
 

  

Abstract— We investigate techniques for estimating the 
contributions to TID hardness variability for families of linear 
bipolar technologies, determining how part-to-part and lot-to-
lot variability change for different part types in the process.  
 
Index Terms—radiation effects, reliability estimation, quality 
assurance  

INTRODUCTION 
Radiation Hardness Assurance (RHA) methodologies 

against Total Ionizing Dose (TID) degradation impose 
rigorous statistical treatments for data from a part’s Radiation 
Lot Acceptance Test (RLAT)[1] and/or its historical 
performance.[2],[3],[4],[5]  However, no similar methods exist 
to treat “similarity” data—that is, data for similar parts 
fabricated in the same process as the part under qualification. 
This lack is notable because interpreting similarity data is 
more difficult and potentially riskier than interpreting RLAT 
or historical data for the same part type.  

Rigorous techniques for using similarity data are essential 
for establishing the quantity or quality of data needed to judge 
a fabrication process radiation tolerant.  Moreover, by casting 
a broad net over the parts in a process, statistical treatments of 
process data are more likely than a small-sample RLAT to 
identify whether parts in a process may exhibit extraordinary 
lot-to-lot or part-to-part variability or other failure distribution 
pathologies.  Statistical analysis of process data can also be 
very valuable for part selection and design by bounding likely 
parametric degradation for a part before we have the 
opportunity to test it.  This last factor is a significant boon for 
parts susceptible to enhanced low-dose rate sensitivity 
(ELDRS) where waiting for test data could take months. 

 Here we develop methods to disentangle part-to-part, lot-
to-lot and part-type-to-part-type variation.  The methods are 
useful for qualification decisions as well as quality control and 
detecting process changes and other “out-of-family” behavior. 

We begin by discussing the data used in the study and the 
challenges of developing a statistic providing a meaningful 
measure of degradation across multiple part types, each with 
its own performance specifications. We then develop analysis 
techniques and apply them to the different data sets. 
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I. DATA 
All data are from public sources.  Data in Table I are taken 

from the Goddard Space Flight Center (GSFC) Radhome 
archival database,[6]  (test dates 1997-2008) and are for op 
amps fabricated in the Analog Devices Inc. (ADI) bipolar 
process (minimum feature size >2.5 μm).  Data in Table II are 
from reports for low-dose-rate (LDR) tests of Linear 
Technologies Corp. (LTC) RH-series parts, and are available 
on LTC’s website.[7]  Table III contains a subset of parts from 
Table I—those parts where we have data for multiple wafer 
lots, allowing us to explore lot-to-lot and part-type-to-part-type 
as well as part-to-part variation. For each lot in Tables I and 
III, we determined mean failure dose (where the first 
parameter exceeded specifications) and standard deviation 
about the mean.  For the parts in Table II, we calculated the 
mean percent change in input bias current: %∆Ib and its 
standard deviation. 

 
 

For all datasets, we chose either a normal distribution (if the 
quantity being fit was distributed from -∞ to +∞) or a 
lognormal fit (for quantities with values from 0 to +∞—e  .g. 
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TABLE I: ADI BIPOLAR OP AMP 
FAILURE DOSES—KRAD(SI) 

 

TABLE II: ∆IB FOR LTC RH 
SERIES PARTS (@50 KRAD(SI)) 

TABLE III: ADI OP AMP 
FAILURE DOSES (KRAD(SI))  
FOR MULTI-LOT SAMPLES  

Part # Function
Mean 

∆Ib
St. 

Dev.
RH1499 Op Amp 5% 0.02
RH119 V. Comp. 45% 0.04

RH1011 V. Comp. 56% 0.03
RH108 Op Amp 56% 0.10

RH1014 Op Amp 126% 0.06
RH1078 Op Amp 191% 0.04

RH27 Op Amp 215% 0.76

Part #
Lot Mean 
Fail. Level

Lot           
St. Dev. 

