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Nitric-oxide planar laser-induced fluorescence (NO PLIF) was used to perform velocity 

measurements in hypersonic flows by generating multiple tagged lines which fluoresce as 

they convect downstream. For each laser pulse, a single interline, progressive scan 

intensified CCD (charge-coupled device) camera was used to obtain two sequential images of 

the NO molecules that had been tagged by the laser.  The CCD configuration allowed for 

sub-microsecond acquisition of both images, resulting in sub-microsecond temporal 

resolution as well as sub-mm spatial resolution (0.5-mm horizontal, 0.7-mm vertical). 
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Determination of axial velocity was made by application of a cross-correlation analysis of the 

horizontal shift of individual tagged lines. A numerical study of measured velocity error due 

to a uniform and linearly-varying collisional rate distribution was performed. Quantification 

of systematic errors, the contribution of gating/exposure duration errors, and the influence 

of collision rate on temporal uncertainty were made. Quantification of the spatial 

uncertainty depended upon the signal-to-noise ratio of the acquired profiles. This velocity 

measurement technique has been demonstrated for two hypersonic flow experiments: (1) a 

reaction control system (RCS) jet on an Orion Crew Exploration Vehicle (CEV) wind tunnel 

model and (2) a 10-degree half-angle wedge containing a 2-mm tall, 4-mm wide cylindrical 

boundary layer trip. The experiments were performed at the NASA Langley Research 

Center’s 31-Inch Mach 10 Air Tunnel. 

Nomenclature 

A21 = spontaneous emission coefficient, ns
-1

 

C = fluorescence decay correction factor 

dt = time step, ns 

m = timing index 

L = correlation window, pixels 

M = total simulation matrix time steps 

P = pressure, Pa 

Q21 = quenching rate, ns
-1

 

R = resolution, m/pixel 

S = signal intensity 

S1,max = initial maximum signal intensity 

S2,max = delayed maximum signal intensity 

T = temperature, K 

t = time, ns  

tD1 = first gate delay, ns 



tD2 = second gate delay, ns 

tG1 = first gate, ns 

teG1 = effective first gate, ns 

tG2 = second gate, ns 

tP = laser pulse duration, ns 

tN-1,% = student t-statistic  

uV,i = i-component of velocity uncertainty, m/s 

V = velocity, m/s 

δt = time step, ns 

δx = spatial step, pixels 

Δt = timing separation, ns 

ΔtND = non-decay timing separation, ns 

Δx = spatial separation, pixels 

ΔxND = non-decay spatial separation, pixels 

τLIF = fluorescence lifetime, ns 

I. Introduction 

HE ability to perform quantitative velocity measurements in a hypersonic flow can be complicated by the 

extreme dynamic and thermodynamic conditions present in hypersonic test facilities and the limited optical 

access to the test section. Nevertheless, these measurements are needed to validate computational modeling 

efforts aimed at improved understanding of the physical characteristics of such flows. Recent experimental 

hypersonic wind tunnel measurement work at NASA Langley Research Center has been focused on providing 

quantitative velocity data. The NASA Langley Research Center 31-inch Mach 10 blowdown air tunnel is frequently 

used for both fundamental and project-related testing (i.e. Space Shuttle Orbiter [1], Hyper-X [2], etc.) for which 

quantitative measurements are beneficial.  To date, off-body measurements performed in this facility have been 

limited to Schlieren imaging [3], pressure rake measurements [4], and more recently nitric oxide planar laser-

induced fluorescence (NO PLIF) flow visualization [3].The velocity measurements described in this paper were all 

performed in this facility using a single laser, single camera, 1-dimensional molecular tagging velocimetry (MTV), 

T 



which is a variation of the PLIF technique. The MTV PLIF technique has been shown to be an effective off-wall 

velocity measurement tool capable of providing spatially-resolved flowfield information [5].The optical access and 

availability of externally accessible pressure taps for use as a gaseous seeding system make the PLIF technique, and 

consequently the PLIF-based MTV method, well suited for use in Langley’s 31-Inch Mach 10 Air Tunnel. 

 The single-laser MTV technique, as applied to gaseous flows, was first demonstrated by Hiller et al. [6] to 

measure velocities below 10 m/s. The experiment utilized laser-induced phosphorescence to tag a single, vertical 

line of biacetyl molecules and measured the axial displacement of the line over a known time separation (up to 6 ms) 

to calculate velocity. A single-line, single-laser, flat plate velocity measurement in a hypersonic flow was conducted 

by Danehy et al. [7] and imaged the displacement of a line of NO fluorescence over a short time separation (250-750 

ns). A similar measurement, performed at multiple downstream locations of a supersonic nozzle flow, was 

performed by Lempert et al. [8] using an acetone tracer to provide an axial velocity map. Inman et al. [9] performed 

supersonic nozzle velocity measurements simultaneously at several (~22) downstream locations using NO as a 

tracer. By employing a grid pattern tagged using a biacetyl tracer, Stier and Koochesfahani [10] performed one of 

the first 2-dimensional MTV experiments.  

 Several other experiments have used a high-intensity laser pulse to generate a single-line of a particular species 

gas which can then be tagged by a second laser tuned to an excitation wavelength of these molecules. One such 

method involves the photodissociation of NO2 into NO by a high-intensity pulse and was first demonstrated by 

Orlemann et al. [11] and subsequently employed in gas velocity measurements [12,13]. Recently, Hsu et al. [14] 

made 2-dimensional supersonic MTV measurements using this technique. Other multi-laser fluorescence methods 

include air photolysis and recombination tracking (APART) [15,16,17], hydroxyl tagging velocimetry (HTV) 

[18,19,20], ozone tagging velocimetry (OTV) [21], and Raman excitation and laser-induced electronic fluorescence 

(RELIEF) [22]. Provided that optical access and sufficient laser energy is available, both one and two-laser 

techniques can be extended to provide two components of velocity either at a point or in a plane. This is 

accomplished by creating either a single crossing or grid pattern of intersecting laser lines which can then be 

analyzed with 2-dimensional cross-correlation algorithm [23]. 

 In addition to obtaining spatial displacement measurements using fluorescence-based MTV, the ratio of collected 

signal intensities between frames can be used to infer a thermodynamic state variable. Thomson and Maynes [24] 

performed a single-line laser-induced phosphorescence MTV experiment combined with thermometry. In the 



experiment, temperature was determined from a calibration in which the signal intensity along the tagged line was 

observed over a range of known temperatures. Hu and Koochesfahani [25] and Hu et al. [26] performed a 2-

dimensional laser-induced phosphorescence measurement of velocity and temperature about a heated cylinder. In 

these experiments, the ratio of signal intensities between successive frames was used to exploit the temperature-

dependence of the phosphorescence lifetime, and thus infer the temperature field. The use of laser-induced 

phosphorescence in these experiments was selected due to the relatively long lifetime and temperature sensitivity of 

the technique. This paper uses a similar signal ratio method to determine instead the error incurred in a 1-

dimensional MTV measurement due to collisional quenching.  

 By slightly modifying the existing NO PLIF flow visualization optical setup installed in the wind tunnel facility, 

we have been able to perform two separate 1-dimensional MTV experiments providing spatially resolved, 

quantitative velocity information. The first experiment provided velocity data for a yaw reaction control system 

(RCS) jet on an Orion Crew Exploration Vehicle (CEV), described in Ref. [27]. In this experiment, a spatial comb 

filter placed in the path of the laser sheet created a series of shadows to provide velocity profiles. The second 

experiment provided boundary layer velocity data for a 10-degree half-angle wedge model, described in Refs. 

