A 5 MICRON IMAGE OF β PICTORIS B AT A SUB-JUPITER PROJECTED SEPARATION: EVIDENCE FOR A MISALIGNMENT BETWEEN THE PLANET AND THE INNER, WARPED DISK

Thayne Currie¹, Christian Thalmann², Soko Matsumura³, Nikku Madhusudhan⁴, Adam Burrows⁵, Marc Kuchner⁶

Draft version July 1, 2011

ABSTRACT

We present and analyze a new M' detection of the young exoplanet β Pictoris b from 2008 VLT/NaCo data at a separation of ~4 AU and a high-signal-to-noise re-reduction of L' data taken in December 2009. Based on our orbital analysis, the planet's orbit is viewed almost perfectly edge-on ($i \approx 89$ degrees) and has a Saturn-like semimajor axis of 9.50 AU$^{±0.93}$AU. Intriguingly, the planet's orbit is aligned with the major axis of the outer disk ($Ω \approx 31$ degrees) but probably misaligned with the warp/inclined disk at 80 AU often cited as a signpost for the planet's existence. Our results motivate new studies to clarify how $β$ Pic b sculpts debris disk structures and whether a second planet is required to explain the warp/inclined disk.

Subject headings: stars: early-type, planetary systems, stars: individual $β$ Picoris

1. INTRODUCTION

Two decades of studies have argued that the nearby, 12 Myr-old A-type star $β$ Pictoris likely harbors a young planetary system (e.g. Smith and Terrile 1984; Kalas and Jewitt 1995; Mouillet et al. 1997); recently, Lagrange et al. (2009a, 2010) detected a $\approx 9 ± 3$ M$_J$ planet around this star ($β$ Pic b). Imaged at projected separations of $≈ 6$ AU and $≈ 8$ AU (November 2003 and October–December 2009, respectively), $β$ Pic b – along with HR 8799e (Marois et al. 2010; Currie et al. 2011) – may also provide a more direct comparison to the solar system's gas giants than other directly imaged planets which are at wider separations (e.g. Fomalhaut b and HR 8799b; Kalas et al. 2008; Marois et al. 2008). Current studies have yet to detect the planet at projected separations $< 0.3''$ (Lagrange et al. 2009b; Fitzgerald et al. 2009). Data at these smaller separations could provide crucial constraints on the planet's orbit.

Imaging planets at small, $< 0.3''$ separations requires significantly reducing quasi-static speckle noise and wavefront errors induced by imperfect AO corrections. Advanced observing/image processing techniques like angular differential imaging (ADI) coupled with PSF subtraction from a locally optimized combination of images (LOCI) algorithm (Marois et al. 2006; Lafrenière et al. 2007) significantly attenuate speckles and increase sensitivity. New instrumentation, such as the Gemini Planet Imager (GPI Macintosh et al. 2008), will achieve far superior wavefront control. Generally, these efforts focus on planet imaging in the near-IR. However, mid-IR imaging naturally overcomes some of these challenges as the achievable Strehl ratio is better and the planet-to-star contrast is most favorable. High-contrast imaging with Strehl ratios > 0.9 can yield at least some planet detections close to the telescope diffraction limit (e.g. 2 $λ$/D for HR 8799d; Serabyn et al. 2010). Because M' band imaging often achieves these high Strehl ratios (Minnova et al. 2010; Hinz et al. 2006), it may be a promising route for detecting very young and self luminous planets at small $λ$/D separations, despite a much higher sky background.

In this Letter, we report a detection of $β$ Pic b at a separation of $≈ 0.21''$ extracted from archival M' band VLT/NaCo data taken in November 2008. We also present a high-signal-to-noise L' detection of $β$ Pic b from December 2009 data first published in Lagrange et al. (2010). We combine these data with recent data from Bonnefoy et al. (2011) and Quanz et al. (2010) to better constrain the orbit and atmosphere of $β$ Pic b.

2. OBSERVATIONS AND DATA

Our study originates from the need to test the ADI/LOCI reduction pipeline first presented in Currie et al. (2010) and updated in Currie et al. (2011) at separations smaller than those where the pipeline had previously extracted planet signals ($r < 0.375''$). Because $β$ Pic b's reported projected separation in 2009 was $≈ 0.3''$ (Lagrange et al. 2010), we chose the now publicly available Lagrange et al. L' band data from December 29, 2009 to test our code performance. Lagrange et al. (2010) discusses the details of the L' band observations. The total field rotation in units of the image FWHM was $≈ 3$ $λ$/D, sufficient for using our reduction pipeline.

