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Abstract 

1 Introduction 

Information about the abundances of many chemically- and radiatively-active trace 
gases is retrieved using satellite solar backscatter instruments that make measure
ments at near-infrared (NIR) through ultraviolet wavelengths. These trace-gas retrieval 
algorithms commonly require information about the mean photon path length in the 
atmosphere to properly account for the presence of clouds and aerosol. One way to 
express photon path length information is the so-called cloud optical centroid pres
sure (also known as the effective cloud pressure), or cloud OCP, that is defined as the 
characteristic pressure of a single cloud layer within the context of a particular cloud 
model. The use of the word "optical" in OCP is designed to distinguish it from the 
common mass centroid. In this paper, we provide a simple method for estimating this 
quantity using a pressure-weighting scheme where the weights depend upon optical 
parameters of clouds and/or aerosol. 

Several different algorithms make use of cloud OCPs to accurately retrieve informa
tion about 0 3 including estimates of the total column (e.g., Coldewey-Egbers et aI., 
2005; Roozendael et aI., 2006; Veefkind et aI., 2006) and tropospheric concentrations 
(e.g., Ziemke et aI., 2009; Joiner et aI., 2009). Other studies have focused on various 
aspects of cloud-related errors on 03 retrievals (e.g., Koelemeijer et aI., 1999; Vasilkov 
et aI., 2004; Kokhanovsky et aI., 2007b; Joiner et aI., 2006). 

Cloud OCPs have also been used in other trace-gas retrievals such as those for N02 

(e.g., Bucsela et aI., 2006) and CO2 (e.g., Reuter et aI., 2010). In addition, cloud OCPs 
have been used for other applications such as short-wave flux calculations (Joiner et 
aI., 2009; Vasilkov et aI., 2009) and detection of multi-layer clouds (Joiner et aI., 2010). 

The instruments used in these studies include the Global Ozone Monitoring Exper
iments (GOME and GOME-2) (Burrows et aI., 1999). The first GOME flew on the 
European Space Agency's (ESA's) European Remote Sensing 2 (ERS-2) launched 
in 1995. GOME-2 instruillents are currently flying on the European Meteorological 
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Satellite Operational (EuMetSat's MetOp) series of satellites. Similar to the GOME in
struments, the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartog
raphY (SCIAMACHY) (Bovensmann et aL, 1999) on ESA's Environmental Satellite (En
viSat) launched in 2002, makes spectral measurements from UV to NIR wavelengths. 
In addition, the Ozone Monitoring Instrument (OMI) (Levelt et aI., 2006), flying on the 
(U.S.) National Aeronautics and Space Administration's (NASA's) Aura satellite since 
2004, measures backscattered spectra in the UV and visible. 

There are several different remote sensing techniques that have been used to re
trieve cloud OCPs or similar information about cloud vertical structure. These include 
rotational-Raman scattering in the ultraviolet (UV) (joiner and Bhartia , 1995; Joiner et 
aL, 2004), oxygen dimer (02-02) absorption near 477 nm (Acarreta et aL, 2004; Sneep 
et aI., 2008), and absorption in the OrA band near 760 nm (e.g., Koelemeijer et aL, 
2001,2002; Vanbauce et aL, 2003; Kokanovsky et aL, 2006). The 02-A band has also 
been used to retrieve information about aerosol plume height (e.g., Dubuisson et aL, 
2009). 

Cloud OCP errors have been calculated from retrieval theory and radiative transfer 
calculations (e.g., Koelemeijer et aL, 2001; Acarreta et aL, 2004; Daniel et aL, 2003; 
Vasilkov et aI., 2008). Several other studies have evaluated various satellite cloud 
OCP retrievals. Sneep et aL (2008) intercompared three different cloud OCP data sets 
from the A-train constellation of satellites. In another evaluation approach, Vasilkov 
et al. (2008) compared cloud OCPs with collocated data from the CloudSat radar and 
the Aqua MODerate-resolution Imaging Spectrometer (MODIS) using radiative transfer 
calculations. Only a few samples were compared in this study. 

In this paper, we formulate fast simulators that use cloud/aerosol extinction profiles 
as inputs to generate estimates of cloud/aerosol OCPs. These fast OCP simulators 
have several potential applications. Here, we use them for further evaluation of OMI 
cloud OCP retrievals with CloudSatlMODIS data over a wide range of conditions. In 
addition, our fast cloud OCP simulators will be useful for comparisons of general circu
lation model cloud vertical structure with satellite-derived OCPs. Finally, fast simulators 
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are ideal for assimilation of satellite-derived OCPs where computational efficiency is 
important. 

The paper is structured as follows: We describe the satellite data sets used here in 
Sect. 2. Sections 3 and 4 detail the formulation of full and fast OCP retrieval simula
tors, respectively. The fast OCP simulators are applied to CloudSatiMODIS data and 
compared with two OMI OCP retrievals in Sect. 5. Conclusions are given in Sect. 6. 