[28,29]. For this experiment, the comb filter was replaced with a cylindrical lens array consisting of 25 1-m focal 

length cylindrical lenses diffusion-welded together. For both experiments, the nominal freestream Mach number was 

approximately 9.68 with a unit Reynolds number of approximately 1.7x10
6
/meter (0.5x10

6
/foot). 

 The purpose of this paper is to report both the demonstration of the MTV technique as applied to two 

differing hypersonic flows in a large-scale wind tunnel facility and to describe the analysis technique used to 

determine the velocity profiles and the associated measurement uncertainties. Prior work using the MTV technique 

has been performed by a number of authors using various techniques to analyze the fluorescence profiles. One 

particular analysis method, involving the cross-correlation of image pairs to calculate 2-dimensional velocity 

profiles with sub-pixel accuracy (Ref. [23]), is loosely followed in this paper. However, this correlation approach 

has been adapted for a one-component velocity measurement. The work reported in this paper makes use of an 

intensified, double-shutter camera with sequential frame spacing of 500 ns. This removes measurement sensitivity to 

vibration, which is a potential problem for single-shutter operations. The camera used in this work also eliminates 

errors that are otherwise associated with a two-camera velocimetry measurement, namely, scaling and shifting the 

two separately acquired images. We provide, for the first time, an estimation method to compensate for fluorescence 



decay and its effect on the spatial shift obtained via the cross-correlation method. To the authors’ knowledge, this 

paper represents the first presentation of single-shot (single laser pulse) velocity measurements with quantified 

uncertainty using the NO MTV technique. 

We will detail the MTV measurement technique by first describing our experimental setup, including the facility, 

wind tunnel models, laser system, and camera setup. We then describe how scalar velocity values are obtained, how 

the spectroscopic behavior of the gas changes the measurement and how such behavior is corrected through 

geometric considerations, along with a full description of the associated uncertainty calculations. Finally, we 

demonstrate the technique as applied to the CEV and wedge models by providing the spatially and temporally 

resolved velocity and uncertainty values and present a discussion of these results. 

II. Experimental Setup 

 The complete experimental setup consisted of the optical setup, camera system, two wind tunnel models, the 

PLIF diagnostic system, and the wind tunnel facility. Discussion of the two wind tunnel models, the PLIF diagnostic 

system and the wind tunnel facility will be summarized briefly. The camera system and its timing methodology will 

be discussed in detail in Section II.D. 

A. Wind Tunnel Facility 

 The 31-Inch Mach 10 Air Tunnel is an electrically-heated blowdown facility located at NASA Langley Research 

Center in Hampton, Virginia, USA.  The full details of this facility can be found in the paper by Micol [30], a brief 

summary of which is provided here. The facility has a nominal Mach number of 10 and a 31-inch square test section 

and operates on electrically heated, compressed air. Large windows, transparent in the ultraviolet, form three walls 

(including top, side and bottom) of the test section with the fourth wall formed by the model injection system. The 

top window allows for the laser sheet to pass through the tunnel section, while the side window allows for imaging 

of the flow region of interest. The model is side-mounted to the fourth wall. Run durations for the current tests were 

about one minute. A single facility stagnation pressure, P0, of 2.41 MPa (350 psia) was investigated for both 

configurations. The nominal stagnation temperature, T0, was 1,000 K (1,800 Rankine) for the experiments described 

herein. Based upon the stagnation conditions, the freestream Mach number was 9.68, the freestream velocity was 

1404 m/s, the freestream pressure was 68.3 Pa (9.90x10
-3

 psi), and the freestream temperature was 52.3 K (94.2 

Rankine) [30].  



B. Wind Tunnel Models 

 The first experiment was conducted using an Orion Crew Exploration Vehicle (CEV) model [27]. The axis of 

symmetry of the model was oriented at an 18° angle of attack with respect to the freestream velocity. In this test, 

only a single yaw RCS jet was analyzed. The RCS jet fluid consisted of a mixture of approximately 5% NO and 

95% N2 and was supplied to the pre-nozzle chamber at a pressure of 0.91 MPa (132 psi). The yaw RCS jet nozzle 

throat diameter was 0.7-mm (0.0275-inch) with an exit-to-throat area ratio of 22.5. 

 The second experiment was conducted using a 10° half-angle wedge model with a sharp leading edge, similar to 

that described in Ref. [28]. A 2-mm tall, 4-mm wide cylindrical boundary layer trip was positioned along the 

centerline 75.4-mm downstream of the leading edge (measured to the center axis-of-symmetry of the trip) to deflect 

the laminar boundary layer gas. The seeded gas was 100% NO, supplied at 150 SCCM (standard cubic centimeters 

per minute), and was seeded into the laminar boundary layer from an 11-mm-long, 0.81-mm-wide spanwise slot 

located 29.4-mm downstream of the leading edge. The flowrate supplied through this slot was assumed to minimally 

perturb the boundary layer flow. This assumption is based in part upon surface heat transfer measurements 

performed by Berry et al. [31] using a similar gas supply configuration. Analysis of these heat transfer measurement 

results and the degree of boundary layer perturbation associated with different gas-injection flow rates for the 

present wedge model are discussed by Danehy et al. [29].  

C. PLIF System 

 A pulsed Spectra Physics Pro-230 Nd:YAG laser was used to pump a Sirah Cobra Stretch dye laser at 532 nm to 

achieve a 622 nm output beam.  This output was mixed with 355 nm light from the Nd:YAG in a Sirah Frequency 

Conversion Unit to produce ~5 mJ per pulse at 226 nm. This beam was directed to the sheet-forming optics affixed 

above the tunnel test section. The duration of the pulse at this wavelength was approximately 9.5 ns. 

 To form a laser sheet, the collimated 226 nm beam was passed through a 36-mm focal length cylindrical lens, 

which expanded the beam in one direction while leaving it collimated in the other. A 1-m spherical lens then 

collimated the diverging axis of the beam and focused the other axis into a thin sheet approximately 75-mm wide by 

0.5-mm thick. To tag multiple lines of NO in the test section for a velocimetry measurement, either a spatial comb 

filter or lens array was placed below the sheet-forming optics. For the Orion CEV test, a spatial comb filter was used 

to create the series of vertical shadows. For the wedge model, a 50-mm-long, LaserOptik diffusion-welded lens 

array of 25, 1-m focal length cylindrical lenses focused the laser sheet into 25 lines, running parallel to the model 



surface and propagating in the spanwise direction. The lens array had an anti-reflection coating. The lines formed 

with each method typically had widths of approximately 1.1 mm at FWHM (full width at half maximum), with a 

2.5-mm separation distance between each line. 

D. Camera System and Timing 

 To image the tagged lines in both experiments, a Cooke DiCAM-PRO camera, utilizing an intensified 

1280x1024 pixel array interline progressive scan CCD, was used. For the wedge model, only a 1280x256 pixel 

region was used to image the flow so that an image read-out rate of 10 Hz, corresponding to the laser pulse 

frequency, could be achieved. Similarly, a 1280x288 pixel region was used for the CEV experiment. A 105-mm 

focal length, F/4.5 Nikon UV Nikkor lens was used for the CEV experiment and a 100-mm focal length, F/2.0 B. 

Halle Nachfl. lens was used for the wedge experiment. Spatial resolutions were 17.3 pixels/mm (439.4 pixels/inch) 

and 17.5 pixels/mm (444.5 pixels/inch) for the CEV and wedge model experiments, respectively. When used in 

double shutter mode, the camera is capable of acquiring an image pair with a minimum 500 ns delay between the 

end of the first gate and the beginning of the second. Each gate has a minimum duration of 20 ns, with delay settings 

and durations controllable in increments of 20 ns. 

