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17 Abstract 
18 
19 The Pannonian Basin is a deep intra-continental basin that formed as part ofthe Alpine 

20 orogeny. In order to study the nature of the crustal basement we used the long-wavelength 

21 magnetic anomalies acquired by the CHAMP satellite. The anomalies were distributed in a 

22 spherical shell, some 107,927 data recorded between January 1 and December 31 of 2008. 

23 They covered the Pannonian Basin and its vicinity. These anomaly data were interpolated into 

24 a spherical grid of 0.5°xO.5°, at the elevation of 324 km by the Gaussian weight function. The 

25 vertical gradient of these total magnetic anomalies was also computed and mapped to the 

26 surface of a sphere at 324 km elevation. The former spherical anomaly data at 425 km altitude 

27 were downward continued to 324 km. To interpret these data at the elevation of 324 km we 

28 used an inversion method. A polygonal prism forward model was used for the inversion. The 

29 minimum problem was solved numerically by the Simplex and Simulated annealing methods; 

30 a L2 norm in the case of Gaussian distribution parameters and a L\ norm was used in the case 

31 of Laplace distribution parameters. We INTERPRET THAT the magnetic anomaly WAS 

32 produced by several sources and the effect of the sable magnetization of the exsolution of 

33 hemo-ilmenite minerals in the upper crustal metamorphic rocks. 

34 

35 Keywords: CHAMP, Pannonian Basin, total and vertical gradient magnetic anomalies, 
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38 1. Introduction 
39 
40 The Pannonian Basin extends some 800 by 500 km in a generally east-northeast 

41 direction with depths extending to 7 km. Large crustal features produce long wavelength 



42 magnetic anomalies. These anomalies are sufficiently resolved by satellite altitude 

43 observations. The German satellite CHAMP was launched on July 15, 2000 (Reigber et al. 

44 2003, 2005) and it finished its mission on September 19, 2010. This satellite measured the 

45 gravity and magnetic field of the Earth with high accuracy. The total magnetic data are 

46 obtained by a scalar Overhauser magnetometer developed by the Laboratorie d'Electronique 

47 de Technologie et d'lnstrumentation in Grenoble, France. The accuracy of the scalar magnetic 

48 measurements was ±0.5 nT and these magnetic field data was recorded every second (Rother 

49 et al. 2003). 

50 CHAMP had a nearly circular, polar orbit its initial elevation of 456 km decreased due 

51 to upper atmospheric drag and it was boosted several times. The elevation interval of the orbit 

52 was between 319 and 340 km in 2008. The magnetic anomalies used in the present paper had 

53 been derived by the NASA by the application of the CHAOS2 model (Olsen et al. 2009). 

54 

55 2. Interpolation and coordinate transformation 

56 
57 The aim of our calculations is the reduction and interpretation of the magnetic 

58 anomalies over the Pannonian Basin and its vicinity (latitude, 38° - 52° North; longitude, 14° 

59 - 28° East). The magnetic measurements are mapped on a spherical shell at 319-340 km 

60 elevation, and these data are given as a function of the latitude, longitude and elevation. The 

61 experimental frequencies of the latitude, longitude and elevation distributions of the recorded 

62 locations are plotted in Figure 1. As shown, they generally cover our study area. Data whose 

63 Kp index was less than or equal to L were selected for further processing. Using this criterion 

64 we obtained 107,927 data points. These data are interpolated into a spherical grid ofO.5°xO.5° 

65 at the elevation of324 km. 

66 The Gaussian weight function ofthe 3D interpolation is 

67 

68 (1) 

69 

70 where k is the parameter of the weight function, LJi is the distance between the ith data 

71 observed and the single reference point of the spherical grid details are given by Veges 

72 (1971), Kis and Wittmann (1998), (2002). The interpolated value is normalized by the 

73 following: 

74 
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77 where n is the number of data taken into consideration and Ti is the ith total magnetic anomaly 

78 value. The interpolated total magnetic anomalies are plotted in Figure 2. 