2 Satellite data sets 

In this work, we make use of several data sets from the so-called A-train constellation 
of satellites. These satellites fly in formation in polar orbits, crossing the equator within 
15 minutes of each other near 01 :30 local time. 

2.1 aMI cloud OCP data sets 

We examine two types of cloud OCP retrievals from OMI. OMI is a spectrometer that 
makes Earth and solar measurements at ultraviolet and visible wavelengths from 270-
500 nm with a spectral resolution of approximately 0.5 nm (Levelt et aI., 2006). Its 
ground footprint varies; near nadir, it is approximately 12 km along the satellite track 
and 24 km across the track. The footprint size increases towards the swath edge. 

There are two independent approaches used to retrieve cloud OCP from OMI that 
are summarized in Stammes et al. (2008). These algorithms make use of the basic 
property that clouds shield the atmosphere below them from atmospheric scattering 
and absorption, thus reducing photon pathlengths. The retrievals rely upon physical 
effects produced by well-mixed, well-characterized atmospheric constituents, namely 
absorption by oxygen and scattering from both oxygen and nitrogen. 

Both OMI cloud algorithms use a simplified model to account for the complex effects 
of clouds on observed radiances. This approach, sometimes referred to as the Mixed 
Lambertian Equivalent Reflectivity (MLER) model, represents an observed satellite 
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pixel radiance (lobs) as a weighted combination of clear and cloudy subpixel radiances, 
iclr and Icld , respectively, i.e., 

(1) 

(McPeters et aI., 1996; Koelemeijer et aI., 1999) where the weighting factor, feff, is 
known as the effective cloud fraction. The model accounts for partial cloud cover and 
scattering and absorption beneath thin clouds by representing the cloudy portion of the 
pixel, Icld, as a Lambertian surface with a reflectivity of 0.8. Since most clouds have a 
reflectivity of less than 0.8, it follows that feff is less than the geometrical cloud fraction 
fg. Justifications of 0.8 as the cloud reflectivity and other details of the MLER model 
are given in Koelemeijer et al. (1999), Ahmad et al. (2004), and Stammes et al. (2008). 

2.1.1 OMI 02-02 product 

The OMI Or02 algorithm, henceforth referred to as OMI 02-02, makes uses of a 
collision-induced absorption (02 -02 ) band at 477 nm. This is the strongest oxygen ab
sorption feature within the OMI wavelength range. The algorithm uses the so-called 
Differential Optical Absorption Spectroscopy (DOAS) approach to determine a slant 
column amount of O2-02 and continuum reflectance from OMI reflectances between 
460 nm and 490 nm in OMI's visible channel. The algorithm uses a table-lookup ap
proach to compute the effective cloud fraction and optical centroid pressure. Details 
of the approach are given in Acarreta et al. (2004), Sneep et al. (2008), and Stammes 
et al. (2008). The table lookup scheme has been modified recently by incorporating 
additional nodes. We use the latest available version of the algorithm here (V1.2.3.1). 
This version contains a new field called "CloudPressureNotclipped" in which the cloud 
pressures are allowed to extend beyond the surface pressure. We use this field for all 
cloud OCP comparisons. 
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2.1.2 OMI RRS product 

The OMI rotational-Raman (RRS) algorithm makes use of the filling-in of solar Fraun
hofer lines by rotational-Raman scattering (RRS) to determine the cloud OCP It uses 
a wavelength not significantly affected by RRS (354.1 nm) to determine the effective 
cloud fraction. This algorithm uses wavelengths between 345 and 355 nm in OMI's UV-
2 detector to fit the high-frequency spectral structure of the solar-normalized radiance 
produced by the filling-in/depletion effect of RRS as described in Joiner et al. (2004), 
Joiner and Vasilkov (2006), and Vasilkov et al. (2008). A wavelength shift between 
Earth and solar spectra is also determined. A soft-calibration approach that uses data 
over the Antarctic plateau corrects for artifacts in the individual detector elements that 
produced a so-called striping effect that was present from the beginning of the data 
record. 

Modifications to the algorithm following the validation work of Vasilkov et al. (2008) 
include the use of a surface albedo climatology over land based on data from the Total 
Ozone Mapping Spectrometer (TOMS) (C. Ahn, private communication, 2009). The 
most recent version also Incorporates a Cox-Munk (Cox and Munk, 1954) treatment of 
the ocean surface scattering based on a mean surface wind speed of 6 m/s in conjunc
tion with a water-leaving radiance climatology again based on TOMS data. The version 
of the OMI RRS cloud algorithm used here is 1.8.3. 