OP27(1) 39.00 2.80
OP27(2) 21.00 5.00
OP27(3) 28.50 5.07
Mean 29.50 4.29
St. Dev. 9.04 1.29
OP07(1) 9.50 3.20
OP07(2) 11.00 1.30
OP07(3) 7.60 1.10
Mean 9.37 1.87
St. Dev. 1.70 1.16
OP467(1) 9.90 1.30
OP467(2) 8.50 7.70
Mean 9.20 4.50
OP77(1) 21.19 4.08
OP77(2) 17.50 2.20
OP77(3) 10.50 1.60
Mean 16.40 2.63
St. Dev. 5.43 1.29
OP400(1) 8.00 1.76
OP400(2) 2.50
OP400(3) 4.69 3.04
OP400(4) 6.08 0.28
Mean 5.32 1.69
St. Dev. 2.32 1.39

Part # # lots

Mean 
Failure 
Dose

Avg. Lot 
Stand. 
Dev. 

OP177 1 2.5
OP400 4 5.32 1.7
OP497 1 5.7 1.2
OP467 2 9.2 4.5
OP07 3 9.4 1.9
OP97 1 11.1 1.5
OP270 1 12 2.8
OP271 1 12.5 2
OP470 1 12.5
OP11 1 12.6 2.3
OP77 3 16.4 2.6
OP200 1 22 1.7
OP27 3 29.5 4.3



 

failure dose).  However, since fit parameters for the lognormal 
distribution can be found by fitting the logarithms of the data 
to the desired distribution, we will represent the resulting 
means with the symbol μ and the standard deviations by σ. 

Because similarity data must consider TID degradation in 
many different part types, a first challenge is developing a 
meaningful criterion for comparing degradation across such 
different part types.  For the parts in Tables I and III, we 
defined failure dose as that where the first parameter (usually 
input bias current, Ib) goes out of specification for the device.  
 Such a failure criterion will not work for parts in Table II, 
since none of the parts failed parametrically or functionally at 
the highest dose of 50 krad(Si).  Here, we compare the parts’ 
parametric degradation—with input bias current change (∆Ib) 
as a proxy for degradation.  Because pre-rad specifications of 
Ib varied widely from part to part, we normalized input bias 
current changes to pre-rad values (to arrive at %∆Ib). 
Although the LTC site has only one lot of data for each part 
type, previous data show series performance to be quite stable 
from lot to lot.  For instance, 38 lots of RH1014 op amps 
showed that mean lot ∆Ib varying by less than 2-3x from 60-
200 krad(Si).[5] 
 Exploratory data analysis[8] revealed neither systematic 
correlation between mean failure level and standard deviation 
about the mean, nor any systematic time dependence of TID 
results that could indicate a process change.  As such, we 
determined distributions for mean failure doses and standard 
deviations independently, assuming all parts in a given process 
are representative of a single distribution.   

II. INFERENCE WITH LIMITED DATA 
Our goal is to quantify types of variation that affect TID 

response for parts fabricated in a given process.  These include 
part-to-part variation within the flight lot and variation in both 
mean hardness and part-to-part variability from lot to lot.  We 
can estimate part-to-part variation within a lot using RLAT 
data.[1] We can also bound it to a desired confidence level if 
lot-to-lot variation is well behaved and we have enough 
representative historical data.[2]-[5]  Likewise, unless the 
flight parts are exceptional, we can bound lot-to-lot variation 
with a large enough dataset of data for similar parts.  However, 
the dataset must include data for enough part types to be a 
representative sample for the process.  That is, we must be 
able to assess variability of mean hardness and part-to-part 
variation across lots for several (>3) part types in the process. 

