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Abstract 

This paper documents some of the evolutionary steps in developing a rigorous Space Shuttle launch 
abort capability. The paper addresses the abort strategy during the design and development and 
how it evolved during Shuttle flight operations. The Space Shuttle Program made numerous 
adjustments in both the flight hardware and software as the knowledge of the actual flight 
environment grew. When failures occurred, corrections and improvements were made to avoid a 
reoccurrence and to provide added capability for crew survival. Finally some lessons learned are 
summarized for future human launch vehicle designers to consider.  

 
 

Nomenclature 
 
AOA  = Abort Once Around 
ATO    = Abort to Orbit  
ET      = External Tank 
FSW  = Flight software 
ISS   = International Space Station 
MECO  = Main Engine cutoff 
OFT  = Orbiter Flight Test Program 
OMS   = Orbiter Maneuvering System 
RCS    = Reaction Control System 
RTLS  = Return to the Landing Site 
SOFT   = Suborbital Flight Test Flight 
SSME  = Space Shuttle Main Engine 
TAL    = Transoceanic Abort Landing 
TPS    = Thermal Protection System 
TVC   = Thrust vector control  
WTR  = Western Test Range 
 
 
 
 

I. Introduction 

he Space Shuttle was intended to be a reusable launch vehicle. However the national budget could not support 

that large of an initial investment required for the design and development of a fully recoverable and reusable 

vehicle. Therefore a compromise design (Fig. 1.) was selected with an expendable external propellant tank that 

lowered development cost and corresponding increase in the operations cost. The Orbiter was designed for up to 100 

flights and a 10 year life; the Solid Rocket Boosters and Motors were recovered after every launch and refurbished 
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for a future flight. The External Tank (ET) was expendable and a new one built and flown on each flight. Space 

Shuttle Main Engines (SSME’s) were extensively checked and test fired before being reused. This resulted in 

approximately the same cost over the twenty-five year operating life but with a level and more affordable annual 

budget. With this framework, added frills for enhanced abort features were not affordable during the initial design. 

The intent was to design a robust and reliable vehicle that could accommodate a safe return with the loss of a single 

main engine. Two crew ejection seats were provided during the Orbital Flight Test program to protect for design 

surprises (infant mortality). Aborts resulting from other or additional failures would require the flight crew or 

ground assist to return the crew and vehicle. This required many hours of training for both the crew and ground 

controllers to expedite these aborts successfully. The safe recovery of the crew was based on training that used the 

inherent capabilities of the Space Shuttle. Once the ejection seats were no longer available and as the mission 

requirements increased, added abort capability was needed and had to evolve during shuttle operations. 

This paper addresses some of the key abort improvements that have been made over the life of the Space Shuttle 

program that have improved crew safety and reduced risks. Beyond the designed margins of safety and redundancy, 

the hardware and flight software have been modified with the increasing challenges for the existing Space Shuttle 

vehicle (Ref #1). As the performance grew so did the entry and landing weights, requiring structural beef up and 

software changes to stay within specified design limits (Ref #3). These were needed to carry larger payloads, 

increases in orbital inclination and altitude, large assembly tasks and to fly longer missions. Additional contingency 

sites were added to support changing ground tracts increasing available emergency runways. Most required flight 

software changes for additional targets and supporting navigational aids. As flight risks were identified and better 

understood improvements were made to mitigate the risk, the largest were those following the Challenger accident. 

In addition, all Shuttle abort work was coordinated with the Eastern Range Safety Offices at Patrick AFB. 

Finally lessons learned are summarized that should help future human spaceflight and launch vehicle designs. Most 

importantly is automating aborts wherever possible and verifying the flight software and flight sequences for all 

planned flight environments (Ref #2) including the aborts. The abort design is never complete, one should always 

monitor the flights and identify ways to improve the abort capability and maximize crew safety.  
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Figure 1.  Space Shuttle 

II. Abort Design Philosophy 

The design philosophy for the Space Shuttle was added robustness, with a 1.4 factor of safety, and sufficient flight 

hardware and software redundancy to minimize the need for aborts. Also crew ejection seats and a backup flight 

computer and software were added to cover major design flaws and infant mortality concerns. Selected flight design 

missions were developed to bound the flight conditions and define the environments that the Space Shuttle was 

expected to operate in for the Shuttle design and development. Four reference missions were defined: two launched 

from the east coast, a due east launch for maximum performance and a high inclination flight for a possible space 

station orbit, and two from the west coast, both polar orbit military missions. The latter two military missions 

required a high cross range and auto land capability.  