2.2 CloudSat/MODIS 28 TAU product 

We make use of cloud extinction profile retrievals known as the CloudSat 28-TAU prod
uct (Cloudsat, 2008). Extinction profiles are estimated using the 94 GHz CloudSat 
Cloud Profiling Radar (CPR) reflectivity measurements (Stephens et aI., 2008) and ra
diances from the Aqua MODIS instrument. The native CloudSat measurements are 
made as a function of altitude. When comparing with OMI retrievals, we use the 28 
GEOPROF data set, based on information from the European Center for Medium
range Weather Forecasts (ECMWF), to provide the 28 TAU extinction profiles as a 
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function of pressure. All CloudSat data sets used here are from revision 4. 

2.3 MODIS cloud top pressure 

We collocated MODIS cloud-top pressure retrievals (Menzel et aI., 2008) from collec
tion 5 with OMI pixels as described by Joiner et al. (2010). For each OMI pixel, we 
save the minimum, maximum, mean, and standard deviation of the cloud top pressure. 
This provides some information on OMI subpixel heterogeneity. It should be noted 
that cloud-top pressure is not always a good indicator of sub-pixel heterogeneity in the 
cloud OCP (Joiner et aI., 2006). 

3 Full rotational-Raman retrieval simulator (R3S) 

We developed a full OMI rotational-Raman retrieval simulator (R3S) using radiative 
transfer (RT) calculations carried out with the generic linearized discrete ordinate rotational
Raman scattering code, known as LlDORT-RRS (Spurr et aI., 2008). R3S was used by 
Vasilkov et al. (2008) to compute errors in the OMI rotational-Raman (RRS) scattering 
cloud OCP retrieval. It was also used to simulate cloud OCP from CloudSatiMODIS 
28-TAU extinction profiles for a few soundings in a deep convective complex. These 
simulations were then compared with actual OMI RRS retrievals. 

As inputs for R:3S in this study, we simulate satellite cloudy-sky radiances based on 
CloudSat 28-TAU profiles using plane-parallel clouds with three different cloud phase 
functions. The first of these is the water-droplet C1 cloud model with a modified-gamma 
size distribution with an effective radius of 6 11m (Deirmendjian, 1969). The second is 
a Henyey-Greenstein (H-G) phase function with asymmetry factor g=O.85. Third, we 
use a shortwave model of ice clouds with an effective diameter of 30 11m (8aum et aI., 
2005). In all cases, the cloud single scattering albedo is set to unity. We found that 
the phase function had very little effect on the simulated cloud OCPs except for the 
lowest values of cloud optical thickness (generally less than 5). As our focus is for 
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cloud optical thicknesses typically greater than 5, all results shown here will use the C1 
cloud model. 

For both forward and inverse calculations Earth's surface is assumed to be Lamber
tian at a pressure of 1013 hPa with a reflectivity of 0.05. The value of the assumed 
surface reflectivity is not of great importance for the simulations in this paper as long 
as reasonable values are used; however, it is of critical importance that the values as
sumed in both forward and inverse calculations are consistent in order to prevent errors 
from being introduced into the simulation. 

As described in Vasilkov et al. (2008), the effects of rotational-Raman scattering are 
simulated at a single wavelength while the effective cloud fraction is derived at a second 
wavelength. A simple table-lookup retrieval scheme is then performed using simulated 
data at those wavelengths. Data are simulated for the OMI solar and satellite viewing 
zenith angles corresponding to a given CloudSat location. 

Next, we extend the work of Vasilkov et al. (2008) comparing R3S with OMI RRS 
retrievals for a full day of CloudSat 2B-Tau profiles. OMI rotational-Raman cloud pres
sure retrievals are not performed when the effective cloud fraction drops below 5%. 
This happens not only when geometrical cloud fractions are small, but also for cases 
when the geometrical cloud fraction may be large but the optical thickness is low, such 
as optically thin cirrus. Therefore, OMI effective cloud fractions must be greater than 
5% for a successful collocation. To minimize the amount of computations performed in 
R:'S, we averaged the layer optical thicknesses of all CloudSat soundings falling within 
a given OMI pixel. This provides a single optical extinction profile for each OMI pixel. 
We used only profiles with total optical thickness T> 5. 

As in Joiner et al. (2010), we attempt to remove situations where the averaged Cloud
Sat profiles are not representative of the much larger OMI pixel. The nadir-viewing 
CloudSat has only a single field-of-view of width approximately 1.4 km across the satel
lite track as compared with OMl's 24 km width. Therefore, the CloudSat slice along the 
satellite track samples only a small fraction of an OMI pixel. Here, we eliminated pixels 
for which the MODIS cloud-top pressure standard deviation within the OMI pixel was 
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greater than 100hPa. 
Figure 1 shows a comparison of the R;3S-generated cloud OCP based on with actual 

OMI RRS cloud OCP retrievals using a 20 histogram. We used 2972 CloudSat 28-
TAU profiles from 13 November 2006 for this comparison. There is generally good 
agreement, although OMI RRS retrievals are biased low by approximately 75 hPa for 
high pressure (low altitude) clouds that dominate the population. There is also a branch 
of OMI RRS retrievals with higher OCPs than those from the R:3S CloudSat simulation. 
We will examine these points in more detail below. 

