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Outline

♦ Introduction
• Motivation
• Near-field and far-field plume flow fields
• Scaling Theory

♦Phoenix Mars spacecraft
• Experimental
• Numerical
• Data comparison/Flow Physics 

♦Mars Science Lab (MSL) Descent Stage spacecraft 
• Experimental
• Numerical 
• Data comparison/Flow Physics

♦Conclusion
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Motivation

♦ Plume-surface interactions due to spacecraft landings
• Spacecraft stability and survival

− Moments/Torques
− Updraft plumes
− Plume induced heating

• Cratering & dust lifting 
• Implications for manned and large payload landings to Mars, 

moon, asteroids and other planetary bodies

♦ Theory, test data and numerical simulations were used to 
characterize the complex plume impingement physics 
and identify the environments observed due to 
spacecraft landings
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1998 Mars Polar Lander Failure Report 
(Whetsel et al, 2000)

- MPL Project failed to conduct studies on plume-surface interactions 
- Recommended these investigations for future powered descent 
landing missions to Mars

These NASA spaceflight projects deemed it 
necessary to conduct these investigations thru 
University research partnership. 

Phoenix: Pulsed-modulated descent system 
(Rocket Engine Module – REM)

Mars Science Lab: Sky-crane throttled landing 
system (Mars Landing Engine – MLE)

2007 2011

Last detailed study was completed in 1973 for Viking 1 
and 2. 

Motivation
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Near-field flow –
TEST DATA

Underexpanded Supersonic Jet

Overexpanded Supersonic Jet

Planar Laser Induced Fluorescence Imaging

Inmann et al., 2009

Important flow structures with implications 
to cratering, acoustics and spacecraft 
dynamics during descent

Far-field flow/
Impingement zone – TEST DATA

Lamont and Hunt, 1976 5
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Scaling theory for plume-surface interactions

6

( )

                                                         

            

                 ][

                                              

φβλρ

τρ

ρρ

++∇⋅∇=

⋅∇+∇−=

⋅∇−=

Dt
DpTT

Dt
DTc

pf
Dt
UD

U
Dt
D

p






( )

e
22

e
2

e

 /    ,/      ,      ,/     ,/     ,/

, /     ,/     , /     , /     ,/     ,/

µµµµφφβββλλλ

ρρρρ

=′=′∇=∇′=′=′=′
=′=′−=′=′=′=′

eeeepepp

eeeee

UDDccc

TTTUpppUuvDtUtDxx 

Schlichting and Gersten, 2001

Normalized parameters

Continuity

Conservation
of Momentum

Conservation
of Energy

Nondimensional Navier-Stokes Equations



Scaling theory for plume-surface interactions
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Phoenix Mars Spacecraft

Courtesy of NASA/JPL/Lockheed Martin
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Experimental and Numerical Methodology
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-½ scale Phoenix nozzle (MR-107)
-N2 test gas
-10 Hz pulsing
-Mars atmosphere
University of Michigan Thermal Vacuum 
Chamber

Numerical Methodology

-Two Navier-Stokes computational solvers were 
used for modeling and analyses

-ANSYS FLUENT
-3-D & axisymmetric density based solver
-Transient RANS
-Time step – 1 us – explicit marching
-Turbulent (RNG) model
-Adaptive meshing for resolving shocks
-Grid independence
-2nd order upwind discretization scheme
-2 million unstructured grid cells

-Aerosoft GASP
-3-D density based solver
-Transient & steady-state RANS eqns solved
-Van Leer flux splitting
-Laminar
-Dual implicit time stepping
-Single species – frozen flow
-Grid independence
-4 million unstructured grid cells

Experimental Methodology

Plemmons, Mehta et al, 2008



Ground pressure profiles – TEST DATA 

Plemmons, Mehta et al, 2008

Overpressure

Temporal Profile Spatial Profile

Pc ~1200 kPa
0 deg cant
h/de = 8.4
10 Hz pulsing
N2 test gas
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Ground pressure
at centerline

Chamber 
stagnation 
pressure

Back pressure

Observed large transient overpressures during 
engine start-up and shut down

Observe a monotonic rise in ground pressure
followed by a drop in centerline pressure 

t = 0.112 sec

t = 0.136 sec

MARS ATMOSPHERE ~ 700 Pa



Plate shock dynamics - CFD

Mechanism deduced from experimental 
measurements, transient numerical simulations 
and theory. 