79 For the methods used in this study, the quantitative interpretation of the satellite 

80 measured magnetic anomalies requires the transformation from a spherical to Cartesian 

81 coordinates. The origin of the Cartesian coordinate system is cp = 4 7° (latitude) and Il = 21 ° 

82 (longitude) at an elevation of 324 km. In accordance with the general usage in geomagnetism, 

83 the coordinate axes x and y directed towards the North and East, respectively, while the z-axis 

84 points downwards. The details ofthese computations are given in the Appendix A. 

85 

86 3. Vertical derivative and downward continnation 

87 

88 Vertical gradient anomalies show good correlation with the probable extension of the 

89 geologic body (Blakely 1995). They qualitatively delineate the lateral extension of the 

90 magnetic source. The determination of the vertical gradients is a linear transform; its transfer 

91 function is given by: 

92 

93 (3) 

94 

95 where Ix and h are the spatial frequencies in the x and y axes (Blakely, 1995). It has long been 

96 recognized that high frequency amplification is undesirable, since these frequencies possess 

97 the lowest signal-to-noise level. In order to eliminate noise this transfer function is multiplied 

98 by a two-dimensional Gaussian low-pass window: 

99 

100 

101 

(4) 

102 The parameter k controls the passed frequency range. The weight function of this transform 

103 is: 

104 

3 



105 (5) 

106 

107 where M means the confluent hyper-geometric function. The details of this transform are 

108 given by Kis and Puszta (2006). The vertical gradients of the total magnetic anomalies at the 

109 altitude of 324 km are plotted in Figure 3. A negative anomaly, with a minimum gradient of 

110 0.0 I nT/km, covers the Pannonian Basin. The spatial shape of the vertical gradient anomaly 

1 I 1 determines the extension of our model in the inversion procedures. 

1 12 The downward continuation of the magnetic anomalies can also be expressed as a 

113 linear transform. Its transfer function is: 

114 

115 

116 

( r ) { (2 2 )1/2) SdownwardVx,iy =exp\2JZh ix + 1;, , (6) 

117 where h is the downward continuation value. Different authors (Bullard and Cooper, 1948; De 

1 18 Meyer, 1974) have suggested the application of an appropriate window for the computation of 

119 this transform. We used, however, Mesk6 (1984) for our procedure. 

120 

121 (7) 
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122 

123 This equation is our modified transfer function for the solution of the downward continuation. 

124 From an earlier calculation we have the CHAMP total magnetic anomalies on the elevation of 

125 425 km (Taylor et al. 2005). We will use this as our base level for the downward continuation. 

126 This transformation is used for the downward continuation plotted in Figure 4. The 

127 parameters of the downward continuation are: average sampling interval 41.3 km, h depth of 

128 downward continuation. The appropriate value of the parameters ofy and/rc is 145 and 0.005, 

129 respectively. The anomalies at 425 and 324 km altitudes as well as the downward continued 

130 anomalies are presented in Figure 4. The deviation between the calculated magnetic 

131 anomalies and the downward continued anomalies is probably caused by the different depths 

132 of the complex magnetic sources especially in the North-East part of the downwarded 

133 anomalies, in the territory ofthe Carpathian Mts. 

134 

4 



135 4. Model ofinversion and Bayesian inference 

136 

137 The magnetic anomaly map (324 km) reveals a large NW-SE oriented negative 

138 anomaly (- 13 nT) in the middle of the Pannonian Basin (Figure 4). The qualitative 

139 interpretation of this anomaly was given by Taylor et al. (2005), the reverse magnetization of 

140 (-1.5 Aim) of the upper crust was the basis for their interpretation. The anomaly was forward 

14 I modeled by a triangular polygonal prism using Plouff s (1976) method. Our calculated 

142 magnetic anomaly field (324 km) corresponds to the previous magnetic anomaly field (425 

143 km) (Taylor et al. 2005). 

144 The shape of the forward model and the magnetization are the same as they are in the 

145 qualitative interpretation (Taylor et al. 2005). For the solution of the inverse problem the 

146 magnetic anomaly of 324 km is used and the direction of the magnetization is a = -60°, fJ = 

147 60°, I = 60° and D = 0°, where a and fJ are the inclination and declination of the 

148 magnetization and I and D are the inclination and declination of the Earth magnetic field. 

149 Model parameters are the top and bottom of the polygonal prism, and the three coordinate 

150 pairs of the horizontal triangle (Figure 5). 