4 Fast cloud optical centroid pressure (OCP) simulator 

4.1 Cloud OCP formulations 

The cloud OCP, within the context of the Lambertian-Equivalent Reflectivity (LER) 
model, is defined as the pressure at which a Lambertian surface is placed in order 
to provide the observed amount of absorption (e.g., from oxygen) or filling-in due to 
rotational-Raman scattering. The Mixed LER (MLER) model further specifies a weight
ing of clear and cloudy subpixels with the effective cloud fraction as given by Eq. 1. 
The resulting cloud OCP, P oCP, can be used to approximate the mean photon path
length of a more complex scenario in which there could be partial or thin clouds and 
the clouds may be geometrically thick and inhomogeneous (e.g., Koelemeijer et aI., 
2001; Vasilkov et aI., 2008; Stammes et aI., 2008; Ziemke et aI., 2009). 

The mean or centroid "optical pressure" of a complex cloud can be estimated by 
considering the relative contributions to e.g., rotational-Raman scattering or O2 ab
sorption from all scattering layers. Consider a simple scenario for a cloud optical 
centroid pressure retrieval making use of a pressure- and temperature-independent 
absorber with a constant mixing ratio in an atmosphere with no Rayleigh scattering. In 
a well-mixed layer, the column amount of the absorbing gas is proportional to the layer 
pressure thickness tlP. Absorption in the atmospheric layer is proportional to the col-
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umn amount of the absorber. It follows that satellite-observed radiance backscattered 
from a cloud layer L at a mean pressure PL undergoes an amount of absorption that is 
proportional to f::l.PL, where f::l.PL is the layer thickness from the top of the atmosphere 
(Po 0) to pressure PL (f::l.PL=PIJ. 

For a given cloud or aerosol optical extinction profile, one may compute cloud/aerosol 
layer reflectances and transmittances, r"L and tL, respectively, from a layer L using, for 
example, a two-stream model. While such a simple model cannot be used for com
puting accurate absolute quantities, it appears to be appropriate for providing relative 
values. It is the relative values that are most important for estimating the cloud OCP. 
Here, we use the delta-Eddington approximation of Joseph et al. (1976) with diffuse 
illumination. We then compute a reflectance contribution, PL, from layer L to the total 
cumulative reflectance using 

(2) 

where RL and TL are cumulative reflectances and transmittances, respectively, from 
the top-ot-atmosphere to layer L, given by 

L 

RIo '2:::>1 (3) 
1=1 

and 

TL = TL-ltL (4) 
1 RL-ITL' 

andTo=l, Ro=O. 
The cloud OCP (Pocp) may then be approximated as a weighted-average over all 

layers L from the top-ot-atmosphere to the surface, where the weighting tactor is given 
by PL, i.e., 

R 2.:1pzIl 
ocp::::" . 

L..tlPI 
(5) 

10 



This formulation would produce an observed amount of absorption weighted by the 
same factor, i.e., an amount of absorption equivalent to that obtained when a single 
geometrically-thin, optically-thick cloud layer is placed at a pressure of PocP. 

We tested several other methods for computing layer reflectances and transmit
tances. All methods provided very similar OCP values; although absolute reflectances 
and transmittances may be somewhat different for the different methods, the relative 
values as a function of layer, were not significantly different. We also compared OCPs 
computed with single scattering albedos of 1.0 and 0.99. Again, the relative values 
of layer reflectances/transmittances did not change enough to make significant differ
ences in computed cloud OCPs. 

The fast simulator may also be modified to account for properties of different cloud 
OCP retrievals. For example, the weighting scheme may modified as follows to sim
ulate a cloud OCP from a retrieval based on an absorber with a pressure-squared 
dependence (P'ocp) such as the oxygen dimer, e.g., 

'\" 2 
DZPZPZ 

L:1PZ . 
(6) 

We compared OCPs computed with the standard (Eq. 5) and pressure-squared (Eq. 6 
formulations using profiles from one day of CloudSat data. We found that the pressure
squared formulation gave OCPs on average about 7 hPa higher (lower altitude) than 
the standard formulation with a standard deviation of 11 hPa and a maximum difference 
of 101 hPa. 

4.2 Comparison of fast and full cloud OCP simulators 

Figure 2 compares fast simulator results with those from the full rotational-Raman re
trieval simulator (R3S) for the same sample as CloudSat profiles used above in figure 1. 
The R3S incorporates errors in the rotational-Raman cloud algorithm resulting from the 
use of the MLER model. Such errors have been previously reported in Vasilkov et al. 
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(2008). These errors are largest for low cloud optical thicknesses. R:3S results also ac
count for the effects of enhanced photon path lengths due to Rayleigh scattering within 
clouds and between cloud layers that are not accounted for with the fast simulator as 
shown in Fig. 5. Considering the simplicity of the fast simulator and the errors present 
in R3S, the agreement between the two is quite good, with bias 7.4 hPa, standard 
deviation of 82 hPa, and correlation coefficient of 0.89. 