A crew return capability following the loss of one of the Shuttle main engines was a design requirement. Other 

design requirements for added cross range, auto land and SSME throttle up capability provided margin for abort use 

and uncertainties. Contingencies resulting from the loss of additional main engines or unexpected failures were 

covered by exhausted crew training, crew procedures and mission rules. Onboard computer limitations required 

most of the abort determination be performed on the ground in the Mission Control Center (MCC). The flight 

control team and the flight crew trained together during integrated simulations for every Shuttle flight. The teams 

become proficient in failure recognition and abort execution. These simulations and Shuttle avionics integration 
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testing added confidence that the flight software worked and interfaced with the flight hardware for each mission 

configuration. 

The intact aborts following the loss of a single engine were an automated design feature; while the contingency 

aborts, for all other failures, were mostly flown manually by the crew with ground assistance. The recovery and a 

safe return for the contingency aborts were developed using the inherent capabilities of the Shuttle vehicle and not 

always certified. Flight software was added to allow proper sequencing through the necessary flight phase modes- 

powered flight, separation and entry; but the structure and flight control capabilities could not be certified for all the 

possible abort scenarios. Continued analysis throughout the life of the program significantly improved the 

certification for the more likely abort cases. These studies supported some hardware modifications and regular flight 

software improvements were made for increased crew safety.  

III. Launch Abort Modes 

The original ascent design for the Shuttle was to shape the launch trajectory such a continuous abort capability 

existed for the loss of a main engine from liftoff to the planned main engine cutoff (MECO). A return to the landing 

site (RTLS) abort capability would exist up until an abort once around (AOA) capability was achieved.  The first 

Shuttle launch was the only Shuttle launch that was flown with this abort shaping. Shaping the ascent to force the 

RTLS and AOA aborts together was a significant launch performance penalty, approximately 6000 lbs. Therefore 

subsequent Shuttle launches were shaped for maximum payload to orbit. This nominal shaping opened up an abort 

capability gap between the last RTLS and earliest AOA. A down range abort, trans-ocean abort landing (TAL), was 

added to fill the gap. Because this was an added capability after the Shuttle was designed it was called a contingency 

abort until it was certified later in the program.    

The intact abort modes are summarized on fig. 2 - 4 and the coverage on fig. 5: 
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Figure 2.  Shuttle Intact Aborts: Return to Launch Site (RTLS) Profile 

 

A. The RTLS has the most differences from the normal Shuttle profiles flown each mission. First because it 

returns the Shuttle’s Orbiter to the KSC landing site, it requires a powered flight pitch around maneuver to 

kill off the down range velocity and add sufficient velocity for the Orbiter to glide back to the Cape. This 

maneuver provides a gross control for using up the propellant in the ET, SSME throttling is the fine control 

necessary to deplete the propellant prior to separating the ET (less than 2% required for separation). This 

separation is the most critical maneuver for the RTLS (highest risk) because it is significantly different than 

the normal ET separation. After the powered pitch down maneuver and MECO, it requires an assist from 

both the RCS jets and from the aerodynamics to achieve a safe separation. To establish the correct velocity 

for the Orbiter’s return and meet the tight dynamic pressure constraints for separation the altitude has to be 

high enough causing it to be considerably off the desired equilibrium glide slope for a normal descent. This 

means the Orbiter is failing in like a rock and a 50 degree angle of attack (the highest required in the 

program) is needed to avoid breaking the wings off and sufficient control margin to capture the normal 

entry trajectory without an excessive phugoid during pullout. Once on the normal glide slope the return is 

much like the normal entry.   