151 An effective tool of the geophysical inversion IS the Bayesian inference. The 

152 mathematical basis and theory of the method are summarized, for example, by Box and Tiao 

153 (1973) and Tarantola (1987); its geophysical application is given by Duijndam (1988a), 

154 (l988b), Menke (1989), Sen and Stoffa (1995). The elements of the measured and model 

155 vectors are indicated by d and m; they are random variables. 

156 The conditional probabilities in the applied Bayesian equation (Bayes, 1763) is 

157 

158 

159 

p{m/d)= p{d/m)p{m) , (8) 

160 where p(m/d) is the a posteriori conditional probability density, p(d/m) is the likelihood 

161 conditional probability density, and p(m) is the a priori probability density. 

162 The multivariate Gaussian a posteriori probability can be expressed as the 

163 multiplication of the a priori and likelihood probability densities. Disregarding the constant 

164 multipliers the a posteriori probability is given as: 

165 
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166 

167 

168 The ma 
priori vector expresses the interpreter's decision to select the value of the model 

169 parameters, Cm is the a priori covariance matrix superscript T indicates the transpose vectors. 

Th . . h . C h . f h . rrealculated() 170 e varIances m t e matrIX m express t e uncertamty 0 t e mterpreter. 1 x,Y,m 

171 represents the calculated magnetic direct problem with the parameters m at the X,Y 

172 coordinates. CD is the data covariance matrix. It consists of two parts (1) the measurements 

173 uncertainty matrix Cd (the measurements variances), and (2) the model error matrix C T , 

174 namely 

175 

176 

177 

(10) 

178 The elements of the model error matrix are also determined by the interpreter. This matrix 

179 contains the goodness of the selected model. 

180 The model parameter values of the source can be determined by the solution of an 

181 optimum problem. It means maximizing the a posteriori probability density as a function of 

182 m. This is equivalent to minimizing the sum of exponents of the Equation (9). The objective 

183 function E(m) has the following form of 

184 

E(m)=( (m _maprioriY C~ (m _mapriori))+ 

185 

+ ((dmeasured (x, y)- Tealculated (x, y, m)Y C-;; (dmeasured (x, y)- ralmlated (x, y,m ))). (11) 

186 

187 The minimum of the objective function is determined by a numerical method. 

188 The last step of the interpretation is the calculation of the a posteriori covariance 

189 matrix C'm. It is given in the form 

190 

191 

192 

C' ~{GT C-I G +C-1)-1 
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193 (Taranto la, 1987) and Gn is given by 

194 

195 (13) 

196 

197 The multivariate Laplace a posteriori probability density distribution is given by the 

198 following: 

199 

200 ( 
1 maprum I) [ Idmeasured(x,y)_Tca,cU'aled(x,y,m) I) 

P 
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(14) 

201 

202 where we disregard the constant multipliers. The objective function is expressed by the 

203 equation: 

204 

205 ( 
1 m aprliJrl I) ( Idmeasured(x,y)_Tca,cu,ated(x,y,m) ') 

E( m ):::: ......:....m-
C
-----:-I/,-::-2---'- + C 1/2 • 

m D 

(15) 

206 

207 The minimum problem is solved by the Simplex (Walsh, 1975) and Simulated 

208 annealing (Kirkpatrik et al. 1983, Sen and Soffa 1995) methods. The minimum problems are 

209 solved by L2 norm in the case of the Gaussian probability and by LJ norm in the case of the 

210 Laplace probability. Figures 6 and 7 show the objective functions versus iterative steps. These 

211 figures illustrate how these two optimum procedures work. The parameters estimated by the 

212 former numerical methods are summarized in Table 1. The covariance matrices are diagonal; 

213 there are no correlations between the related parameters. The a priori variances are set to (5 

214 nT)2, variances ofthe measured data are set to (0.5 nTl Because the complex structure of the 

215 direct problem the elements of the a posteriori covariance matrix are approximated by 

216 difference quotients of Equation (13). 

217 Figure 8 shows those residual anomalies that determine the application of the 

218 parameters given in Table 1. The residuals in the four parts of the figure are calculated for 

219 Gaussian and Laplace parameter distributions determined by Simplex and Simulated 

220 annealing methods. It can be concluded that the lowest residuals are given by the Laplace 

221 distribution parameters obtained by the Simulated annealing method. 