 Because many of the parts in Table I include data only for 
a single lot, it is not possible to disentangle lot-to-lot variation 
from the part-type-to-part-type contribution.  Rather, the rank 
plot in Fig. 1 (upper) shows the probability (abscissa) that the 
mean failure dose of a random lot of a random part type drawn 
from the process will exceed a given failure dose. Assuming 
Weibull statistics (which give the best fit), with 90% 
confidence 90% of lots in the process will not exhibit first 
failure below 3.3 krad(Si), and a “typical” lot of a typical part 
will be hard to ~13 krad(Si).  The lower plot in figure 1 is a 

similar rank plot for the standard deviation of failures in a lot. 
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Fig.1 Rank plots of (a) mean and (b)standard deviation of failures in a lot for 
OP series op amps in Table I.  Plot a shows the probability that a random lot 
of a random part type remains within specification to a failure dose.  Plot b 
shows the distribution of part-to-part standard deviations about those mean 
failure doses.   

Likewise, for part types in Table II, we have data only for a 
single lot.   However, while we have data for fewer part types, 
the RH series is a radiation hardened process, so we expect 
lot-to-lot and part-to-part variation to be moderate. 

As such, the larger part-to-part variation exhibited by the 
RH27—sufficient to distort the lognormal fit to the other parts 
(Fig. 2a, b)—is surprising.  The part also exhibited the highest 
overall %∆Ib, although this was less out of family (Fig. 2c).  A 
query to LTC[9] revealed that the RH27 uses the same design 
as the commercial OP27 with no additional design hardening.  
As such, it likely represents a worst case for parts fabricated in 
the RH process.  In contrast, the RH1499 exhibits very little 
proportional increase in Ib, as well as excellent part-to-part 
consistency because it was specifically designed to capitalize 
on the hardness of the RH process.  This part probably 
approaches the limit of what can be achieved with process and 
design hardening. 
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Fig.2 Rank plots of mean and standard deviation for %∆Ib. a) The RH27’s 
standard deviation is an outlier, distorting the fit to the other part types (b). 
c) A Weibull form fits the mean increase in Ib, with the RH27 distorting the 
fit only slightly. 
 

Even minimally restrictive data can constrain failure 
distributions.  For the data in Table IV on ADI’s eXtra-Fast 
Complementary Bipolar (XFCB)  process,[10] we know only 
that all parts performed within specifications at the highest 
dose (column III).  Such suspension data (that is where the test 

is suspended before failure is seen) provide poor constraints on 
the failure distribution, since it can be fit equally well by a 
narrow distribution centered just above the highest test levels 
or a broad distribution centered far above the failure levels.  
These two extremes give very different answers as we look at 
behavior in their tails.  Even so, a fit of this data to a 
lognormal distribution (Fig. 3) shows that >99% of parts in the 
XFCB process will survive 45 krad(Si) with 90% confidence 
unless the failure distribution is extremely broad (e.g. even 
worse than a random failure distribution).   
 

TABLE IV: SUSPENSION DATA  FOR ADI XFCB PARTS  

 

 
 

Fig.3 Estimated lower-limit doses where 99% of XFCB parts would pass 
based on lognormal fits of Table IV’s data.  Parameters (µ,σ) within the 90% 
confidence interval are in unshaded cells.  The analysis shows that the 99/90 
lower limit for the process is 45 krad(Si) unless the failure distribution is 
exceptionally broad (σ>0.9), which is very unlikely given prior experience. 

III. DISENTANGLING VARIABILITY 
The data for multi-lot samples of ADI op amps in Table III 

allow us to estimate the contributions of part-to-part, lot-to-lot 
and part-type-to-part-type variation to the overall process 
variability.  However, because our dataset is still small, we 
want a process that is robust and relatively insensitive to 
fluctuations so that it evolves smoothly as we add more data.  
Our basic philosophy can be summarized as: “When in doubt, 
average.”  Averages tend to be robust against minor sampling 
fluctuations and other random errors.  As a measure of 
variability, we use the standard deviation (normal or 
lognormal), which, as the square root of the variance, or 
second moment, is also robust. 