Figure 1 (top-left panel) shows our processed L' band image using the LOCI algorithm in annular regions of 250×FWHM ($N_A = 250$) with reference images selected from frames with at least 0.5×FWHM field rotation ($δ = 0.5$). The planet is easily detected and is well separated from residual speckle noise. The planet signal-to-noise, determined from the dispersion in pixel intensity values in concentric annuli, is SNR $≈ 21$: about a factor of 4–5 greater than from Lagrange et al. (2010).

Motivated by this success, we searched for additional $β$ Pic data in the VLT/NaCo archive taken in ADI mode between 2003 and 2009, finding a set taken on November 11, 2008 with the L27 camera. Most of these data were taken in sparse aperture masking mode in K_s, L', and M' bands over a span of $≈ 4$ hours; these data were...
mentioned in Lagrange et al. (2009b) as not providing good constraints on the companion. However, we found \(\sim 13 \) minutes of the \(M' \) data taken in ADI mode without aperture masking at various times in between the masking data. Over the course of the entire observing sequence, the parallactic angle changed by \(\sim 100 \) degrees, or \(\sim 2.4-3 \lambda/D \) at 0.2\(^{\prime}\)-0.25\(^{\prime}\): sufficient for image processing with our pipeline.

Basic image processing of the \(M' \) band data followed steps outlined in Currie et al. (2011). After registering each image and subtracting off the smooth seeing halo, we Fourier filtered the data to remove residual low spatial frequency noise and masked any hitherto unidentified bad pixels previously lost in the seeing halo. We explored a range of LOCI parameter space, varying \(\delta, N_A, \) and the ratio of the radial to azimuthal lengths of the subraction annulus \((g) \). Because \(\beta \) Pic \(b \) is very luminous in the mid-IR (e.g. \(\Delta L' \approx 7.7 \); Lagrange et al. 2010, and Section 3 of this work), we focused on “aggressive” LOCI settings of \(g \) = 0.25–0.5, \(N_A \) = 200–300, and \(g = 0.3-1 \), which both remove residual speckle rise.

Figure 1 (top-right panel) shows our best reduced \(M' \) image. \(\beta \) Pic \(b \) is clearly detected in the southwest quadrant \(\sim 0.2-0.25' \) from the star (SNR \(\approx 6 \)). Manually inspecting each image between the radial profile subtraction and final image combination steps and examining a signal-to-noise map of the median-combined image also shows that the peak does not result from latent image artifacts. Slightly different settings for \(\delta, N_A, \) and \(g \) also yield significant detections (bottom panels).

3. ANALYSIS

Our new \(M' \) band detection and high signal-to-noise \(L' \) band detection allow new constraints on the planet’s orbit. To derive precise astrometry needed to investigate the planet’s orbit, we adopt the NaCo plate scale and orientation for the \(L' \) camera quoted by Bergfors et al. (2011): 27.1 mas/pixel and a north position angle of -0.6 degrees. These values are nearly identical to those for the \(L' \) camera quoted by Lagrange et al. (2009a) for 2003 NaCo data and for the S27 camera from Ehrenreich et al. (2010) calibrated from Trapezium data acquired closest in time to the \(\beta \) Pic data: our astrometric results does not leverage on which calibration we use.

To fine tune our measurements, we correct for the photometric and astrometric bias induced by LOCI processing by comparing the imputed fluxes and positions of fake point sources added to registered images with computed fluxes and centroid positions obtained after LOCI processing (e.g. Lafreniere et al. 2007; Thalmann et al. 2009; Currie et al. 2011). While we lack unsaturated data from this run to directly confirm the PSF shape, unsaturated \(M' \) data taken in prior runs such as that for HD 158882 (March 2007) show that the AO-assisted NaCo \(M' \) PSF core is axisymmetric and well reproduced by a simple Gaussian intensity distribution. For the \(L' \) band data, the astrometric bias is minimal, whereas \(\beta \) Pic \(b \)'s measured radial separation in \(M' \) band is biased by about +0.5 pixels \((0.013') \). The position angle offsets for both data were minimal.