222 
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223 5. Possible origin of the magnetization of sources 

224 

225 Large amplitude magnetic anomalies have been mapped by aircraft and satellites over 

226 regions of the Earth and by satellite over the Martian crust. Many of these anomalies have 

227 negative signs. For our geological interpretation we call upon analogous source regions such 

228 as the Mid-Proterozoic granulites in southwestern Sweden (McEnroe et al. 2001); Proterozoic 

229 Ana Sira anorthosite in Rogaland, Norway (Robinson et al. 2002, McEnroe et al. 2004, 2005) 

230 and the metamorphic complex in Modum district, Southern Norway (Fabian et al. 2008). 

231 The magnetic properties of these rocks have been investigated by the above mentioned 

232 authors. They suggest that the stable remanent magnetization is caused by the exsolution of 

233 the hematite-ilmenite minerals. This exsolution can produce stable ferrimagnetism which is 

234 investigated by model calculation (Robinson et al. 2002) and transmission electron 

235 microscopy analysis (McEnroe et al. 2005). These analyses show 1 Jll11 to 4 nm exsolution of 

236 both hematite lamella in ilmenite hosts and ilmenite lamella in hematite hosts. The contact 

237 zone of these minerals can produce strong ferromagnetic effect which belongs to neither 

238 hematite nor ilmenite source rocks. 

239 According to Kleteschka et al. (2002) stable remanent magnetization can be developed 

240 in the hemo-ilmenite minerals. The remanent magnetization is formed in the cooling process. 

241 The anti-ferromagnetic hemo-ilmenite lamellas have multi-domain structures. They are able 

242 to form intense thermo-remanent magnetization. This process can be more intensive in the 

243 exsolution of hematite-ilmenite minerals. 

244 Is this kind of magnetization found in the crust of the Pannonian Basin? The deep 

245 magnetic sources are located in the upper crust; they probably belong to the eastern part of 

246 Variscan Europe (Szederkenyi 1996, Tari and Pamie 1998). The granulite xenoliths and 

247 peridotite xenoliths obtained from the Pliocene basaltic rocks located in the Balaton 

248 Highlands (Pelso-unit, part of the African Alcapa block). These granulite and peridotite 

249 xenoliths discovered in these locations show crustal and upper mantle origins as suggested by 

250 Embey-Isztin et al. (2003) and Dobosi et al. (2003). According to the thermo-barometric 

251 investigations of these xenoliths they formed at a temperature of 800-900° C and at pressures 

252 of 8-15 kbar (0.8 to 15 OPa). These meta-volcanic xenoliths have apparently formed at a 

253 depth of 40-50 km. This depth is significantly deeper than the present 25-30 km thick crust. 

254 The present crust was developed in the Tertiary due to the NW-SE extension of the 

255 Pannonian Basin (Konecny et al. 2002). The alkaline basaltic rocks were formed in the 
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256 Pliocene after the intense widespred Miocene calc-alkaline volcanism (Embey-Isztin et al. 

257 2001). 

258 The international literature discusses a few other possible solutions for source of large 

259 negative magnetic anomalies. Due to the unknown parameters of the source rock in the upper 

260 crust like age or direction of its magnetization, as well as accurate composition of this rock 

261 we can not propose proven fact for the source. But the granulite xenoliths and peridotite 

262 xenoliths obtained from the Pliocene basaltic rocks located in the Pannonian Basin give light 

263 evidence of the significant part of the negative anomaly presented in this study is derived to 

264 the exsolution of hematite-ilmenite minerals. 

265 

266 

267 6 Conclusions 

268 

269 The total magnetic field, vertical gradient and downward continued anomalies indicate 

270 a magnetic low over the Pannonian Basin. Our inversion method determined that the source 

271 region was in the upper crust of the basin. We propose that the strong magnetization can be 

272 produced in the crust of the Pannonian Basin. The CHAMP magnetic anomaly can be 

273 explained by the exsolution of hemo-ilmenite minerals. It has been previously reported that 

274 hematite-ilmenite mineralogy can produce stable remanent magnetization in the crust and in 

275 our study we propose that the crustal rocks of the Pannonian Basin display negative remanent 

276 magnetization. We further propose that some of the magnetic source bodies were formed 

277 during the late Miocene-Pliocene tectonic activity of compression and extension and/or 

278 volcanism (Hamor, 2001) and emplaced in the upper crust. 