B. TAL aborts are much closer to the normal Shuttle flight profiles and once it was certified it was preferred to 

RTLS when an overlap occurred. These aborts were far enough down range that near normal ET separation 

and entry could be performed. The largest concern was with the ET rupturing close to the Orbiter during 

the descent. Surprisingly the ET had a more violent rupture than anticipated resulting in a fairly large 
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envelope of debris the Orbiter had to avoid to make a safe entry. Two things were required to provide 

sufficient separation distance between the ET and Orbiter prior to rupture: first rolling the Shuttle during 

ascent to condition the ET thermally to delay rupture and second was to adjust the TAL MECO target 

conditions to achieve an adequate separation distance between the vehicles (this sometimes required 

delaying the earliest TAL). Another difference was because the TAL sites were selected primarily for 

location to the ascent ground track, they didn’t have as long of a runway or the navigation aids desired for 

landing. To compensate for these deficiencies runway barriers were later added and additional NAV aids 

and ground support were provided for the specific missions. 

C. The AOA is the least likely abort mode because the improvements in the abort to orbit (ATO) with 

deorbiting opportunities early in the flight have about the same capability as the AOA except for when the 

performance is below normal on the earliest abort times. A time critical contingency abort would be a more 

likely requirement for AOA. 

D. The ATO is the preferred abort option whenever that capability exists. It continues the ascent with the two 

remaining SSME’s and inserts in a safe orbit giving time to assess the situation and schedule a normal 

return to a primary landing site or continue the planned mission. This was the only intact abort performed 

in the program on STS-51F following an erroneous engine shutdown from a faulty sensor reading. There is 

a press to MECO (PTM) abort mode which can occur late enough in the launch to continue the normal 

mission with no degradation. 

 

 



AIAA SPACE 2011 Conference & Exposition                                                                              AIAA 2011-1072113 
26 - 29 Sep 2011, Long Beach, California 
 

 7 

Figure 3.  Shuttle Intact Aborts: Transoceanic Abort Landing (TAL) Profile 

 
Figure 4.  Shuttle Intact Aborts: Transoceanic Abort Landing (TAL) Profile 

 

 

 
Figure 5.  Shuttle Ascent Abort Profile 
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IV. Major Program Milestones 

There have been major milestones, planned and unplanned, in the life of the shuttle program that provided 

opportunities or mandated abort improvements. The following discusses some of the more prominent events: 

 

A. Pre-Shuttle Launch 

Prior to launching the Space Shuttle’s Orbiter vehicle into space an ALT program was conducted, separating the 

Enterprise off the 747 and landing the Orbiter on a runway at the EAFB to insure the Orbiter could land safely. 

A surprise happened during the transfer of Columbia from the builder on the west coast to the launch site at 

KSC, many of the Orbiter thermal protection ceramic tiles fell off during the ferry flight. This raised a major 

concern- should the TPS tiles fall off during launch the Orbiter would not be able to survive the heat of entry. 

Actions were taken to review and improve the tile bonding process.  A backup plan was to change the first 

Shuttle flight to a suborbital flight test (SOFT) in case tiles fell off during the first stage the Orbiter could return 

without being thermally stressed. Finally improvements in tile attachment and extensive testing provided the 

confidence to proceed with the planned launches without a suborbital flight. 

         

B. Orbital Flight Test Program 

The Orbital Flight Test (OFT) Program was the initial checkout phase for Shuttle launches. Conservatism and 

data collection were the key objectives for the first four flights. As mentioned earlier, crew ejection seats for the 

first four flights added a crew escape capability for surprises or an unexpected design flaw. The OFT program 

provided sufficient flight information to verify the models used to conduct a commit-to-flight activity prior to 

each launch and to refine the crew procedures and mission rules needed for operations. It also provided the 

confidence to disable the crew ejection seats (later to be removed) and add additional crew members. 

 

C. Shuttle Operations    

Shuttle operations were where improvements started in earnest. First major mods to the FSW were initiated to 

support the expanded mission requirements and to add and improve on the basic capabilities used to support the 

test program. Software updates were routinely scheduled through a FSW control board and updated on a 

priority need and available skills. All updates were verified, tested and used in the flight design prior to each 

mission. Changes were needed early on for additional performance to meet increasing payload demands. As 

payload weights increased the abort landing weights rapidly exceeded the design requirements. To reduce the 

landing weights software sequencing logic was added to dump residual fluids/propellants during the abort that 

had not been used because of the early termination. These dumps were normally during the abort after MECO 

and sometimes during entry were not standard ops for the propellant tanks, feed lines, etc.  Therefore dumps 
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could only be performed during limited orientations and gravity loads and not all fluids could be expelled. All 

requiring added certification and testing. 