 After the NO gas is excited by a laser pulse, the fluorescence intensity decays exponentially in time. The rate of 

this decay depends upon the local pressure, temperature, and gas composition influencing the tagged molecules. The 

camera used in these experiments did not allow for independent gain settings for the first and second exposures. To 

ensure a measurable signal during the second exposure, it was necessary to use the minimum gate delay setting of 

500 ns and keep the second gate open long enough to collect an adequate number of photons. Additionally, to 

maintain comparable signal intensities in both the first and second CCD exposures, the signal in the first exposure 

had to be attenuated. This was partly achieved by using the shortest gate possible (20 ns). Additionally, the timing of 

the first gate was such that it opened prior to the laser pulse and then collected fluorescence only during the first 

several nanoseconds of the laser pulse. This overlap of the first exposure and laser pulse is achieved by 

simultaneously triggering the camera and laser with a LabSmith LC880. The camera software then allowed coarse 

adjustment of the relative timing of the laser and first camera gate, in 20 ns increments. Fine adjustments on the 

order of 1 ns were then made by adding varying lengths of coaxial cable between the LC880 and the camera trigger 

input, The resulting overlap of the first camera gate and the laser pulse is referred to as the effective 1
st
 gate, having 

a duration of teG1. During experimentation, care was taken to avoid saturation of the CCD. 



 Table 1 gives the timing parameters used in the experiments. Figure 1 shows a generalized timing sequence 

adopted for these experiments. The vertical axis represents signal intensity, with the solid black line showing the 

exponential decay behavior of fluorescence with time. The darkly shaded regions represent the signal intensity 

captured during the first and second exposures. The lightly shaded regions are indicative of the first and second gate 

durations, respectively, while the region with the dashed black border indicates the laser pulse duration, tp. 

 

Fig. 1 Camera and laser timing sequence and signal intensity. 

 

Table 1. Laser and camera timing parameters 

Laser Pulse Duration, tP 9.5 ns 

1
st
 Gate, tG1 20 ns 

Effective 1
st
 Gate, tG1  

             
                

  

2
nd

 Delay, tG2 500 ns 

2
nd

 Gate, tG2  
            

              
  

Resolution  
                                        

                                          
  

III. Velocity Analysis 

Determination of the axial velocity is based upon a time-of-flight calculation in which the measured distance 

between the center of mass of the profile observed in the undelayed (first) and delayed (second) images,     , is 



divided by the time separating their acquisition,     , where the subscript ND means “no decay” and refers to the 

respective parameter determined in the absence of any fluorescence decay.  The velocity relation is therefore: 

   
    

    
 (1) 

 Obtaining values for      and      will be described below in sections B and C, respectively. 

A. Image Pre-Processing 

The spatial resolution for both experiments was measured by acquiring an image of a matrix of square marks 

separated at equal spatial intervals, known as a dotcard and described in Ref. [32]. When these spatial calibration 

images were acquired, the dotcard was placed in the plane of the laser sheet, later used to interrogate the seeded NO 

gas.  

To correct for optical and perspective distortion of the images in the wedge experiment, the image of the dotcard 

in the test section was acquired with the camera and a corresponding undistorted image of the same dotcard was 

created with Adobe Acrobat software. An image registration algorithm, UnwarpJ (Ref. [33]), was then used to 

correct the distortion. This software is a plug-in created for the image processing software, ImageJ, a freeware 

image processing program available from National Institutes of Health [34]. The image registration algorithm was 

not applied to the RCS velocity experiment images. 

To improve the signal-to-noise ratio in the images, MATLAB® was used to apply a 4-pixel radius average disk 

filter to the undelayed and delayed fluorescence images. The images were then binned by 4 pixels in the vertical 

direction. These two steps improved the signal-to-noise by smoothing camera noise and consolidating the signal in 

regions tagged by the laser. This provided approximate streamwise and spanwise spatial resolutions of 0.5-mm and 

0.7-mm, respectively. 

Prior to processing each image for velocity information, a background offset level was subtracted from the 

undelayed and delayed images. For the wedge experiment, the background level was obtained from images taken 

with the laser blocked. For the CEV experiment, the background level was obtained from a region where no laser 

illumination was present. Due to the shortness of the gate delay used between the undelayed and delayed images 

(500 ns) and the relatively long decay time of the P46 phosphor in the intensifier, some ghosting remained from the 

undelayed image in the delayed image. For the 500 ns gate delay, this level was experimentally determined to be 



approximately 1/126
th

 of the undelayed image. Therefore, this fraction of the undelayed image was also subtracted 

from the delayed image in addition to the background offset level.  

B. Spatial Analysis 

 To obtain the relative shift between individual lines in the undelayed and delayed image, a 45-pixel-wide 

window was selected that encompassed each vertical tagged line in the undelayed image. For each row of pixels in 

this window, an undelayed fluorescence profile was obtained. This window was positioned encompassed the same 

pixel region in the delayed image, with the delayed fluorescence profiles again acquired for each row in the window. 

The center of this window was positioned approximately 5 pixels to the right of the of the line center in the 

undelayed image. This was done to minimize clipping either side of the initial or delayed profile. A user defined 

threshold, applied to the maximum pixel intensity for each row in the undelayed image, was used to reject low signal 

profiles which might otherwise provide poor quality velocity information. In these cases, no velocity information is 

reported. 

 For each remaining profile pair, each of length L = 45 pixels, a cross-correlation was performed using 

MATLAB®’s xcorr function. The maximum value resulting from the array (of length 2L + 1 = 91 pixels) of cross-

correlation coefficient values then was found and a 7
th

-order polynomial fit, centered about this maximum, similar to 

the method used by Gendrich and Koochesfahani [23], was obtained. For this analysis, 11 points (centered about the 

maximum) were used to compute the polynomial fit. Setting the first derivative of this polynomial equal to zero and 

using a root-finding algorithm to determine the maxima of the polynomial fit, the resolved maximum of the 

coefficient values was obtained. The resulting difference between this resolved maximum and the length of the input 

profile vector corresponds to the total shift, in pixels, of each profile pair.   

 To obtain the average spatial displacement, in time, at a particular location along a tagged profile in the 

flowfield, the mean spatial shift for a set of N image pairs was calculated. 

C. Timing Simulation and Analysis 

1. Phenomenological derivation of displacement (neglecting fluorescence decay) 

In the absence of fluorescence decay, a phenomenological geometric argument can be made, based upon the 

camera and laser timing parameters selected, to describe the elapsed time between the undelayed and delayed 

images. This approach is a refinement of that of Danehy et al. [7]. Figure 2 shows two space-time-signal diagrams 

describing an infinitesimal spatial width laser beam exciting fluorescence at a rate of 1 block of molecules per unit 



of time. The axes are x for space, t for time, and S for PLIF signal intensity. The vertical plane along the time axis 

in Figs. 2a and 2b shows the relative timing of the first gate, laser pulse, and second gate, which are represented by 

the shaded areas with dashed borders. 

(a) (b)  

Fig. 2 Space-time-signal diagram of idealized CCD signal and acquisition of fluorescence with effective 1
st
 

gate shorter (a) and longer (b) than laser pulse. 