4.3 Single day comparison of Cloudsat-based fast simulator with OMI RRS re
trievals 

Figure 3 shows a comparison of OMI cloud RRS retrievals with the fast OCP simulator 
for the same sample used in comparisons with R3S in Fig. 1. Here, we see a slightly 
larger bias for high pressure (low altitude) clouds as compared with R3S. This is the 
result of a high bias in the fast simulator with respect to the full R:3S simulator as shown 
in Fig. 2. R:3S should better simulate actual OMI cloud RRS retrievals including errors 
due to the use of the MLER model. We also see larger biases in the opposite direction 
for the lower pressure clouds. Again, this is consistent with expected bias in the fast 
simulator. Although the full R3S provides a somewhat better agreement with OMI RRS 
retrievals than the fast simulator, the latter provides reasonable estimates of cloud OCP 
at a fraction of the computational cost; the full R3S takes more than one day for these 
calculations on a single state-of-the-art processor, wherease the fast simulator takes a 
few seconds. 

4.4 Cloud OCP weighting functions 

In Eq. 5, p can be physically interpreted as a pressure weighting function. In other 
words, it weights a layer L with mean pressure P L by the reflectance contribution from 
that layer, PI,- Next, we examine weighting functions calculated for one of the cloud 
scenarios used by Sneep et al. (2008) to investigate the behavior of four different cloud 
OCP algorithms; both the OMI RRS and 02-02 algorithms were included as well as 
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two oxygen A band algorithms. In this example, the cloud is located between 550 and 
800 hPa. As in Sneep et al. (2008), we use two different total cloud optical thicknesses, 
T = 9 and 42, where the optical thickness is equally distributed within the cloud. Sneep 
et al. (2008) showed that all algorithms produced OCPs near the geometric center of 
the cloud. For solar zenith angles (SZAs) of 30 and 40° and at a view zenith angle 
(VZA) of 30°, cloud OCPs were slightly higher for T = 9 as compared with T = 42. For 
higher SZAs and VZAs, differences between the T = 9 and 42 were smaller. 

Figure 4 shows examples of weighting functions produced for the above scenarios 
along with the cloud OCPs produced by the standard fast simulator. For both cloud 
optical thicknesses, the fast simulator places the cloud OCP in the middle of the cloud 
similar to the full simulations shown in Sneep et al. (2008). The fast simulator shows 
more photon penetration for the T 9 case. For the T = 42 case, the fast simulator 
cloud OCP is weighted more towards to top part of the cloud. 

Figure 5 shows sample weighting function and cloud OCP calculations for two dif
ferent multi-layer extinction profiles from the CloudSat 28-TAU product. These profiles 
are from a deep convective complex located in the tropical Pacific on 13 November 
2006. The first profile shows a case where the upper layer has a large optical thick
ness (rv 50). The cloud OCP weighting function peaks at a higher altitude than the 
cloud extinction profile. The standard fast cloud OCP simulation is close to the peak 
in the weighting function in the upper cloud deck; there is not much sensitivity of the 
cloud OCP to the lower cloud deck. The standard and pressure-squared weightings 
provide similar results in this case. The full R3S cloud OCP simulation is almost 150 
hPa higher than the estimates from the fast simulators. This difference presumably 
results from enhanced photon pathlengths due to Rayleigh scattering within the cloud 
that is not accounted for in the fast simulators. 

The lower panel shows an example where the standard and pressure-squared weight
ings provide slightly different results. This is another mUlti-layer cloud case, but here the 
top layer has a lower optical thickness (rv 6). As a result, the weighting function shows 
significant sensitivity to the lower. cloud deck. As expected, the pressure-squared 
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weighting provides more sensitivity to the lower cloud deck (higher pressure) than the 
standard weighting. Both fast cloud OCP simulations provide a value in the middle of 
the two cloud decks, with the pressure-squared weighting about 75 hPa higher. Here 
again, the full R3 S provides a higher value of cloud OCP than both fast simulations. 

5 Monthly Comparisons of CloudSat-based fast simulator OCPs with OMI re
trievals 

The fast simulator makes it more computationally feasible to do a large number of 
comparisons with CloudSat under a wide range of conditions. Such comparisons may 
reveal specific problems with the cloud OCP retrievals. However, in all comparisons 
of this type, we must bear in mind the expected differences between the fast simulator 
and the retrievals as shown for the RRS retrievals in Fig. 2. 