 

The next change was going to a higher inclination (i=57deg.) on STS-9. This change resulted in a new ground 

track and over flight during ascent requiring new northerly abort landing sites for TAL (Fig. 6). It also 

introduced additional contingency abort landing sites along the East coast that could improve the chances for a 

landing on a runway for certain failures that would have been water ditches for the more easterly launches 

previously flown. This was followed by the deletion of the OMS-1 maneuver on STS-11, going from a standard 

insertion to a direct insertion. The change saved OMS propellant, which was critical for that mission but moved 

the normal ET impact zone from the Indian to the Pacific Ocean. The OMS burn deletion required a higher 

MECO velocity increasing the ATO likelihood for an abort over an AOA.  

 

 
Figure 6. Transoceanic Abort Landing (TAL) 

 

A major design activity was conducted preparing for Shuttle launches on the West coast from Vandenberg 

AEB. Though not flown due to new program directions following the Challenger accident, a lot of design work 

and analysis was done. The launch abort environments were significantly different than those for the East coast 

launches and required a lot of changes for the aborts. Therefore the launch aborts for the initial WTR launch 

were designed to be benign with considerable margin. Instead of returning to the runway at Vandenberg AFB, 

the RTLS was designed to return to Edwards AFB where the lakebed offered multiple runway choices for 
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surprises. This introduced a problem with an unacceptable ET disposal on land following MECO. A dogleg 

trajectory was inserted to steer the ET out in the Pacific Ocean prior to MECO to avoid disposal on a populated 

area. Then bank the Orbiter to glide in to EAFB. It also required adding a more up range TAL site (Easter 

Island) to avoid an abort gap. A major complication for the planned WTR launches was carrying the Centaur 

upper stage and its propellant in the Shuttle cargo bay. These required adding and certifying a new propellant 

dump system to dump these propellants prior to landing for the aborts. Though these WTR missions were never 

flown the analysis performed added greatly to the knowledge base and was very helpful in follow on Shuttle 

work. 

 

D. Challenger (51L) 

The one event that had the most impact on abort changes was the return-to-flight work following the Challenger 

accident on STS-51L. Three significant areas were addressed: 1). Develop a bailout capability, 2). Certify the 

intact aborts and 3). Eliminate the black zones (the loss of crew following a second main engine failure). Lots of 

other changes happened also but the paper will address these three. 

 

Several design changes were added to support crew bailout. First the hatch was redesigned to facilitate easy and 

fast egress for the total crew. A pole was added for the crew to slide out on to clear any recontact with the 

Orbiter. Changes were made to the flight suit that protected for decompression in case of an abort. These 

features added a capability for the crew to bailout during a stable glide over trying to survive ditching the 

Orbiter in the Ocean. 

 

As mentioned earlier intact aborts following the loss of a single main engine was a certified design requirement 

for the Shuttle. However the TAL aborts were added after the design phase and were not fully certified. Prior to 

returning the Shuttle to flight after the accident the TAL aborts were fully certified and acceptable runways and 

navigation aids were provided. Once certified and had a profile similar to normal Shuttle separation and 

descent, TAL aborts became preferable over the RTLS abort for non-time critical aborts.  

 

Also mentioned earlier that not a lot of work was done on contingency aborts – failures beyond the loss of one 

main engine. The Shuttle aborts are defined as the vehicle has a problem with Space Shuttle Main Engine 

(SSME) or the critical subsystems/systems that require to abort its mission. Depending on a level of 

survivability of the crew and vehicle, three zones (green, yellow, and black) for the abort are developed. The 

green zone is defined as the vehicle and crew is completely recoverable (reach to a landing site). The yellow 

zone is defined as the crew may be bailed out from Orbiter. A black zone is defined as a vehicle loss of control/ 

structural failure that could lead to non-recovery or an uncontrollable vehicle and a death of its crew. 

 

The abort with 1 SSME-out is an intact abort that is referred as a green zone for the ascent phase. The abort 

with 2 or 3 SSME-out is referred as contingency abort (Ref #4). The contingency abort may be in green, yellow, 
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or black zone. Prior to the challenge accident (STS-51L), most of the black zone occurred for 2 or 3 SSME’s 

out during ascent phase. 

