at a convenient pupil plane, such as the ring mask plane 4 shown 
in Figure 1. The SVRP device consists of a stack of nanolayers of anisotropic and/or isotropic materials P1, P2, P3…Pn as 
illustrated in Figure 3. Each layer has it’s slow axis oriented at an azimuth angle ,   ,   , …  .  Optical 

birefringence describes the difference of a material’s refractive index with direction. When the birefringence is on the 
order of the change of the in-plane refractive index between adjacent materials, surprising and useful optical effects 
occur.   
 
 
 
 
 
 
 
 
                                                   
 
 
 
 
 
Figure 3. Synthesized Optical material A stack of anisotropic and isotropic material P1, P2, P3…Pn can be stacked.  Each layer 
thickness, birefringence, and orientation is layered to produce a custom polarization compensator. The SVRP consists of a pixelated 
array of these stacks. The resolution of each stack can be as small as 0.6 micron and with the appropriate boundary conditions the 
SVRP can act as a continuous spatially varying sheet or a discrete pixelated device. 
 

    

P
1
 P

2
 P

n
 P

3
 …

                                      



 
 

 

 

An investigation has been conducted across a wide variety of birefringent materials and fabrication methods for 
developing an SVRP device most suitable at enabling >1012 contrast.  One such material is single layer MgF2.. For multi 

layers, a device fabricated from quartz is useful. Quartz has a transparency range extending from 0.25  to 2.5  
(>99%) which is a suitable bandwidth of interest in coronagraphs.  MgF2 is transparent over an even broader spectral 
range. Both quartz and MgF2 are birefringent, but quartz has a much smaller birefringence than MgF2.  Hence these two 
materials are often used in tandem, for example in the design of achromat waveplates. Quartz and MgF2 both are 
commonly used in high performance optical systems and are known to  have high  transmittances >90% over 300nm to 
1200 nm. In addition the very low scattering making them a suitable candidate for the SVRP. Other potential materials 
include liquid crystals, polyimide, and photo polymers. 
 
3.1 Optical Nanomaterial Synthesis Design Methodology 

 
To design an SVRP, we first must consider the stack of dielectric (birefringent or isotropic layers) as shown in Figure 3. 
The Berreman’s method is used to compute a propagator matrix Pj for each layer in the stack.  The propagator matrix 
can be expressed in terms of D as 
 

    exp ∑
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where the Taylor series of the exponential function is used to define that function for the matricies.  The matrix D can be 
written in the diagonal form as 
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Clearly D can be expressed in terms of the eigenvalues of D, whereas T can be expressed in terms of the eigenvectors of 
D. Substitution to equation (7) gives: 
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Another relatively recent 4x4 matrix method for general biaxial media, differing form Berreman’s method, has been 
proposed by Yuan and co-workers13.  As noted in the literature, the two methods are equivalent as both are based on the 
exact solutions to Maxwell’s equations. In particular, the quartic equation for the z component of the wave vector kz 
given by Yuan corresponds to the quartic equation of the eigenvalues of the Berreman matrix , because these 
eigenvalues are equal to kz/k. 

For the stack of dielectric (birefringent or isotropic) layers shown in Figure 3, each layer is labeled 1,2,3..,N.  The 4x4 
propagation matrix Pj of each individual layer can be calculated using Equation 7. In order to find the overall 
propagation matrix P of the stack of dielectric layers, boundary conditions at the interface between two dielectric layers  
m and n are needed. According to Maxwell theory the components of the electric and magnetic fields E and H parallel to 
the interface between two dielectric medial m and n must be continuous, provided that no charge or currents are present 



 
 

 

 

at the interface. Consequently Ex, Ey, Hx, Hy are continuous at the interface; i.e., the column vector ψ  satisfies the 
boundary condition        
                                                 ·                                   (10a) 
                             P  = Pn…P3P2P1                 (10b) 

Here   and   are the Berreman column vectors at the two sides of the stack of dielectric layers. 
 