Gulick et al., 2006

N2 test gas
Axisymmetric transient simulation

Pc ~ 1200 kPa
0 deg cant
h/de = 8.4

GASP  
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Plate (recovery) shock formation

MARS ATMOSPHERE ~ 700 Pa



Plate shock dynamics - CFD

Plate shock formation and collapse

Ground pressure 
spatial profiles

Plemmons, Mehta et al, 2008

Wall jet

Plate shock
collapse

- N2 test gas
-Axisymmetric
- Transient
-10 Hz pulsing

Pc ~1200 kPa
0 deg cant
h/de = 25

FLUENT
12

MARS ATMOSPHERE ~ 700 Pa



Plate shock dynamics - CFD

Plemmons, Mehta et al, 2008

FLUENT

- N2 test gas
-Axisymmetric
- Transient

Pc ~1200 kPa
0 deg cant
h/de = 25

13

Plate shock formation and collapse



3-D full-scale flow field and ground pressure profiles -
CFD 
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3-D transient simulations of full-scale 
Phoenix plumes interacting at surface

Pc ~ 1200 kPa
0 deg cant
h/de = 25
10 Hz pulsing
Equivalent plume gas

GASP

Gulick et al, 2006

Modeled as a 60 degree wedge to 
reduce computational resources

3-D numerical simulations show that ground pressure loads are asymmetric and develop overpressures 
during rapid engine startup and shutdown 

1E4

1E3

1E2

(Pa)

MARS ATMOSPHERE ~ 700 Pa



Experimental and numerical data

Good agreement between experimental results and numerical simulations (CFD)

Gulick et al, 2006

GASP

FLUENTShadowgraph
Pc ~ 1200 kPa
0 deg cant
h/de = 8.4
10 Hz pulsing
N2 test gas 15

Dashed lines – surface pressure
Solid lines – thruster inlet stagnation pressure

(chamber pressure)

Comparing spatial and temporal ground pressure profiles

Comparing plume 
shock structureTEMPORAL 

SPATIAL 

Red line – CFD
Dots – Test Data

MARS ATMOSPHERE ~ 700 Pa



MSL Descent Stage Spacecraft & Testbed
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- ¼ scale MSL MLE nozzle
-N2 test gas
-steady operation
-Mars atmosphere
-NASA Ames Research Center 
Planetary Aeolian Laboratory

Courtesy of NASA/JPL/Caltech

Descent stage Testbed

Thruster

Impingement
Plate

Testbed



Numerical methodology

- NASA OVERFLOW 2.1
- 3-D time-marching implicit code
- structured overset grid
- Navier-Stokes eqns solved over full domain and internal nozzle
- SST turbulence model
- compressibility correction
- steady-state 
- frozen flow used for modeling rocket plume gases
- 12 million cells
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Temporal ground pressure profiles – TEST DATA
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Earth Atmosphere
Steady Supersonic Jet

Mars atmosphere
Steady Supersonic Jet

Pc ~1700 kPa
22.5 deg cant
h/de = 35

Repetitive 
overpressures not 
observed

N2 test gas
steady operation



Spatial ground pressure profiles – TEST DATA
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Pc ~1700 kPa
22.5 deg cant
h/de = 35
N2 test gas
steady operation

Pg/Pc

Pg/Pc Ps = Pg

Shows that the plume is 
collimated and leads to 
large pressure gradients at 
Mars atmospheric pressure