Next, we compare CloudSat-based fast simulator cloud OCPs with retrievals from 
both OMI cloud algorithms for two months (January and July 2007). OMI RRS re
trievals will be compared with results from the standard simulator and those from 02-
02 will be compared with results from the pressure-squared formulation. In this set of 
comparisons, we use a somewhat different scheme for averaging CloudSat data along 
the track for the length of the OMI pixel. Here, we compute a cloud OCP using our fast 
simulators (standard and pressure-squared versions) for each cloudy CloudSat sound
ing with total T > 0.1 that falls within an OMI pixel. We then compute a reflectance
weighted average OCP over the corresponding CloudSat pixels. In addition to the 
above-mentioned elimination of pixels for which the collocated MODIS cloud-top pres
sure standard deviation> 100 hPa, we also eliminated pixels for which the along-track 
CloudSat-simulated OCP had a standard deviation> 100 hPa. Since these pixels con
tain a large variability in cloud OCP along the CloudSat slice through the OMI pixel, the 
CloudSat slice may not be representative of the larger heteorogeneous OMI pixel. 
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5.1 Comparisons with CloudSat-based fast simulator over land 

Figures 6-7 show comparisons between fast simulator CloudSat-based OCPs and the 
OMI RRS and 02-02 cloud retrievals, respectively, over land for different bins of ef
fective cloud fraction for July 2007. The effective cloud fraction is from the OMI RRS 
product and is used for all subsequent figures in order to provide the same sample 
for comparisons and computed statistics. Here again, we display the data in 20 his
tograms. Statistics for these and other comparisons are provided in Table 1. 

There is reasonable agreement between CloudSat-simulated OCPs and those from 
both OMI algorithms. Slight biases between CloudSat and OMI RRS OCPs resemble 
those shown earlier that are produced from the fast simulator. However, as was also 
shown in Fig. 1, there is a cluster of pixels with CloudSat-based OCPs near 400 hPa 
for which both OMI algorithms retrieve Significantly higher pressures. The differences 
are larger than those expected from the fast simulator. 

The reduced scatter at higher effective cloud fractions can be explained as follows: 
Both random and systematic errors in the cloud OCP retrievals get amplified by a factor 
that is inversely proportional to the cloud radiance fraction (fr ), defined as the fraction 
of observed radiance that is due to cloud particles. Therefore, errors in cloud OCP 
approach infinity as fr goes to zero. The cloud radiance fraction can be estimated 
within the MLER context (see Eq. 1) using 

t' j' lcld 
r = eff . 

, lobs 
(7) 

While Icld is relatively constant with wavelength (at the wavelengths considered here), 
lobs is wavelength dependent owing to variations in Rayleigh scattering and surface 
albedo. The much brighter Rayleigh scattering background in the UV (as compared 
with the visible) results in lower values of fr for the OMI RRS retrievals as compared 
with those from the 02-02 for a given value of feff. Therefore, we expect greater error 
amplification for the RRS retrievals. Indeed, we observe slightly higher correlations 
between CloudSat and OMI 02-02 than for Cloudsat versus OMI RRS. At the wave-
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lengths used for the OMI RRS retrieval, fr ~ O.2feff for feff <rv 0.3. Therefore Errors at 
feff = 5% are about an order of magnitude higher than those at 1 OOon data with moder
ate to high values of cloud radiance fraction. 

We next examine the outliers, for which both OMI algorithms are biased high with re
spect to CloudSat, in more detail. These outliers appear in January (not shown here) as 
well as the single day in November 2006 that we examined in Fig. 1. A number of these 
cases appear to be caused by snow-covered pixels that are not correctly identified in 
the Near Real-time SSM/I EASE-Grid Daily Global Ice Concentration and Snow Extent 
(NISE) data set (Nolin et aI., 1998) used in the OMI algorithms for snow/ice identifica
tion. Some of these cases coincide with storm clouds that may have produced fresh 
snow that has not yet been identified in the NISE data set. 

Not all discrepancies between CloudSat and OMI cloud OCPs occurred near regions 
of snow-ice. An examination of the CloudSat profiles showed that many of these pixels 
contained multi-layered clouds. As shown in Fig. 5, these are the profiles for which the 
fast simulator has the largest difference with the full RRS simulator. The differences, 
however, are generally too large to be explained by the fast simulator alone. In many 
cases, multiple outliers occur within a close proximity where there is significant variabil
ity in the CloudSat-simulated cloud OCP as well as cloud-top pressure. In most cases, 
excess scattering and absorption produces higher than expected cloud OCPs in both 
OMI algorithms, indicating a geophysical effect rather than measurement or algorithm 
errors. We hypothesize that 3D cloud effects may be contributing to some of these 
differences. 

5.2 Comparisons with CloudSat-based fast simulator over ocean 

Figures 8-9 show comparisons similar to those in Figs. 6-7 but over ocean. Here, we 
see a predominance of low altitude (high pressure) clouds for moderate values of cloud 
effective fraction. A bimodal distribution in the low clouds with peaks near 775 and 875 
hPa is apparent for effective cloud fractions between 25 and 50%. This bimodality, a 
prevalent feature of trade wind cumulus clouds, has been observed in several different 
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passive satellite cloud-top height data sets, both thermal IR and stereo algorithms, 
as well as surface ceilometer cloud base height measurements (e.g., Genkova et aI., 
2007; Mote and Frey, 2006). High altitude (low pressure) clouds are prevalent only 
for high effective cloud fractions. As over land, though not as distinct, for both OMI 
algorithms we see a cluster of points with higher a cloud OCP than predicted from 
CloudSatiMODIS. 