Part # Type

                     
Dose krad(Si) 
(Dose Rate)

# 
Parts

AD6640 ADC >100               
(50 rad(Si)/s)

5

AD6640 ADC >1000 5
AD9042 ADC >1000 5
AD8184 MUX >103                  

(0.06 rad(Si)/s)
10

AD8063 Op 
Amp

>103            
(0.06 rad(Si)/s)

10

AD8001 Op 
Amp

>100              
(1.5 rad(Si)/s)

5

AD8001 Op 
Amp

>1000            
(150 rad(Si)/s)

5

AD8009 Op 
Amp

>1000 5



 

We describe the method in figure 4.  For each lot of each 
part type, we start with the mean failure dose and the standard 
deviation of failures about that mean.  Then we fit these means 
and standard deviations (both positive definite quantities) to 
their own lognormal distributions for each part type.  This 
results in 4 parameters as in reference 5: 

1) μμ—the expected mean failure dose for an average lot 
of a given part type 
2) μσ—the  expected part-to-part variability (standard 
deviation) in an average lot  for a given part type 
3) σμ—lot-to-lot standard deviation of expected mean 
failure level  for a given part type  
4) σσ—lot-to-lot standard deviation of part-to-part 
variability for a given part type.  

Then we fit each of these 4 parameters to appropriate 
distributions across part types, resulting in likelihoods for 
normal or lognormal parameters (one mean and one standard 
deviation) for each of the above variables (1-4): 

1) P(µµ,µµµ,σµµ) describes the distribution of µµ, across 
part types as a lognormal distribution with lognormal 
mean µµµ, and lognormal standard deviation σµµ. 
2) P(µσ,µµσ,σµσ) describes the distribution of µσ, across 
parts as a lognormal distribution with lognormal mean 
µµσ, and lognormal standard deviation σµσ. 
3) P(σµ,µσµ,σσµ) describes the distribution of σµ, across 
parts as a lognormal distribution with lognormal mean 
µσµ, and lognormal standard deviation σσµ. 
4) P(σσ,µσσ,σσσ) describes the distribution of σσ, across 
parts as a lognormal distribution with lognormal mean 
µσσ, and lognormal standard deviation σσσ. 
 

The parametric combination with the highest likelihood is 
the maximum likelihood distribution describing how the given 
variable is distributed across part types in the process under 
study.  However, because our dataset is small, it is unlikely to 
produce a sharp maximum in the likelihood.  As such, we use a 
likelihood-weighted model averaging approach similar to that 
in reference 11 and used later in 5, with weights given by: 

 
                                                                                            (1) 
where z represents the data. 

Thus, the probability distribution for expected hardness is 
                                                                                            (2) 
                                                                                                

This method takes the contribution to P(μμ) for each 
parametric combination (μμμ,σμμ) weighted according to the 
likelihood of that combination based on our data.  In many 
cases such model-averaging approaches can outperform 
maximum likelihood, because we preserve the contribution of 
every parametric combination, merely changing their weights 
as we add data, rather than selecting different parameters with 
each new addition.[11]  As such, the averaged probability 
distribution P(μμ) tends to evolve more continuously.  We 
calculate similar averaged distributions over the other 
parameters μσ, σμ and σσ. 

 These distributions allow us to bound expected failure 

dose, part-to-part and lot-to-lot variability to any desired 
confidence level for parts in the process.  While the limited 
dataset we have here likely results in a broad distribution, this 
merely means that the bounds we estimate are likely 
conservative.  The bounds will improve as we add data for 
more parts to constrain the model. Moreover, we can use the 
distributions to spot parts that may perform out of family for 
the process. 
 