3.2  Design Example of a SVRP 
 
The design of an SVRP requires careful consideration of the material properties and fabrication techniques.  Not only 
does the birefringence vary spatially across the mirror, but the orientation of the polarization state varies spatially as 
well, as depicted in Figure 4(a).  The orientation of the polarization as a function of position is shown in Figure 4(a). 
Referring to the figure, two arbitrary small regions P1 and P2 have different birefringence and different polarization 
orientations. For example, the alignment layer can be in correspondence with the polarization orientation of the reflected 
light off the mirror at a pupil plane as depicted in Figure 4(b).  The birefringent stack consisting of layer B1, B2..Bn, is 
shown in Figure 4(c). The nanolayers are stacked and the stacking arrangement varies spatially (to a resolution of 0.6 
microns for the fabrication process discussed in Section 4)  to yield the desired polarization compensation to mitigate the 
Fresnel effects. The final isotropic and amplitude layers compensate for the wavefront variation and amplitude variation  
repectively to yield a uniform, optically flat wavefront in a uniform polarization state. Although the design depicted in 
Figure 4 illustrates the case where the alignment layer is in the direction of the polarization state of the aperture (or 
pupil), in general the orientation of the alignment layer corresponds to the design of the birefringent stack used to 
compensate for the Fresnel polarization. 
 
Consider the marginal ray of an F# 1 telescope that has a 30-degree angle of incidence. This represents the worst case 
scenario of a telescope system. The 2D plot of the retardance versus wavelength from Figure 2(b) is shown in Figure 
5(a). Referring to the figure, the telescope has approximately 9 degrees of maximum retardance (around 300 nm in the 
figure) for a 30-degree angle of incidence.  The retardance verses wavelength for a 15 degree angle of incidence is 
shown in Figure 5(b), which has 2 degrees of retardance. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

       
SVRP stack of birefringent plates 
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Figure 4. Photo alignment layer of a SVRP plate. (a) shows a spatially variable retarder plate (SVRP) face on (x,y) with retardance 
direction indicated by the colors shown in the stripe below which maps color into orientation in degrees as shown. (b) shows two 
particular regions, P1 and P2 which have two different polarization states and orientation are shown. (c) shows a diagram of the 
typical stack or sandwich.  The bottom layer is a layer of homogeneous dielectric oriented to the polarization direction.  Birefringent 
layers of B1, B2...Bn will be deposited with thickness layers and specific process recipe calculated and optimized to compensate for the 
Fresnel polarization of light reflected form the telescope. 
 

The contrast (Imax-Imin)/(Imax+Imin) of a coronagraph system is related to the attenuation and retardance  by 
 
                                          1 Γ                                  (11) 
 
For a simple 1 layer SVRP plate the polarization compensation for the 30 degree and 15 degree angle of incidence is 
shown in Figure 6. Since the dispersion of a nano layer is very small, the polarization compensation is not that dependent  
on the material selection. Hence, other materials will result in comparable polarization compensation to that shown in 
Figure 6. The material selection is however very important for consideration of clarity, transmission, alignment, 
fabrication, thermal and space-radiation effects. 
 

 
 
Figure 5. Retardance as a function of wavelength (a) at an angle of incidence 30 degrees (b) at  and angle of incidence 
of  15 degree  
 

 
 
 
 
 
 
 
 

 
 

Figure 6.   Single cell design of MgF2. (a) For an angle of incidence of 30 degrees retardance as a function of 
wavelength and after compensation by a single layered device reduces the retardance to better than 0.01 degree over 
500-700nm.  Note the scale is 1/10 that of Figure 5. 
 
 



 
 

 

 

4. FABRICATION AND EXPERIMENTAL RESULTS 

The Langley Optical Nanomaterials Synthesis and Fabrication Laboratory (ONSL) supports fabrication of devices with 
50-nm position resolution and 0.6-micron feature sizes for advanced optical devices up to meters in diameter. Because 
the key fabrication equipment is digitally controlled, devices can be fabricated inexpensively and rapidly, facilitating 
design refinements and modifications. Hence, the facility can support fabrication of polarization compensation devices 
throughout the lifecycle of an exoplanet mission from demonstration in a prototype NASA coronagraph system to 
fabrication of a final flight device.  
 
The ability of the birefringent layers to orient in a particular direction when in contact with a specially prepared surface 
is a phenomenon of major importance other SVRP plate fabrication.  There are several methods used in the OSNL.  The 
lab has made significant progress in the development of photo aligned materials. Manufacturers require alignment layers 
with a wide range of optimized properties. Thin films must easily be formed with high photosensitivity in order to 
facilitate rapid processing and also to avoid unwanted degradation. The resultant photo-aligned film must be insoluble 
and thermally, electrochemically and photo-chemically stable. 
 
4.1  Photo-alignment using photo degradation 
 
The successful photo-alignment of a polyimide is considered to be an important technological goal because of the high 
thermal stability of polyimides and their acceptance as the alignment layer of choice by the LC display industry. 
Hasegawa and Taira17 first reported photo-alignment of polyimide by polarized light exposure at 257 nm. Homogeneous 
LC alignment was obtained in a direction perpendicular to the polarization of the incident UV beam. This is the direction 
of the maximum density of unbroken polyimide chains on exposure. Therefore, alignment was attributed to the 
anisotropic depolymerization of the polyimide.  Further studies confirmed this and the alignment direction was shown to 
switch by varying the polarization direction of the aligning beam18.  
 