We determine the \(M' \) band position to be at a separation of \(r = 0.210 \pm 0.027'' \) and position angle of \(211.49 \pm 1.9 \) degrees. The \(L' \) band position is at \(0.326 \pm 0.013'' \) and \(210.64 \pm 1.2 \) degrees (Table 1). Here we conserva-
crude magnitude estimate by scaling the M' PSF of HD 158882 to the unsaturated portion of the β Pic PSF and use HD 158882’s known brightness ($K_s = 5.09$; $K-M' \approx 0$) to calibrate β Pic b’s brightness. We estimate $\Delta M' \approx 8.02 \pm 0.50$ ($M_M \approx 9.99$), where we consider the uncertainties in our PSF fitting scaling, the dispersion in individual planet magnitude estimates drawn from separate reductions, and the intrinsic signal-to-noise of our detection. We determine an L' contrast of $\Delta L' = 7.71 \pm 0.06$. Combining the L' measurement with the K_s band and [4.05] data from Bonneau et al. (2011) and Quanz et al. (2010), we have three good quality photometric points to investigate the family of possible solutions for β Pic b’s atmospheric properties.

Figure 4 compares the β Pic b photometry to best-fit spectra for models with $\log(g) = 3.5/4-4.5$ and $T_{eff} = 1000-1800$ K for a range of cloud prescriptions: the Model A and AE thick cloud prescriptions respectively from Currie et al. (2011) and Madhusudhan et al. (2011) that best fit the HR 8799 planet SEDs, the Model E cloud deck prescription appropriate for brown dwarfs (Burrows et al. 2006), and a cloudless atmosphere. The χ^2 values for these models are, respectively, $\chi^2 = 24.8, 12.3, 20.4, $ and 43.2 for Models A, AE, E, and the cloudless case. The AE thick cloud model provides the best fit. Thick cloud models also produce redder $L''-M'$ colors at high temperatures, similar to that estimated here ($\approx -0.22 \pm 0.50$), though our lack of a reliable M' photometric calibration precludes strong conclusions. Good photometry is available in only three filters, so we cannot yet say that β Pic b has thick clouds like the HR 8799 planets (Currie et al. 2011; Madhusudhan et al. 2011).

The range of gravities and effective temperatures are $\log(g) = 3.5-4.5$ and $T_{eff} = 1400-1800$ K. The implied masses for these models range between 4.1 M_J and 19.2 M_J and ages range between 1 and 27 Myr, broadly consistent with the planet mass (9 M_J; Lagrange et al. 2010), stellar age (12 Myr; Zucker et al. 2001), and likely formation timescale ($\approx 3-5$ Myr; Currie et al. 2009). Planet fluxes in the near-IR (1-1.65 μm) and the 3-3.5 μm methane absorption trough are highly sensitive to cloud structure (e.g. Currie et al. 2011; Madhusudhan et al. 2011). Thus, J or H broadband data and/or narrow-band 3-3.5 μm data will be critical in breaking model fitting degeneracies.

4. DISCUSSION

We present a new detection of β Pic b in M' band at a separation of $\sim 0.21''$ ($a_{\text{projected}} = 4.05$ AU) from archival VLT/NaCo data taken in November 2008 and a high SNR reduction of L' data first reported by Lagrange et al. (2010), using these data to constrain the planet’s orbit and atmospheric properties. For orbits whose fit to the data yield $\chi^2 \leq 2.23$, we find that the β Pic planet has a semimajor axis of $a_p = 10.99$ AU $^{+1.60}_{-2.81}$AU and a moderate/low eccentricity ($e \leq 0.31$). Admitting orbital solutions with $\chi^2 \leq 8$, the parameter ranges are $a_p = 9.50$ AU $^{+3.93}_{-1.7}$AU and $e \leq 0.23$. In both cases, values for the planet’s inclination ($i \sim 88.06-89.69$ degrees) and longitude of ascending node ($\Omega \sim 30.56-32.12$ degrees) are tightly constrained and imply that the planet’s orbit is almost perfectly aligned with the outer debris disk, but not the inclined inner disk ($\Omega \sim 35-36$ degrees). We cannot extract reliable photometry from our M' band data; new data at 1-1.65 μm and $\sim 3-3.5$ μm is needed to constrain β Pic b’s atmosphere.