Ground pressure and rise rate vs. jet expansion ratio –
TEST DATA
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Plume flowfield and spatial pressure profiles - CFD

Pc ~ 1.7e3 kPa
22.5 deg cant
h/de ~35

e =3.5

OVERFLOW

N2 test gas
steady-state

Pc ~ 1.7e3 kPa
22.5 deg cant
h/de ~35
Equivalent
Plume gas
steady-state
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Plume is collimated 
and does not 
dissipate at large 
axial distances – in 
agreement with test 
data

MARS ATMOSPHERE ~ 700 Pa



Experimental and numerical data
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OVERFLOW

Pc ~ 1.7e3 kPa
22.5 deg cant
h/de ~35
N2 test gas

MARS ATMOSPHERE ~ 700 Pa



Jet expansion ratio 

EARTH MARS MOON

Stitt, L.E. , 1963
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TEST DATA

CFD – Mach Contours

e = 4.50 e = 0.02

All tests were done 
at steady engine operation

Max normalized 
ground  pressure

Mars – moderately underexpanded
plumes lead to max ground 
pressure loads due to collimated 
plume structure and development 
of a small areal plate shock

Earth – highly overexpanded 
plumes dissipate/no plate  shock 
formation

Moon – highly underexpanded 
plumes leads to a large areal plate 
shock – decreases ground 
pressure



Other shock interaction effects during 
spacecraft landings

Altitude Effects Spatial Asymmetry 

Pc ~ 1200 kPa
0 deg cant
h/de = 25
Steady-state

FLUENTGASP Gulick et al, 2006

N2 test gas

24

SURFACE
SHEAR STRESS SURFACE PRESSURE

MACH CONTOUR

Ground pressure vs normalized altitude

MARS ATMOSPHERE ~ 700 Pa
MARS ATMOSPHERE ~ 700 Pa



Conclusions
♦ Moderately underexpanded jets demonstrate:

• collimated shock structures
• large supersonic core lengths
• plate shock dynamics 
• max pressure loads

♦ Plate shock dynamics leads to:
• large pressure gradients
• asymmetry 
• overpressure

♦ Ground pressure loads are highly sensitive to 
• jet expansion ratio 
• strouhal number
• spacecraft altitude

♦ Scaling laws show that cold plume gases can simulate ground pressure loads and interaction physics 
due to rocket plumes provided dynamic similarity is satisfied

♦ How does this effect spacecraft landing? 
• Transient ground pressure loads translate to load perturbations at the spacecraft base which may lead to 

destabilizing moments (observed to a minor degree on the Phoenix spacecraft, Gulick et al, 2006)
• Pressure loads can lead to extensive cratering and dust lifting which can destabilize the spacecraft upon 

touching down on the surface (observed at the Phoenix Landing Site, Mehta et al, 2011)
• Dust lifting can erode important spacecraft sensors and science instrumentation  (a concern for the MSL 

mission, Mehta et al, 2011)
• Propulsion systems of small scale landers show maximum ground pressure loads at Mars atmosphere at 

relatively high altitudes (h/de ~35) (a concern for the MSL mission)

♦ Provided JPL with landing environments which they incorporated into their risk analysis models 25

MISSION SUGGESTION: Due to highly 
complex plume impingement physics, 
accurate landing environments are 
needed for future planetary manned 
and robotic spaceflight missions
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Back-up Slide: Phoenix Entry, Descent and Landing 
Sequence

-200 Hz (Inertial Measureiment Unit) IMU data and 10 Hz Radar data

Current
Research 
Investigation
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Back-up Slide: Terminal descent

Plumes interacted with the surface for less 
than 2 seconds (even less than predicted
by landing simulations)

Lift loss occurred at ~4.5 m and ground 
effect started around ~3.5 m 

Noticed a second bounce – could be the 
result of plume-surface interactions after
Initial contact. 

Touchdown
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