5.3 Comparisons of two OMI cloud algorithms over land and ocean 

Figures 10 and 11 show similar 2D histograms for the same sample of pixels as above, 
but now for the OMI RRS versus 02-02 cloud OCPs for land and ocean, respectively. 
The 02-02 OCPs are slightly higher than those from RRS retrievals. There are skews 
in the distributions particularly over ocean where the 02-02 algorithm provides higher 
cloud OCPs than those from the RRS algorithm. 

The scatter between the two OMI cloud OCPs is significantly smaller than either one 
compared with CloudSat. The OMI algorithms are nearly independent; they operate on 
on different physical principles and use two separate detectors. Therefore, our results 
strongly indicate that consistent differences between CloudSat and both OMI cloud 
OCPs are not due to algorithm or measurement error but rather to geophysical effects, 
such as cloud SD effects including the cloud adjacency effect discussed by Marshak et 
al. (2008). 

5.4 Probability Distribution Functions (PDFs) of cloud OCP 

Figure 12 shows the above results for July 2007 displayed as probability distribution 
functions (PDFs) of cloud OCPs computed from CloudSat 2B-TAU data using the fast 
simulator and those from both OMI cloud algorithms for both land and ocean and de
rived using only pixels with effective cloud fractions> O.S. The OMI distributions are 
similar to those shown previously by Sneep et al. (2008). Over ocean, CloudSat shows 
a trimodal distribution with a small peak 400 hPa. Both OMI algorithms only hint at a 
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low pressure mode, with a higher pressure than that given by CloudSat. As noted ear
lier for high pressure clouds, there are peaks in the distribution near 775 and 875 hPa 
in the CloudSat-derived OCPs. The OMI RRS algorithm underestimates the pressure 
of these clouds while the OMI 02-02 algorithm overestimates. Neither OMI cloud algo
rithm shows a clear bimodal distribution in the high pressure clouds, though there is a 
hint of bimodality in the OMI RRS PDF. Genkova et al. (2007) showed that distributions 
of cloud top heights of trade wind cumulus derived from thermallR measurements are 
affected by spatial resolution. It should be noted that the OMI pixel is twice as wide in 
the cross-track direction as the length along track over which the CloudSat OCPs are 
averaged. 

Over land, the CloudSat OCP PDF is bimodal with peaks near 400 and 600 hPa. 
Similar bimodal distributions of cloud top pressure and vertical structure have been 
shown with both active and passive sounding data as well as in general circulation 
model output (e.g., Chang and Li, 2005a,b; Comstock and Jakob, 2004; Mote and 
Frey, 2006; Xi et aI., 2010). Neither OMI algorithm produces a bimodal distribution; 
both produce a single peak between 650 and 700 hPa. The RRS PDF is more sharply 
peaked, while the 02-02 produces more high pressure clouds. 

5.5 Maps of cloud OCP and effective cloud fraction 

Figure 13 show gridded maps of effective cloud fraction from the OMI RRS algorithm 
and cloud OCP from CloudSat for the pixels collocated with CloudSat in July 2007. 
This provides a context for maps of the differences between CloudSat-based OCPs 
and those from OMI RRS and 02-02, respectively, shown in Figures 14 and 15. These 
figures also show corresponding histograms. The difference maps show all individual 
points (Le., not gridded data). Each point is color coded by the corresponding his
togram bin, where the color scale is chosen to emphasize positive versus negative 
biases. 

In the histograms, the skew of the distribution is seen here for both OMI algorithms 
versus CloudSat for land as well as ocean, as shown in previous figures. The maps 
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provide the geographic distribution of the differences. It is now apparent that most 
of the positive differences with respect to the RRS cloud OCPs over ocean occur in 
regions where subsidence produces low clouds and relatively low cloud effective frac
tions. The high cloud OCPs seen in the inter-tropical convergence zone (ITCZ) show 
negative differences. Similar patterns are seen with respect to the OMI 02-02 re
trievals. However, more pronounced negative differences are seen at high southern 
latitudes. Both OMI algorithm produce negative differences with respect to CloudSat 
at high northern latitudes. 

Figures 16-18 show a similar series for January 2007. The spatial patterns of differ
ences with CloudSat are similar to July in the tropics. At moderate to high latitudes, 
the patterns have reversed with respect to the hemispheres; both algorithm produce 
negative differences with respect to CloudSat at high southern latitudes, while 02-02 
has more prominent negative differences at high northern latitudes. 

6 Conclusions 

We have developed a relatively simple scheme for simulating retrieved cloud optical 
centroid pressures from satellite solar backscatter observations. We have compared 
simulator results with those from more detailed retrieval simulators that more fully ac
count for the complex radiative transfer in a cloudy atmosphere. 