 
 
Fig. 4 (Top) Fitting the mean failure dose and standard deviation (µij,σij) for 
each lot j of each part type i to lognormal distributions yields 4 parameters for 
each part-type (µµi, σµi,µσi, σσi).   
(middle) Fitting these four parameters across part types to suitable 
distributions yields 4 distributions that describe process variability in terms of 
4 distributions, each with 2 parameters: P(µµ,µµµ,σµµ), P(σµ,µσµ,σσµ),      
P(µσ , µµσ,,σµσ,) and P(σσ,µσσ,,σσσ). 
(Bottom) Because our dataset is small, rather than taking the single 
parametric combination that maximizes likelihood, we perform a weighted 
average over all parametric combinations using likelihood weights for the fit 
parameters. The resulting distributions describe part-to-part, lot-to-lot 
variation over the range of similar part types in the process. 
 

Applying this method to the data in Table III, the OP400 
appears to exhibit greater variability than other parts--
especially in its part-to-part standard deviation—from one lot 
to the next.  As we did for the RH27, we initially perform the 
procedure outlined above excluding the OP400 data.   Figures 
5-8 summarize the various contributions to variability within 
the process (omitting the OP400).  These curves show that 
while the OP400 is somewhat soft and variable in its lot mean 
hardness for the process (86% WC in expected mean hardness 
and 91% WC in lot-to-lot variation of mean hardness), lot-to-
lot changes in part-to-part standard deviation are at the 95% 
WC level for the process.  This indicates that the part could be 
out of family for the process.  Certainly, inclusion of the 
OP400 results in much broader distributions except for that of 
mean hardness.    
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Fig. 5 The expected mean failure level for arbitrary part types in the ADI 
bipolar (>2.5 μm feature size) process. 
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Fig.6 The expected lot-to-lot variation of mean failure dose for arbitrary part 
types in ADI’s bipolar (>2.5 μm feature size) process. 
 

Another part we would like to investigate is the OP484 quad 
op amp, which has been seen to exhibit significant lot-to-lot 
and part-to-part variability.[4],[5]   For example in one sample 
of 9 lots, the hardest lot had a mean failure level about 9× 
harder than the softest lot.  This would place this part roughly 
at 97% worst-case for the process based on figure 6, and it 
places at about the 90th percentile for variability in standard 
deviation (based on figure 8). 

 Although we cannot say definitively based on our small 
sample size that the OP400 and OP484 are out of family for 
the ADI bipolar (>2.5 μm) family, these parts exhibit much 
more lot-to-lot variability that other parts we have investigated 
in the family.  It is important to be able to identify such out-of-
family parts produced in a process, because they preclude 
qualification of parts in the process based solely on similarity 
data—unless we understand why the parts are out of family.  
That we could spot the OP400 and OP484 even with the 
limited dataset available illustrates the model’s robustness.   
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Fig. 7 The distribution of expected part-to-part standard deviations of failure 
doses for arbitrary part types in the ADI bipolar (>2.5 μm) process. 
 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0% 50% 100% 150% 200%

Expected Lot-to-Lot ∆σF (% of 〈σF〉)

%
 P

ar
t T

yp
es

  w
/ ∆

σ F
 <

 
Fig. 8 The distribution of variation of part-to-part standard deviations of from 
lot to lot for arbitrary part types in the ADI bipolar (>2.5 μm) process. 

IV. INFERENCE WITHOUT MULTI-LOT DATA 
The lack of multi-lot data for the LTC parts in Table II 

precludes disentangling lot-to-lot and part-type-to-part-type 
contributions to variability for the process.  However, we can 
look at performance of a “typical” lot for a “typical” part type 
in the RH process.  Figure 9 shows the distribution of lot mean 
∆Ib after 50 krad(Si) of low-dose-rate irradiation.  The curves 
were generated using a fitting and averaging procedure similar 
to that used in section IV.  Based on these curves, the RH27 
does indeed appear out of family, falling at the 81st worst case 
(WC) percentile for mean increased bias current 〈%∆Ib〉 and at 
the 99.8th WC percentile for part-to-part standard deviation 
σptp.   Even so, the degradation and variability are mild 
compared to the commercial processes like the ADI process 
investigated in section IV. 
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Fig. 9 Mean (a) and standard deviation (b) of percent increase in Ib 〈%∆Ib〉 
across part types and lots for LTC’s RH process.  90% of parts would exhibit 
less than a 4x increase in Ib after 50krad(Si).  Part-to part variation is small 
for the sample surveyed, with 90% of parts showing a part-to-part standard 
deviation σptp on %∆Ib less than 0.11. 
 