Numerous studies of the β Pic debris disk(s) have identified the star as harboring a young planetary system (e.g. Smith and Terrile 1984; Kalas and Jewitt 1995; Mouillet et al. 1997; Weinberger et al. 2003). More recently, the presence of a warp in the disk at ~ 80 AU – due to the combined effects of the main disk with PA ~ 30.8 and a second, inclined disk offset by 5 degrees – was identified as a clear signpost of a perturbing planet (e.g. Mouillet et al. 1997; Heap et al. 2000; Golimowski et al. 2006), motivating high-contrast imaging studies to image the planet. Lagrange et al. (2009a) identified β Pic b as a likely source of the inclined disk and used the disk morphology to derive mass estimates (see also Lagrange et al. 2010).

Our results suggest that β Pic b is probably not aligned with the inner disk/warp but rather the main disk, as the allowed range in Ω is offset from the main disk as measured by Kalas and Jewitt (1995) by no more than ~ 1 degree. Furthermore, the planet may be misaligned with the submm disk emission (Wilner et al. 2011), which is sensitive to dynamical sculpting by planets (Kuchner and Stark 2010). However, models accounting for the inclined inner disk presume that the planet’s orbit is also inclined relative to the main disk (e.g. Mouillet et al. 1997; Augereau et al. 2001). New beta Pic b astrometry, a more precise astrometric calibration of existing beta Pic NaCo data by determining and correcting for image distortion, and a detailed relative calibration between NaCo data and data revealing the disk will further clarify how beta Pic b’s orbital plane compares to that for the main disk and the inner disk/warp. Furthermore, our new orbital constraints for β Pic b strongly motivate new studies of the dynamical sculpting of β Pic’s debris disk by planets. If β Pic b or non-planet related mechanisms (e.g. Armitage and Pringle 1997) fail to explain the inclined debris disk/warp, the existence of additional planets in the system may be required.

Our M' band detection demonstrates that it is possible to directly image planets at separations approaching the telescope diffraction limit without sparse aperture masking interferometer (SAM; Ireland and Kraus 2008). The high Strehl ratio, large amount of field rotation, large mid-IR planet brightness, and LOCI processing pipeline are the keys to closing this gap. While SAM can detect planets interior to the telescope diffraction limit, it is overall less sensitive. However, the techniques can be complementary, yielding detections or robust limits on infant gas giant planets around the youngest stars on $\sim 5-100$ AU scales.

Upcoming facilities like GPI, SPHERE, SCExAO, and Project 1640 achieve higher contrast at small inner working angles in the near-IR primarily through more sophisticated wavefront control (Macintosh et al. 2008; Beuzit et al. 2008; Martinache and Guyon 2009; Hinkley et al. 2011). Our results, coupled with previous L' band detections of β Pic from Lagrange et al. (2009a, 2010) and the high signal-to-noise L' band detection of HR 8799e (Marois et al. 2010) suggest that the mid-IR may also be fertile ground for new exoplanet detections at small separations for very young systems. Young, nearby 1.5-2 M_\odot stars like β Pic are particularly promising targets in the near-IR.
for direct imaging surveys (e.g. Crepp and Johnson 2011) and many have resolved debris disks (e.g. HD 181327, Schneider et al. 2006; Chen et al. 2008). Imaging massive planets in such systems can yield additional studies of planet-disk interactions, such as those motivated by this work.

We thank David Ehrenreich, Karl Stapelfeldt, Scott Kenyon, Justin Crepp, and the anonymous referee for suggested improvements to the manuscript and Michael McElwain, Sally Heap, Sarah Maddison, and Aki Roberge for other useful discussions. TC is supported by a NASA Postdoctoral Fellowship. AB is supported in part under NASA ATP grant NNX07AG80G, HST grant HST-GO-12181.04-A, and JPL/Spitzer Agreements 1417122, 1348668, and 1371432. SM is supported by an Astronomy Center for Theory and Computation Prize Fellowship.