We used this fast simulator to conduct a comprehensive evaluation of cloud OCPs 
from the two OMI algorithms using collocated data from CloudSat and Aqua MODIS, 
a unique situation afforded by the A-train formation of satellites. We find that both 
OMI algorithms perform reasonably well and that the two algorithms agree better with 
each other than either does with the collocated CloudSat data. This indicates that 
patchy snow/ice, cloud 3D, and aerosol effects not simulated with the CloudSat data 
are affecting both algorithms similarly. We note that the collocation with CloudSat 
occurs mainly on the East side of OMI's swath. Therefore, we are not able to address 
cross-track biases in OMI cloud OCP retrievals. 
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Our fast simulator may also be used to simulate cloud OCP from output generated 
by general circulation models (GCM) with appropriate account of cloud overlap. We 
have implemented such a scheme and plan to compare OMI data with GCM output in 
the near future. 
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Table 1. Monthly-mean cloud OCP comparison statistics including average (mean) difference, 
standard deviation of the difference (cr), both in hPa, and correlation coefficient, R, for July 
2007, where CS stands for OCPs from CloudSat profiles run through the fast simulator. 

0.50<ECF<0.75 O.75<ECF<1.0 I 
Data sets, avg. cr R avg. cr R 
conditions diff. ditt. 

Land 
RRS-CS 77 167 .43 91 143 .56 
0202-CS 111 163 .50 125 144 .57 
RRS-020 2 -38 86 .85 -40 63 .92 

Ocean 
RRS-CS 77 178 .51 74 148 .54 
0202-CS 105 178 .54 92 151 .56 
RRS-020 2 -32 84 .88 -25 63 .92 
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Fig. 1. Two dimensional histogram showing comparison between cloud OCPs from the actual 
OMI rotational-Raman scattering retrievals with those from the full rotational-Raman scattering 
simulator (R3S) using CloudSat extinction profiles with T > 5 for a single day (13 November 
2006). Results are provided as 2 dimensional densities in cloud pressure bins of 10 hPa. The 
color scale represents the number of pixels falling within a given bin. 
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Fig. 2. Two dimensional histogram showing comparison between cloud OCPs from the fast 
simulator with those from the full rotational-Raman scattering simulator (R3S) for the same 
sample of points used in Fig. 1. 
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Fig. 3. Similar to Fig. 1 but comparing cloud OCPs from the OMI rotational-Raman retrievals 
with those from the fast simulator. 
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Fig. 6. Comparison of cloud pressures using a 2D histogram as in Fig. 2: CloudSat OCPs 
(based on 2B-TAU profiles and the fast simulator) with OMI RRS cloud OCP retrievals over 
land for different bins of effective cloud fraction for July 2007. Note that the color scale changes 
for the different cloud effective fraction bins. 
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Fig. 7. Similar Fig. 6 but for OMI O2-02 cloud OCP retrievals (over land). 
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Fig. 8. Similar Fig. 6 but over ocean (July 2007) 
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Fig. 9. Similar Fig. 8 but for Or02 (ocean, July 2007) 
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Fig. 10. Similar Fig. 6 (same sample of pixels) but comparing OMI cloud OCP retrievals from 
the RRS and O2-02 products over land (July 2007). 

35 



Effective Cloud Fraction = 0.50-0.75 
1200 

~ 1000 

e 
:::J 
f!) 800-
~ a. 
'0 600 
:::J 
0 

C3 
N 400 

9 
N 

0 
:iii 200 

0 

200 400 600 800 1000 1200 
OMI RRS Cloud Pressure (hPa) 

Effective Cloud Fraction = 0.75-1.00 
1200 _ 

'i 
:!:- 1000-

e 
:::J 
f!) 

~ a. 
'0 
:::J 
.2 
0 

Cr 
ON 

:iii 
0 

800-

600 

400-

200 

200 400 600 800 1000 1200 
OMI RRS Cloud Pressure (hPa) 

Fig. 11. Similar Fig. 10 (same sample of pixels) but over ocean (July 2007). 
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Fig. 12. Probability distribution functions of CloudSat cloud OCP (2B-TAU profiles with fast 
simulator) and the two OMI cloud algorithms over ocean (top) and land (bottom) for pixels with 
effective cloud fraction (ECF) 0.3. 
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Fig. 13. Maps of gridded effective cloud fraction from the aMI cloud RRS algorithm (top) and 
cloud OCP from CloudSat (bottom) for July 2007. 
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Fig. 14. Histogram (top) and color-coded map (bottom) of differences between CloudSat cloud 
OCP and that from the OMI RRS algorithm for effective cloud fractions> 0.1. 
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Fig. 15. Similar to Fig. 14, butfor OMI Or02. 
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Fig. 16. Similar to Fig. 13 but for January 2007. 
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Fig. 17. Similar to Fig. 14, but for January 2007. 
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Fig. 18. Similar to Fig. 15, but for January 2007. 
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