Figure 7 shows the birefringence for polyimide that was aligned by photo-degredation.  Nissan SE-7492 in the form of 
polyamic acid was used as the alignment layer. The polyimide film was spin-coated onto a quartz substrate. It was cured 
at 250 degrees C for one hour or 200 degrees C for 1 1/2 hours. A 200-watt Hg (Xe) lamp equipped with a dichroic 
mirror reflecting from 230 to 430 nm was used as the light source. A dichroic UV linear polarizer was used to obtain the 
linearly polarized UV light. The average power density for the unpolarized and polarized light was approximately 40 and 
10 mW/cm2, respectively, measured using a radiant energy meter. 
 
The transmittance curve from this rudimentary spectroscopic ellipsometer was processed along with a simple model to 
determine the dispersion of the birefringence. The standard expression for an a-plate with positive birefringence between 
crossed polarizers applies8-9: 
 

               2      (12) 

 
where T0 is the unpolarized irradiance incident on the first polarizer,  is the wavelength, d is the film thickness, n is 
the birefringence, and  is the angle between the effective optical axis of the birefringent film and the transmission axis 
of either polarizer (~always set to 45° in our geometry).  Since T is a periodic function involving a square root, the value 
of n cannot be unambiguously determined without some additional steps. Two methods are used to find the dispersion 
of the birefringence from the transmittance. The first method involves a direct computation from the data. From 
Equation (12) , the birefringence can be expressed as: 
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where m is a non-negative integer that describes the order of the solution. From basic principles of these optically 
transparent materials, it is known that   is continuous across the visible spectrum. Hence, the sign of the sin-1 function 
and the order m are constant between each maximum and minimum in T. Thus, one can simply manually or 



 
 

 

 

computationaly choose both parameters for each data point such that the ambiguity is resolved and a continuous solution 
n(  is found. 

 
A second method that is often used and useful in optical system design8-9 involves an indirect solution that requires the 
least-squares fit of a dispersion model to the transmittance. Since polymer films are optically transparent 
throughout the visible region, the refractive index can be modeled by the first-order Sellmeier dispersion17 relation: 
 

n( )2-1=a+b 2/( 2  )                (14) 
 
where a, b, and 0 are constants. Granting the standard assumptions, this can be reduced to the slightly simpler Cauchy 
formula: n( )=A+B/ , where A and B are constants for a given material.  The dispersion of the birefringent film is 
therefore modeled by the following equation: 
 

                  (15) 

 
where ∞ is the birefringence at long wavelengths and c is a constant. Note that the absolute values of the ordinary (no) 
and extraordinary (ne) indices are not required to determine n( ). In order to calculate the dispersion of the 
birefringence, Equations (14) and (15) are combined and utilize least squares minimization to find the parameters 

∞and c that give the closest fit to our transmittance data. 
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Figure 7. Representative data for uniaxial polyimide film: (a) transmittance between crossed polarizers and (b) 
birefringence calculated using equation (8).  
 
4.2 PhotoAlignment using a Polymerized Photo Polymer  
 
Another interesting method currently being investigating is an aligning method where photopolymers are polymerized 
with linearly polarized light19. The main advantage of this method is that it allows different orientations on the same 
glass or silicon  substrate. Several polymers have been tried, in particular poly(vinyl 4-methoxy cinnamate)18  and 
poly(vinyl cinnamate)19 both of which exhibited some birefringence. Both polymers exhibit a depletion cinnamic acid 
side chain molecule along the direction of polarization, increasing in the mean time the number of photoinduced cyclo 
additions along a direction perpendicular to the polarization direction. Therefore, pre-irradiated isotropically oriented 
molecules change into an anisotropic distribution of photopolymerized side chains, which can induce a definite 
orientation of liquid crystal molecules by means of their in-line aromatic rings. These methods are at a very low 
technical readiness level and hence require more research and development.  Such work will be performed at NASA 
Langley for use in exoplanet missions and will be reported in future publications. 
 

5.  SUMMARY 
 

Large aperture space telescopes are built with low F#’s to accommodate the mechanical constraints of launch vehicles 
and to reduce resonance frequencies of the on-orbit system.  Inherent with these low F# is Fresnel polarization which 
effects image quality. We have presented an approach of compensating for the Fresnel  polarization  apodization by 
using a spatially varying retarder plate (SVRP) along with modeling and experimental results.  
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