REFERENCES

Table 1

<table>
<thead>
<tr>
<th>Date</th>
<th>Filter</th>
<th>Separation (')</th>
<th>Position Angle (°)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-10-2003</td>
<td>L'</td>
<td>0.411 ± 0.008</td>
<td>31.7 ± 1.3</td>
<td>Lagrange et al. (2006a)</td>
</tr>
<tr>
<td>11-11-2008</td>
<td>M'</td>
<td>0.210 ± 0.027</td>
<td>211.49 ± 1.9</td>
<td>this work</td>
</tr>
<tr>
<td>12-29-2009</td>
<td>L'</td>
<td>0.326 ± 0.013</td>
<td>210.64 ± 1.2</td>
<td>this work</td>
</tr>
<tr>
<td>03-20-2010</td>
<td>K_s</td>
<td>0.345 ± 0.012</td>
<td>200.8 ± 0.8</td>
<td>Bonnefoy et al. (2011)</td>
</tr>
</tbody>
</table>

Note: Our astrometry and photometry are drawn from the three separate reductions shown in Figure 1. The L' measurement assumes $L_{\beta}/P_{\text{PC}} = 3.45$. The M' photometry lacks reliable photometric calibration and thus is not useful for atmospheric modeling.

<table>
<thead>
<tr>
<th>Date</th>
<th>Filter</th>
<th>Absolute Magnitude</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>03-20-2010</td>
<td>K_s</td>
<td>11.20 ± 0.12</td>
<td>Bonnefoy et al. (2011)</td>
</tr>
<tr>
<td>12-29-2009</td>
<td>L'</td>
<td>9.73 ± 0.06</td>
<td>this work</td>
</tr>
<tr>
<td>04-03-2010</td>
<td>[4.05]</td>
<td>9.77 ± 0.23</td>
<td>Quanz et al. (2010)</td>
</tr>
<tr>
<td>11-11-2008</td>
<td>M'</td>
<td>9.99 ± 0.50</td>
<td>this work</td>
</tr>
</tbody>
</table>

Beuzit, J.-L., et al., 2008, SPIE, 7014, 41
Hinkley, S., et al., 2011, PASP, 123, 74
Kalas, P., et al., 2008, Science, 322, 1345
Macintosh, B., et al., 2008, SPIE, 7015, 31
arXiv:1102.5089
Marois, C., et al., 2008, Science, 322, 1348
Marois, C., et al., 2010, Nature, 468, 1680
Martinache, F., Guyon, O., 2009, SPIE, 7440, 20
Minowa, Y., et al., 2010, SPIE, 7736, 122
Serabyn, E., et al., 2010, Nature, 464, 1018
Smith, B., Terriile, R. J., 1984, Science, 226, 1421
Fig. 1.— (Top-left) Reduced VLT/NaCo L' band image from Dec. 29, 2009 data showing a 21-σ detection of β Pic b at a separation of ~ 0.32". (Top-right) Reduced image showing the detection of β Pic b in M' band (same image size). The LOCI parameters used to construct the reduced image include $\delta = 0.25$, $g = 0.4$, and $N_A = 230 \times$FWHM. (Bottom panels) Reduced images using less aggressive LOCI settings – $\delta = 0.5$, $g = 0.5$, and $N_A = 300 \times$FWHM (left panel) and $\delta = 0.5$, $g = 1$, and $N_A = 300 \times$FWHM (right panel) – yielding detections of SNR ~ 5 and 4.5, respectively. In general, we detect the β Pic planet at a 4–6 σ level using a range of LOCI parameters: $\delta = 0.25–0.5$, $g = 0.5–1$, $N_A = 200–300$.

Fig. 2.— Orbital analysis results following the Monte Carlo method outlined in Thalmann et al. (2009), showing parameters for solutions fulfilling $\chi^2 \leq 2.23$. The left panel displays the family of solutions in semimajor axis, eccentricity, and inclination space. The right panels show histogram distributions of these three parameters and the longitude of the ascending node. The vertical dashed line identifies the weighted median value for each parameter; the vertical dotted lines define the 68% confidence interval for each parameter.
Fig. 3.— Same as previous figure except for orbital solutions fulfilling $\chi^2 \leq 8$.

Fig. 4.— Figures comparing the β Pic b photometry to spectra for a range of cloud prescriptions: the Model A 'thick cloud' limit used in Currie et al. (2011) (upper-left), the Model AE 'thick cloud' prescription from Madhusudhan et al. (2011) (upper-right), the Model E brown dwarf cloud prescription from Burrows et al. (2006) (lower-left), and a cloud-free atmosphere also from Burrows et al. (2006) (lower-right). The blue dots show the flux predictions for each bandpass. All models assume a modal particle size of 60 μm.