The blocks, which represent a 1-dimensional region of NO gas moving left-to-right, are shaded according to the 

means by which they emit fluorescence photons. The gray blocks in the lower left-hand region of the space-time 

diagram are excited and emit photons captured by the CCD camera during the overlap period of the first camera gate 

and the laser pulse. In Fig. 2a, the white blocks are excited and emit fluorescence while the laser pulse continues, but 

after the first camera gate has been closed (that is, they are not captured by the first camera gate). In Fig. 2b, the 

white blocks are excited and emit fluorescence after the laser pulse has ceased, but before the first camera gate has 

been closed. The gray blocks in the upper right-hand region of the space-time diagram represent fluorescence 

captured during the second camera gate.  

During the laser pulse, if a non-zero axial velocity is present, in the absence of fluorescence decay, each block of 

NO gas is assumed to be excited instantaneously by the pulse and convected one spatial unit,     , downstream per 

unit of time,     , with the ratio corresponding to the axial velocity,            . 

At each time step in this process, the emitted fluorescence from each block is captured by a pixel on the camera 

CCD array. During the first camera gate, the blocks of NO gas are excited by the laser and then convected 

downstream. If the effective 1
st
 gate is less than or equal to the pulse duration (Fig. 2a) then resulting intensity 

distribution along a row of pixels on the CCD takes on a right triangle-like profile. If the effective 1
st
 gate is greater 

than the pulse duration (Fig. 2b) then the right triangle-like profile becomes subject to some level of blurring across 



the pixels. In Fig. 2, this charge distribution is represented by the light-gray shaded area on the signal-spatial axis. 

The numbers, located directly below this area, are segmented into pixels along an array of the CCD and represent 

the total charge accumulated (in arbitrary units) during the two exposures (the right triangle-like profile 

corresponding to the 1
st
 exposure and the trapezoidal profile corresponding to the second exposure).  

In Fig. 2a, after the 1
st
 camera gate has closed, a total of four blocks of NO gas have been excited by the laser 

pulse. As the rectangular-shaped laser pulse continues for an additional two time units, and additional two blocks of 

NO gas are excited, resulting in a train of excited NO gas that is a total of six blocks long. In Fig. 2b, after the laser 

pulse has ceased, four blocks of NO have been excited. For the remainder of the effective 1
st
 gate, this train of 

excited NO gas continues to progress downstream with its fluorescence captured by the CCD. 

After the end of the laser pulse, the train of NO gas is convected. Then, the second camera gate is opened and the 

train of NO gas continues to convect downstream while the fluorescence is again captured by the CCD pixels. In this 

case, the charge distribution across the pixels takes on a trapezoidal shape, as shown in the shaded area of the signal-

spatial axis in Figs. 2a and 2b. Note that in Fig. 2a, if the end of the laser pulse had coincided with the end of the 

first camera gate, the NO gas would have been a 4-block train and the profile shape observed in the second camera 

gate would instead appear to be narrower and weighted to the right. This alternate profile shape is represented by the 

shaded area falling under the dark segmented line in Fig. 2a. If the effective 1
st
 gate exceeds the pulse duration, as in 

Fig. 2b, the profile observed in the first exposure would appear to be weighted to the right due to blurring of the 4-

block train. This right-weighted profile shape is shown extending to the left of the dark vertical line in Fig. 2b. 

 Based upon this timing sequence, which neglects fluorescence decay due to quenching, the apparent distance 

between the center of mass of the fluorescence profiles acquired during the first and second camera gates is: 

         
 

 
         

   

 
 

         

 
  =        (2) 

 In this example,         corresponds to the center of mass of the right triangle profile observed in the first 

exposure,     is the delay between the end of the first and start of the second exposures (typically 500 ns), and       

is the center of mass of the profile observed in the second exposure. The              term corresponds to the 

added weighting of either the second exposure profile if         or the first exposure profile if        . By 

dividing both sides of the equation by the velocity,  , an expression for the effective time between the first and 

second camera gates is obtained. 



2. Simulation and validation of the effect of fluorescence decay  

If relatively uniform thermodynamic conditions exist over the imaged region of a flow moving from left to right, 

fluorescence decay causes the perceived center of mass of the intensity profile observed in both the first and second 

image to become slightly left-weighted, with the effect being much more apparent in the second image.  This is 

because the fluorescence intensity of the tagged gas region decays exponentially in time. Therefore, as the gas is 

convected downstream, the upstream pixels receive more fluorescence than the downstream pixels. Figure 3a shows 

a simulated CCD exposure in which a spatially narrow top-hat beam is used to excite NO molecules being 

convected from left to right. This simulated second exposure, beginning 500 ns after the end of the first gate, shows 

the resulting fluorescence profiles observed with (solid black) and without (dotted gray) the effect of decay. The 

simulation is exaggerated to emphasize that an error can result if care is not taken to compensate for the effect of 

fluorescence decay. Figure 3b shows a simulation involving a more realistic 19-pixel wide (FWHM) Gaussian beam 

profile with (solid black) and without (dotted gray) fluorescence decay.  

Prior to simulating the first exposure, a zero-valued matrix consisting of           rows and L columns was 

initialized. For each time step, the intensity distribution was added to the     row of a profile matrix, initially a 

matrix of zeros, and then progressed by             . The process was repeated for the duration of the 

effective 1
st
 gate from   = 1 to  . At each row, a cumulative summation including all subsequent rows was then 

performed. This summation represented the contribution of a single blurred profile instantaneously created at the 

    time step. Using this summation matrix, a final summation was performed from rows     through   

      to create the first exposure array. 

For the second exposure, a profile matrix was again generated consisting of               rows and L 

columns. For each time step, the intensity distribution was added to the     row and then progressed spatially by 

                            . An array was then calculated by performing a summation over a total of 

       rows, and repeating this summation beginning at the first row and proceeding to the         row, adding 

each summation to the previous array, ultimately resulting in the second exposure array. 

For both the first and second profile array, the intensity distribution at each time step was multiplied by the 

exponential decay factor:  



 

     
        

    
 

     
 

       

  (3) 

where   is the current time step of the simulation,      the fluorescence lifetime,     is the pressure/temperature-

dependent collisional quenching rate, and     =  192.6 ns
-1

 is the spontaneous emission rate. Values for      and 

    were obtained from Settersten et al. [35,36] 

(a) (b)  

Fig. 3 Simulated CCD exposure using (a) a narrow top-hat spatial laser profile and (b) a Gaussian 19-pixel 

FWHM spatial laser profile. 

For these simulations,    and     were fixed at 9.5 ns and 500 ns, respectively. A temporal spacing of    = 0.05 

ns was used with a grid spacing of    = 0.01 pixels, corresponding to 0.6 μm experimentally. For the range of 

velocities used in the simulation, care was taken to satisfy the Courant-Friedrichs-Lewy (CFL) condition and a 

discretization density study was performed to ensure grid independence. The simulated laser excitation source had 

an intensity distribution approximated by a Gaussian spatial profile with a FWHM of 19 pixels located -2 pixels 

from the center of the correlation window. To estimate the effective 1
st
 gate duration for the simulation 

corresponding to the wedge and CEV tests, experimental signal ratios over a range of pressures at 298 K from a 

near-zero velocity field were obtained. These were then compared with simulated signal ratios over the same 

pressure range and temperature, but for multiple values for     . From this, it was determined that the effective 1
st
 

gate duration for the CEV and wedge experiments was 8.25 ns and 10.25 ns, respectively. Figure 4 shows the result 

of this validation.  



 

Fig. 4 Comparison of simulated and experimental signal ratio (first gate intensity divided by second gate 

intensity) as a function of pressure. Temperature is a constant 298 K. 