279 

280 Appendix A 

281 

282 It is often required the transform of the satellite data from the spherical polar 

283 coordinates to Cartesian xyz coordinate system. This transformation can be done in two steps: 

284 one translation and rotation. 

285 The origin of the XYZ coordinate system is in the center of the Earth. The X-axis is in 

286 the plane of the equator and points to the Greenwich meridian. The Z-axis coincides with the 

287 Earth's rotation axis and points upward. The Y-axis is also in the plane of the equator and 

288 perpendicular to the XZ sheet and points to East. The X, Y, and Z coordinates of the satellite 

289 data are: 
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290 

291 

292 

X=rsin8cosA, Y=rsin8sinA, Z=rcos8, (A.I) 

293 where r is the distance from the center of the Earth, 8 and A are the colatitude and longitude, 

294 respectively. 

295 Let us translate the origin of the x'y'z' Cartesian coordinate system in the central 

296 point (ro, 80, )"0), where ro = Earth's radius + altitude of the satellite. The x', y', and z' axes are 

297 parallel to the X, Y, and Z axes. The lx, ty , and 1= coordinates of this point in the XYZ coordinate 

298 system are 

299 

300 

301 

302 The equations of translation are: 

303 

304 

305 

x'=X -tx , y'=Y -Iy ' z'=Z -tz . (A.3) 

306 The origin of the rotated Cartesian xyz coordinate system is the point (ro, 80, }eO), where 

307 the x-axis points to the geographic North; the y-axis to the East; and the z-axis points 

308 downward. The equations of rotation are: 

309 

x =- x' cos 80 cos Ao - y' cos 80 sin ..1,0 + z' sin 80 

310 y=- x'sinAo -y' cos ..1,0 (A.4) 

311 
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411 Captions 

412 

413 Figure 1. Experimental frequency of the CHAMP magnetic anomalies versus latitude, 

414 longitude and altitude over the Pannonian Basin and vicinity. 

415 

416 Figure 2. The CHAMP total magnetic anomaly map determined by interpolation of data from 

417 the Pannonian Basin region, plotted on an Albers' projection at 324 km altitude; anomalies 

418 are in nT with a range of 22 grey levels and a contour interval of 1 nT, inner frame shows the 

419 investigated territory. 

420 
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421 Figure 3. The vertical gradient map of the CHAMP total magnetic anomaly field, plotted in 

422 Albers' projection at the altitude of 324 km; anomalies in nT/km with a 14 grey scale levels 

423 and a contour interval of 0.005 nT/km, inner frame shows the investigated territory. 

424 

425 Figure 4. CHAMP magnetic anomaly maps at (a) 425 km and (b) 324 km altitude; (c) 

426 downward continued magnetic anomaly map from 425 km to 324 km, the maps are plotted on 

427 Albers' projection; grey scale units in nT. 

428 

429 Figure 5. Three dimensional triangular model of the magnetic source body we used in the 

430 inverse problem, upper and lower depths are indicated by: ZT and ZB, respectively, the 

431 triangular base is given by three coordinate pairs: (Xl,Yl), (X2,Y2) and (X3,y3). 

432 

433 Figure 6. Logarithm of the objective functions determined by Simplex method versus iterative 

434 steps in the case of the Gaussian and Laplace distribution model parameters. 

435 

436 Figure 7. Logarithm of the objective functions determined by Simulated annealing method 

437 versus iterative steps in the case of the Gaussian and Laplace distribution model parameters. 

438 

439 Figure 8. Residual anomalies in the case of the Gauss and Laplace distributed model 

440 parameters when the minimum problem is solved by Simplex and Simulated annealing 

441 methods; anomalies are in nT unit in a gray scale, horizontal coordinates are given in km. 

442 
443 Table 1. Determined parameters by Simplex and Simulated annealing methods in the case of 

444 the Gaussian and Laplace parameter distributions. 
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