While the above plots do not separate the different 
contributions to variability, we noted above that the lot-to-lot 
consistency of the RH1014 quad op amp suggests that lot-to-
lot variation should be mild for the RH process.  As an 
example, mean ∆Ib at 100 krad(Si) (standard dose rates) 
varied by only a factor of 2.6 over 38 lots.[4],[5]  We assumed 
that ∆Ib was lognormally distributed and found that this lot-to-
lot variability equates to about half as much variability as we 
saw for the parts in Table II.  If the RH1014 is typical for the 
process, this suggests that lot-to-lot variability and variation of 
response over part types are roughly commensurate in the LTC 
RH process.  While this represents only a first guess that could 
change as we add data for more part types to refine our model, 
it demonstrates that even limited data can provide a useful 
working hypothesis to guide part selection while LTC 
continues to add to its list of parts tested at ELDRS rates.   

V. CONCLUSIONS AND RECOMMENDATIONS 
We have developed a statistical method that allows use of 

similarity data to bound likely radiation behavior of other parts 
in the process for which we do not yet have data or to 
supplement limited data for a part fabricated in the same 

process.  The method is sufficiently robust that it can provide 
meaningful constraints on radiation behavior even with small, 
imperfect data sets drawn from public sources.  Although the 
methods developed do not necessarily require multi-lot 
samples of data for a given part, we can begin to disentangle 
the contributions to variability for the process if we have at 
least three part types with data for three lots.  The multi-lot 
analysis provides estimates for expected mean performance 
and part-to-part variability, as well as how these quantities 
vary from lot to lot and part type to part type.   

Even if we lack data for multiple lots, we can still draw 
useful conclusions about how an “average lot” will perform—
especially for radiation hardened part families like the LTC 
RH series of parts.  Indeed, if the process is sufficiently hard, 
even suspension data like that for the ADI XFCB process in 
Table IV can place useful constraints on possible failure 
distributions.   

Although similarity data has traditionally been used mainly 
for qualification decisions, the methods developed here have 
several other uses.  Perhaps most important, they indicate 
when similarity data are inappropriate for qualification.  Thus, 
the “out of family” performance of the OP484 and OP400 
relative to other parts in the ADI bipolar (>2.5 µm) process is 
problematic because it is not understood, while the RH27’s 
greater degradation relative to other parts in the RH process 
can be understood based on its reliance exclusively on process 
hardening.  Also, because the method of necessity looks at all 
available data for parts in a process, it is useful for spotting 
process changes that may affect other parts in the process as 
well.  Because the method provides separate estimates of part-
to-part, lot-to-lot and part-type variation, it will likely also 
provide useful input for physics-based modeling for TID and 
for process and circuit hardening efforts. 

Although our goal in this study has been to develop a 
method that is sufficiently robust to yield useful results even 
with small, imperfect datasets, the model’s utility will improve 
significantly as we increase the dataset size or quality.  In 
particular, if data are drawn from a long time series of lot 
qualification efforts with consistent test procedures and 
conditions, much greater precision is possible.  Moreover, 
while here we have concentrated on a single parameter (Ibias), 
one can apply it across the board to all parameters or to 
different definitions of failure (e.g. functional).   

The robustness of the method should also allow it to be used 
with data from different sources, provided that test conditions 
are known to be consistent.  As a result, it increases the value 
of data sharing and of implementing consistent test methods 
that facilitate data interpretation as well as data sharing.   
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