3. Use of signal ratio to correct for effects of fluorescence decay 

 If the fluorescence lifetime is known, the apparent shift in the center of mass of the fluorescence profile can be 

estimated by simulating the fluorescence acquired by both camera exposures, as described in Section III.C.2. By 

performing such a simulation, which accounts for blurring due to finite (non-infinitesimal) gate duration, a relation 

between the ratio of the maximum signal intensities of the undelayed and delayed frames and the fluorescence 

lifetime can be formulated. However, if the experimental fluorescence lifetime is not known, a simulation using the 

experimental camera timing parameters can be used to estimate the profile shape and signal intensity ratio for 

several different lifetimes. Using this approach, an experimentally obtained signal ratio can be used in conjunction 

with the simulation results to infer the fluorescence lifetime. With the known fluorescence lifetime, the simulation 

can then provide an estimate for the level of compensation needed to correct for the perceived profile shift. This 

paper uses the simulation approach to estimate the profile shifts observed experimentally. A range of fluorescence 

lifetimes corresponding to conditions encountered during typical wind tunnel tests were simulated for three different 

second-gate durations: 100 ns, 200 ns, and 300 ns. 



Figure 4 shows that above pressures of 900 Pa, a significant deviation from the simulated signal ratio trend 

occurs. This corresponds to       74 ns. For the test conditions reported in this paper, fluorescence lifetimes 

remained above this lower lifetime limit. The primary trend, however, is that as pressure increases, the signal 

observed during the second gate decreases, causing the ratio to increase. 

Once the first and second simulated exposures with and without fluorescence decay were obtained, the cross-

correlation algorithm described in the previous section was then applied to the simulated first and second exposures 

to determine the relative shift. For an arbitrarily simulated velocity magnitude,  , the time separation in the absence 

of fluorescence decay is known       , and the ratio of relative spatial shift obtained from the simulated exposures 

with      and without        fluorescence decay, along with the result of Equation 2, provides the following 

relationship: 

   
  

      
 

    

    
 (4) 

where the fluorescence decay correction factor,  , is used in the analysis to correct the time separation between 

exposures. Thus, the relation in Equation 4 simplifies to: 

   
  

    
 (5) 

 The coefficient,  , was determined from the simulation by analyzing the ratio of maximum signal intensities in 

the undelayed,       , and delayed,       , profiles and relating it to the profile shifts,    and     . Based upon 

analysis of experimental profiles, the ratio of intensity values,              , can be used, in conjunction with the 

simulation results, to measure of the NO fluorescence lifetime,     , and then infer the magnitude of apparent shift 

due to fluorescence decay. Using this methodology, the following relation between signal intensity ratio and 

correction factor was obtained using TableCurve 2D®: 

       
      

      
 
   

     
      

      
  (6) 

where the coefficient values for  ,  , and  , for a particular      and   , vary with the second gate duration,    . 

Table 2 provides the coefficient values used to compute the correction factor the CEV and wedge experiments. 

Figure 5 shows the behavior of this correction factor as a function of fluorescence lifetime. Curves for an effective 



1
st
 gate of 8.25 ns and second gate durations of 100 ns, 200 ns, and 300 ns are shown. Figure 5 shows that the effect 

of fluorescence decay, and thus of the correction factor, is most pronounced for short fluorescence lifetimes and long 

exposure times. 

Table 2. Correction factor coefficients. 

Coefficent CEV (teG1=8.25, tG2= 300 ns) Wedge (teG1=10.25, tG2 = 100 ns) 

  9.218x10
-1 

9.920x10
-1 

  2.309x10
-3 

4.247x10
-5 

  -1.636x10
-2 

-2.731x10
-3 

 

 

Fig. 5 Variation of timing correction factor used for CEV experiment as a function of fluorescence lifetime. 

IV.  Uncertainty Analysis 

The velocity uncertainty was based upon the contributions of magnification, accuracy errors, errors associated 

with spanwise velocity components, and the contributions of spatial and temporal uncertainties. The general form of 

the velocity uncertainty is: 

                                                   
       

  (7) 



A. Spatial Uncertainty 

 The uncertainty in velocity due to spatial uncertainties,      , was obtained by first determining the spatial shift, 

   , along each fluorescence profile for each single-shot image. The single-shot and average spatial uncertainties at 

95% confidence for a particular location were determined, respectively, by analyzing the sensitivity of the measured 

velocity to variations in spatial shift: 

 

      
  

     
     

 

      
         

 
               
   

   
 

            

      

          
     

  

 (8) 

where the product of the standard deviation,    , and the student t-distribution value at 95% confidence,         , 

represents the uncertainty in each spatial and temporal variable. In this equation   represents the number of resolved 

single-shot velocity measurements at a particular point in the flow field, which can vary from point to point, and is 

less than or equal to the number of single-shot images being analyzed. 

B. Timing Uncertainty 

The uncertainty in velocity due to uncertainties in the time separation,   , includes systematic uncertainties 

resulting from camera and laser timing jitters and duration uncertainties as well as uncertainty due to variations in 

signal intensities, which are used to infer the lifetime and calculate the correction factor,  . The definition of the 

uncertainty in velocity due the timing separation is: 

       
  

     
     (9) 

and the net temporal uncertainty,    , can be defined as: 

           
       

   
          

 
 
 

         
 
 
  

       

 
 
 

  
      

 
 
 

  
        

 
 
 

 (10) 

where the uncertainty due to correction factor,     
, is defined below. The remaining timing uncertainties are 

defined in Table 3. The root-sum-squared of the individual temporal uncertainties is applied to calculate the net 

temporal uncertainty because of the random nature of the individual uncertainties encountered during acquisition of 

the data. 



Table 3. Laser and camera timing uncertainties 

Laser Pulse Jitter,      ±0.1 ns 

1
st
 Delay Jitter,      

 ±2.0 ns 

Effective 1
st
 Gate Duration,       

 ±1.0 ns 

2
nd

 Delay Jitter,      
 ±0.5 ns 

2
nd

 Gate Duration,      
 ±1.0 ns 

 

 On a shot-to-shot basis, variation in the signal intensity between the undelayed image and delayed image at a 

point in the tagged profiles results in a variation in the correction factor. This results in apparent variations to the 

elapsed time between images. To minimize the magnitude of this variation, the second gate duration can be 

decreased, as was done in the wedge model experiment. In Fig. 5, as the second gate duration is decreased, the 

variation in correction factor as a function of fluorescence lifetime decreases. The single-shot uncertainty associated 

with the correction factor,      , at a point is calculated in the following equations. 

       
     

  
              (11) 

where    is the uncertainty in the correction factor. Further expanding this term gives: 

 

   
  

                
                 

                   
                

       
        

 
 

  
                

       
        

 
 

       
         

          
                 

 
 
   

   
           

 (12) 

where    is based on the functional form of the correction factor,  , in Equation 6. 

 The average correction factor uncertainty at a point for N resolved velocity measurements was determined in a 

similar manner: 

 

   
  

                
                 

                 
       

  
          

 (13) 



The variation in the camera and laser timing also contributed to the temporal uncertainty. Table 3 gives the 

magnitude of camera and laser timing and jitters and duration uncertainties used in the uncertainty analysis, with the 

largest contribution being from the jitter in the delay of the first gate. This jitter affected the overlap of the first gate 

and the laser pulse, as shown in Fig. 1, by varying the start of the first gate. Incorporation of these uncertainties is 

given in Equation 10. The timing and spatial uncertainties are grouped in the root-sum-squared term in Equation 7, 

and represent the uncertainty in velocity precision. 

C. Velocity Accuracy 

To determine the uncertainty due to magnification, several measurements were taken at nine different locations 

on the dotcard images. The average magnification and the standard deviation of the magnification,               , for 

the CEV and wedge model tests is given in Table 4. The general form of the magnification uncertainty for both 

experiments, using 9 measurements (8 degrees-of-freedom) at 95% confidence was: 

                  
  

  
               

         

      
                       (14) 

where           is the pixel shift between profiles in the undelayed and delayed images of the processed images. 

This uncertainty scales linearly with the measured pixel shift between the undelayed and delayed images. Table 4 

provides an upper-bound estimation of the uncertainty in velocity due to magnification error considering a 

maximum velocity of 790 m/s for the CEV experiment and 1260 m/s for the wedge experiment. 

 To estimate the accuracy of the cross-correlation technique as applied to the CEV and wedge experiments, 

velocity images were obtained while the wind tunnel was not operating, resulting in (nearly) static gas. While these 

images were collected, the tunnel pressure slowly increased from approximately 320 Pa to 1250 Pa. This was due to 

leaks present in the tunnel section when the pressure was reduced to near vacuum, and created the potential for small 

velocities within the test section. The images were then analyzed with the cross-correlation software to determine 

the velocity and uncertainty, as well as the signal ratio data provided in Fig. 4. Figure 6 shows the results of this 

zero-velocity analysis over the range of pressures tested. Based upon the mean velocity analysis, the accuracy was 

estimated to be ±10 m/s, shown by the accuracy bounds in Fig. 6. Table 4 also lists this accuracy value. 



 

Fig. 6 Velocity accuracy data obtained from low pressure, no-flow wind tunnel test. 

Table 4. Magnification and accuracy values. 

CEV 

Mean Magnification 5.75x10
-2

 mm/pixel 

Standard Deviation,                ±5.06x10
-5

 mm/pixel 

Maximum Uncertainty,                  ±1.12 m/s 

Wedge 

Mean Magnification 5.70x10
-2

 mm/pixel 

Standard Deviation,                ±3.67x10
-5

 mm/pixel 

Maximum Uncertainty,                  ±1.49 m/s 

Accuracy,        ±10 m/s 

 

D. Spanwise Velocity Uncertainty 

 In addition to estimating the axial velocity uncertainty, uncertainty due to unmeasured spanwise velocity 

components (parallel to the laser beam) must also be included. This uncertainty is a result of gas being convected in 

the spanwise direction between the undelayed and delayed frames. If a portion of the tagged profile at a particular 

location has moved in the spanwise direction after the first gate has closed, it will be incorrectly correlated with the 

portion of the undelayed image at the same spanwise location in the delayed image. This uncertainty will be most 

notable in regions of the flow with steep axial velocity gradients. 



 To obtain a refined estimate of this uncertainty, it was assumed that the only significant velocity components 

existed in the axial and spanwise directions. For this analysis, the difference between the maximum and minimum 

velocity magnitudes along a tagged line was assumed to be equal to the maximum potential spanwise velocity 

component. This assumption is based upon the knowledge that the dominant velocity components are positive and in 

the axial direction for both experiments. By multiplying the calculated spanwise velocity component for a particular 

line by     , the pixel shift corresponding to the spanwise component for that line was obtained. This procedure 

was repeated for all lines. 

 By shifting the delayed image up or down (in the spanwise direction) in 1-pixel increments, and correlating it 

with the original undelayed image, the axial velocity values in the presence of a uniform spanwise velocity 

component corresponding to these pixel shifts, is calculated. This is repeated up to the maximum shift value, 

rounded up to the nearest integral value, encountered for the image set. The root-sum of the squared difference 

between the unshifted (spanwise) axial velocity values and the pixel-shifted axial velocity values, in both the up and 

down spanwise directions, is calculated and represents the velocity uncertainty in the axial direction due to a 

spanwise velocity component corresponding to a particular pixel-shift magnitude. For each tagged line, using the 

maximum potential spanwise pixel shift magnitude calculated, the axial velocity uncertainty due to this potential 

spanwise velocity component is interpolated from the axial velocity uncertainty values obtained for the range of 

pixel-shifted images. 

V. Results 

A. RCS Jet 

 Figure 7 shows a flow visualization image and the corresponding field of view imaged by the camera. Figures 8a 

and 8b show an 87-shot average undelayed image and delayed image, respectively. Figure 8c shows the resulting 

87-shot average velocity components and associated uncertainties superimposed over a single-shot flow 

visualization image. In Fig. 8c, the green ordinate axes are located along the averaged center of maximum signal 

intensity of the tagged lines in the undelayed image (Fig. 8a) while the green horizontal axes serve as the velocity 

scale. The enlarged horizontal axis on the far right of Fig. 8c provides the magnitude of the velocity scale. The 

images were created using the Virtual Diagnostics Interface (ViDI) software developed at NASA Langley Research 



Center.
37

 The software is based upon Autodesk 3DS Max® software and provides a virtual environment in which 

experimental data can be combined with virtual models to aid in understanding the related fluid mechanics. 

 

Fig. 7 Orion CEV yaw RCS jet and field of view. A false color table has been applied to the PLIF image, 

which is displayed using ViDI. 

 
(a) 

 



(b) 

 
(c) 

Fig. 8 Orion CEV yaw RCS jet (a) reference image, (b) shifted image, and (c) velocity (location of center of 

black bar from green axis) and uncertainty results (bar widths) superimposed on a flow visualization image. 

False color tables have been applied to the PLIF and MTV images. 

In Fig. 8c, the velocity values are represented by the offset of the black horizontal bars from left-hand vertical 

axes. The width of these bars about the center corresponds to two-times the total uncertainty (Equation 7). Within 

the core of the RCS jet (lines 5 through 14 downstream of the nozzle), the mean velocity is approximately 669 m/s, 

with a 42 m/s standard deviation of this mean value. In the regions of highest signal level, such as the along the 1
st
 

and 4
th

 profiles within the core region, the mean uncertainties are approximately ±30 m/s and ±44 m/s, respectively. 

In regions where the signal level is relatively low, such as the downstream region of the core, the total uncertainty 

noticeably increases. This increased uncertainty is due to the difficulty in correlating lower signal-to-noise regions, 

which results in difficulties obtaining a highly-peaked polynomial fit of the correlation coefficients. Along the 19
th

 

line from the nozzle exit, outside of the core region, the average uncertainty is approximately ±348 m/s. 

Near the downstream and boundary regions of the RCS jet, the jet becomes unsteady and begins to fluctuate in 

the vertical direction of the image plane. This unsteadiness results in intermittent signal in these regions. The signal-

to-noise ratio in these regions is also decreased noticeably in comparison to the levels observed at the nozzle exit. 

These factors result in increased uncertainty. Additionally, large variations in measured average velocities along a 

single line results in increased spanwise velocity uncertainties. 

The most notable deviation from expected velocity occurred along the 2
nd

 profile from the jet exit. The measured 

velocity of this profile nearest the axis of the nozzle appears to reach a maximum of approximately 895±218 m/s. 

However, the theoretical maximum velocity the jet can attain at any point is 790 m/s. This value is calculated by 

assuming the stagnation enthalpy of the room temperature N2 gas supplied to the RCS jet is completely converted to 

kinetic energy. Therefore, any points where the combined velocity and uncertainty exceeded the theoretical 



maximum velocity value have been discarded. This over-prediction of velocity is due to the role of large quenching 

gradients in the immediate vicinity of the nozzle exit such that the fluorescence lifetime,     , on the left side of a 

tagged line is significantly shorter than on the right side. 

For the under-expanded jet, the gas pressure at the exit plane of the nozzle is sufficiently high for quenching to 

affect the tagged profile. Observing Fig. 8b, the region nearest the jet exit along the 2
nd

 profile is visibly weighted to 

the right. Due to this right-weighting, the cross-correlation erroneously calculated higher velocities (with associated 

uncertainties) that exceeded the theoretical maximum velocity obtainable. As the gas exiting the nozzle continues to 

expand, the gradient in pressure, and hence quenching, becomes insignificant and this velocity discrepancy no 

longer occurs. Observation of the delayed images suggests that beyond approximately 2 nozzle exit diameters 

downstream, this effect is negligible. In Fig. 8c, data points vastly exceeding this theoretical limit have been 

removed. 

Figure 9 shows a single-shot velocity and uncertainty measurement of the yaw RCS jet. The increased noise 

level, compared to the noise level for the averaged velocity measurements, occurring in the single-shot images 

results in greater velocity uncertainties. Similar to the averaged velocity measurement, regions in the single-shot 

image pair with relatively higher signal-to-noise levels have lower velocity uncertainties than the lower signal-to-

noise regions. For the higher signal-to-noise regions, such as along the 4
th

 profile from the nozzle exit in the jet core, 

the mean uncertainty is ±133 m/s. For lower signal-to-noise regions, such as in the core region along the 10
th

 profile 

from the nozzle, the mean uncertainty is ±454 m/s. 

 

Fig. 9 Single-shot yaw RCS jet velocity and uncertainty measurement. 

B. Wedge Model 

 Figure 10 shows the wedge model with the 2-mm by 4-mm tall cylindrical trip and the corresponding field of 

view imaged by the camera. Figure 11a shows an averaged PLIF flow visualization image. Figure 11b and 11c show 



38-shot averaged the tagged profiles for the undelayed and delayed images, respectively. Figure 11d shows the 

measured average velocity profiles obtained with the cross-correlation algorithm. 

 

Fig. 10 Perspective view of wedge model, trip, and corresponding field of view. 

 

(a) 

(b) 



(c) 

(d) 

Fig. 11 Wedge model (a) flow visualization image, (b) reference image, (c) shifted image, and (d) velocity and 

uncertainty results. Velocity scale (magnified) on the right in (d) is from 0 to 1438 m/s. The center of the black 

bars with respect to the green vertical lines in (d) are the 38-shot mean velocity values. The width of these 

bars represents the 95% uncertainty in the mean velocity measurement. Measurement is 2.1-mm above 

surface of the flat plate. 

Figure 11a shows the flow visualization image at approximately 1.7±0.3-mm off the model surface. Prior to 

passing around the cylindrical boundary layer trip, the boundary layer flow is completely laminar. After the flow 

passes the trip, the region directly behind the trip shows that some level of disturbance is occurring based upon the 

variation of signal intensities in this image. 

Figure 11d shows the result of the velocity measurement. The measurement was taken approximately 2.1±0.2-

mm above the model surface. The velocity scale for this image is 0 to 1438 m/s. In the first two lines upstream of the 

trip, the flow indeed appears to be nearly uniform and laminar. For the 1
st
 line, the mean velocity along the line is 

915 m/s with an average uncertainty of 41 m/s. For the 2
nd

 line, the mean velocity along the line is 1008 m/s with an 

average uncertainty of 32 m/s. Close examination of the third and forth lines in the region directly upstream of the 

trip shows a small level of bowing, away from the trip, in the velocity data that could signify some level of 

interaction with the trip. Along the 3
rd

 line the velocity drops to 905 m/s, along the 4
th

 line it drops to 830 m/s at the 

point of intersection with the centerline, and the flow is nearly brought to rest in front of the trip. As the flow 

progresses around the trip, the measured velocities appear to maintain the pre-trip velocity with the exception of the 

velocity values in the immediate wake of the trip. As the flow passes around the trip, a deficit of velocity extends 

downstream along the centerline, which is visible even in the raw delayed image shown in Figure 11c. In contrast, 



the flow downstream of the upper and lower edge of the trip in these images is accelerated beyond the unperturbed 

flow velocity occurring upstream of the trip and on the periphery of the image downstream of the trip. Downstream 

of the trip the velocity observed along the centerline drops to a low of 344 m/s on the 26
th

 line. In the accelerated 

flow region directly downstream of the top and bottom edges of the trip, the maximum velocity encountered is 1093 

m/s on the 22
nd

 line. 

(a) (b) (c) (d)  

Fig. 12 Magnified view of the mid-portion of the (a) 2
nd

, (b) 4
th

, (c) 10
th

, and (d) 24
th

 mean velocity profiles and 

their corresponding uncertainties. The dashed green line represents the mid-scale velocity of 719 m/s. 

Figure 12 shows from left to right the magnified views of the 2
nd

, 4
th

, 10
th

, and 24
th

 velocity profiles, 

respectively. The 2
nd

 profile (Fig. 12a) with a mean velocity of approximately 1008 m/s has uncertainties ranging 

from 27 m/s to 43 m/s. The decreased velocity feature, a left-bowing profile, in the 4
th

 velocity profile (Fig. 12b) 

gives uncertainty magnitudes ranging from 30 m/s to 43 m/s. The 10
th

 profile (Fig. 12c) shows a drop in velocity 

along the centerline to approximately 612 m/s. The increased velocities occurring above and below the low-velocity 

region are approximately 1040 m/s and 1021 m/s, respectively. In regions of steep velocity gradients, the maximum 

uncertainties encountered along this profile are on the order of 116 m/s to 125 m/s. The largest uncertainty 

immediately above (with respect to the magnified view) the lowest velocity value is 125 m/s, and is due to the 

inclusion of the spanwise velocity component uncertainty. The 24
th

 profile in Fig. 12d shows a similar trend to that 



of the 10
th

 mean velocity profile. The flow above and below the low velocity region, which has a minimum velocity 

of 593 m/s, has maximum velocities of 1058 m/s and 1050 m/s, respectively. 

 

Fig. 13 Single-shot velocity profiles and uncertainty bounds. 

Figure 13 shows a single-shot velocity measurement. The decreased signal-to-noise level in the single-shot 

image (versus the averaged image) results in more variability in the velocity measurements as well as increased 

uncertainty along each profile. The uncertainties encountered along the 2
nd

, 4
th

, 10
th

, and 24
th

 profiles in this single-

shot velocity measurement varied from 98 m/s to 192 m/s, 118 m/s to 183 m/s, 117 m/s to 277 m/s, and 131 m/s to 

615 m/s, respectively. 

VI. Discussion 

The double-shutter camera used in both the Orion CEV and wedge experiments served to reduce measurement 

sensitivity to vibration that would otherwise be encountered in a single-framing camera velocity measurement [7] 

where delayed images are compared with an undelayed image separately acquired and uncorrelated in time. The 

double-shutter camera velocity measurement was also free of errors encountered when using a two-camera 

velocimetry system, which is also sensitive to vibration. However, the hardware-limited 500 ns gate delay between 

the undelayed and delayed images and the limitation of a single gain setting for both images resulted in reduced 

signal levels in the delayed image. To compensate for this decreased signal level, a timing methodology was 

developed in which the 1
st
 gate was partially overlapped with the laser pulse so that only a fraction of the 

fluorescence from the tagged velocity profiles would be acquired in the first exposure, resulting in comparable 

signal levels in the undelayed and delayed image. Additionally, by varying the length of the 2
nd

 gate, the amount of 

fluorescence acquired in the second exposure could be controlled to some level. However, by increasing the 2
nd

 gate, 

the level of blurring and asymmetry of the tagged profile in the 2
nd

 exposure also increased. To account for this, a 

correction was applied that was dependent upon the signal intensity ratios between the undelayed and delayed 

profiles (and implicitly on the fluorescence lifetime), the overlap between the laser pulse and effective 1
st
 gate, as 



well as the duration of the second gate. This correction was independent of the flow velocity and the methodology 

can be extended to 2-dimensional MTV measurements. 

Table 5. Constituent uncertainty term analysis for wedge experiment for an average of N = 38 images. 

 2
nd

 Profile:       = 1008 m/s                 

Mean % of       Mean % of      

                 0.15 0.15 

            0.99 1.27 

            0.13 15.45 

      
       

  
     

     

       
    
    

       
    
    

  

   3.20 20.97 

 

In relatively good signal-to-noise regions with uniform axial velocity components along the length of the tagged 

profile, the measured velocity uncertainty is on the order of 3 percent (30 m/s for a 1000 m/s flow). In regions where 

the signal-to-noise ratio remains relatively high but large axial velocity gradients exist, the measured velocity 

uncertainty is on the order of 20 percent. Table 5 provides a listing of the mean constituent uncertainty magnitudes 

for the wedge experiment based upon Equation 7. The left data column of Table 5 provides these values for the 2
nd

 

profile. The right data column contains the mean constituent uncertainty magnitudes at two points on opposite sides 

of the centerline for profiles 11 through 25 where the maximum spanwise velocity uncertainty is encountered. These 

points correspond to the location where the axial velocity gradients are at a maximum. The total uncertainties, as a 

percentage of the average velocity, represent the extremes of the uncertainty magnitudes encountered in the wedge 

experiment. To obtain a coarse estimate of the magnitude of the single-shot uncertainties, the precision uncertainty 

terms can be multiplied by   , where N is the number of image pairs use to make the averaged velocity 

measurement. 

Based upon the measurements observed in this experiment and the simulations performed to determine the 

correction factor, we determined that using a shorter second gate (100 ns in the wedge experiment) would limit the 

greater variability encountered in the correction factor when a longer gate (300 ns in the CEV experiment) is 

employed. This is detailed in Fig. 5. An alternative way to avoid the variability due to the correction factor and its 

associated uncertainty is by generating the profile molecules (NO) prior to the start of the first gate via 

photodissociation of NO2 [14]. The tagged gas lines generated could then be optically excited with a laser source 

prior to, and captured by, the first and second gates, both of equal durations. This method would result in similarly 

shaped spatial fluorescence profiles, would generally not require any correction for profile asymmetry, and would 



remove any uncertainties associated with the overlap of the 1
st
 gate and the firing of the excitation laser. Another 

benefit of such a scheme would be the removal of timing dependence on fluorescence lifetime. This would allow for 

increased temporal separation between the undelayed and delayed images, resulting in decreased uncertainties 

proportional to the increased separation time, and the ability to work in higher-pressure conditions where 

fluorescence quenching would otherwise prohibitively limit the signal in the second gate. Difficulties with this 

technique include seeding NO2 safely into the flow, the use of higher laser energies in order to dissociate the NO2, 

the heavier molecular weight of the NO2 molecule with respect to air, and the presence of collisional quenching 

gradients.   

One issue encountered when making RCS jet velocity measurements was the over-estimation of jet velocity in 

the immediate vicinity of the nozzle exit (Fig. 8c and Fig. 9). As the gas exits the nozzle in this region, a rapid drop 

in pressure occurs, resulting in a negative collisional quenching gradient. The result of this gradient, as observed in 

Fig. 8b, is a perceived shift in the tagged profile much greater than expected. Therefore, in the presence of a 

negative collisional quenching gradient, the measured velocities will be higher than those measured if no gradient 

were present. Figure 14 shows the results of a simulation performed to analyze the effects of such a gradient. For 

this simulation,     = 8.25 ns,   = 9.5 ns, and    = 100 ns. 

 

Fig. 14 Non-zero quenching gradient influence on perceived profile shift. 

In the simulation, a 19-pixel FWHM excitation source located 2 pixels to the left of a 55-pixel wide correlation 

window was used. At the center of the correlation window, the pressure (and hence quenching rate), was set to a 



particular value, noted in the legend of Fig. 14. Additionally, for each pressure condition, an axial velocity 

magnitude ranging from 100 m/s to 1200 m/s was simulated to see what, if any, effect gas velocity had on skewing 

of the velocity measurement in the presence of a quenching gradient. In Fig. 14, the horizontal axis corresponds to 

the magnitude of the quenching gradient simulated. The vertical axis in this figure corresponds to the difference 

between the profile shift measured, in pixels, for the case with              and without                 a 

quenching gradient present. For relatively weak gradient values ( > -3 [ns·mm]
-1 

),            scales linearly with 

              as the magnitude of the gradient increases, as shown in Fig. 14. Over this range of gradient 

magnitudes, the effect of the gradient is approximately independent of velocity, and can be defined by the relation: 

                  
    

  
                   

    

  
   (14) 

This influence manifests itself most strongly during the 2
nd

 gate, when the quenching field determines the spatial 

shape of the fluorescence profile. Beyond this point, the velocity of the tagged profile begins to affect           . As 

the magnitude of the quenching gradient increases, increases in the gas velocity have the effect of decreasing the 

influence of the gradient on           . This is because the increased velocity places the profile into a region where 

the quenching is much less than that at the center of the correlation window where the profile was initially tagged, 

resulting in a right-weighting of the perceived profile. As the quenching gradient magnitude exceeds 6 [ns·mm]
-1

, 

increases in collisional quenching at the center of the correlation window will begin to further left-weight the profile 

observed in the 2
nd

 exposure. This in turn counteracts the right-weight occurring due to the presence of the gradient.  

A significant contribution to the total velocity uncertainty in both the mean and single-shot velocity 

measurements was the accuracy measurement. After the CEV and wedge experiments were performed, it was 

learned that there was the potential for small velocities within the test section when it was reduced to near vacuum 

due to leaks in the system. If a non-zero gas velocity field did indeed exist within the test section during acquisition 

of the zero-velocity images, the resulting accuracy value would be skewed from a true zero value, leading to an 

underestimation of the true accuracy of the measurement. Measurements along individual lines from these images 

seem to confirm this hypothesis, as non-zero velocities were observed with trends that appear to have a functional 

relationship with the tunnel pressure. Correction of this may result in lower velocity uncertainties in both mean and 

single-shot velocity measurements due to improved accuracy estimation. A possible solution is to have a static cell 



at the tunnel pressure which can be imaged separately to obtain a measure of velocity accuracy. Such a measure 

could potentially improve experimental accuracy.  

VII. Conclusion 

This paper describes a velocimetry technique using a single, double-frame camera to obtain spatially and 

temporally correlated images. A new method was developed to acquire the undelayed and delayed images so that 

comparable signal intensities would be obtained in both exposures. A correction technique was also introduced 

which estimated the perceived profile shift observed in the delayed image due to fluorescence decay. Single-shot 

and mean velocities and uncertainties were calculated for an Orion CEV yaw RCS jet and a 10-degree half-angle 

wedge in a Mach 10 perfect gas air flow. Errors associated with spanwise velocity components (parallel to the laser 

sheet) were quantified for the first time. A discussion of the contribution of collisional quenching gradients to the 

skewing of the velocity measurement was also provided. 
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