 

Key philosophies to minimize the black zone are to detect a failure as soon as possible and train a crew to fly 

critical maneuvers to control vehicle including a quick separation of the Orbiter from the stack. Shuttle 

engineers used engineering tools to develop manual crew procedures and flight software to minimize the black 

zones. Then, both crew and engineers used the Shuttle Engineering Simulation (SES) to validate crew 

procedures for 2 or 3 engine-out scenarios before they were implemented into the Space Shuttle missions. In 

addition, the engineers also developed tools to be used by the flight controller to evaluate abort options and 

predict a vehicle ground impact point. Both crew and flight controllers were trained how to identify off-normal 

operational situation of the Shuttle systems and select appropriate procedures to fly vehicle to a landing site or 

control vehicle in the stable condition so the crew can bail out. 

 

The key flight software packages were developed and implemented after 51L to reduce black zone are: 

1. The second SSME-out recognition flight software 

2. The Automation of the NZ hold phase during the Entry phase, abort propellant dump logic, and Transoceanic 

Abort Landing (TAL) droop logic 

3. The expansion of a landing site table in the flight software to cover additional east-coast landing sites. 

Below ( figs. 7 & 8) are a black zone comparison of the contingency abort capability between pre sts-51L 

(1986) and post 2000. 

 

 
Figure 7.  Contingency Abort Capability – Pre STS- 51L (1986) 
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Figure 8.  Contingency Abort Capability - Post 2000 

 

E. Shuttle Upgrades 

After the return-to-flight and Shuttle operations were progressing reasonably well, Shuttle upgrades were 

reconsidered. The plan was twofold, first was to improve the Shuttles operating efficiency and flight rates to 

significant reduce the operating cost and second to add safety improvements to raise the Shuttle reliability. The 

goal was to extend Shuttle to 2020 or beyond but due to budget pressures the operations efficiencies were the 

first to go- not being mandatory and we could fly without them. Work on the safety improvements went along a 

while longer. The program considered some significant improvements including an advance cockpit for added 

situation awareness, a new TVC system for the SRB’s, advanced SSME health management, a new more 

sustainable fuel cell, new landing gear and tires were the major ones. Though most of these upgrades were 

developed, all but a couple were canceled once the decision to retire the Space Shuttle was made. The first 

phase of the SSME health management, to shutdown an SSME if it exceeded a engine vibration constraint and 

the new tire were implemented.  

 

The SSME with high throttle was also certified to minimize the exposure for RTLS and TAL aborts. 

Particularly, the SSP also implemented the RTLS ET/Orbiter separation software change to reducing a risk of 

loss of control and Orbiter/ET recontact. 
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F. International Space Station 

Once the assembly for the International Space Station (ISS) was initiated additional Shuttle payload weight was 

required to launch the larger ISS elements. This increased the abort weights beyond the certification limits for 

the RTLS separation and entry. New MECO targets and descent profiles were developed and certified. Now 

with assembling the ISS being the primary task, improvements in the automatic rendezvous and docking were 

key. Also with the many EVA’s required for assembly many crew safety features were added like eliminating 

share edges that could damage space suits and gloves during space walks. Drag on cables were used to provide 

extra power to the Shuttle for extending ISS stay times to accomplish more tasks while the Shuttle was docked 

to the ISS. Once the ISS was manned and could support a large crew the station became a safe haven for the 

crew if an Orbiter became damaged and not safe for entry. 

 

G. Columbia (STS-107) 

The Columbia accident on STS-107 was probably the deciding factor for the Shuttle termination. The major 

finding from the accident review board was to understand and eliminate the source of debris during Shuttle 

ascents. Added modifications and inspections during the ET build process and during the launch was the major 

focus which added additional cost. Inspections to the Orbiter after launch, at the ISS and prior to entry were 

added to avoid an unsafe return. As mentioned above, provisions for the ISS to provide a safe haven for the 

crew were added as well as adding a rescue Shuttle on standby if needed.  
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V. Lessons Learned 

Many lessons can be learned from the development and evolution of the aborts during the Space Shuttle Program: 

 

1. Include aborts as part of the launch/crew vehicle design and development 

2. Identify and protect for the likely failure modes 

3. Know the vehicle limitations and add design margin 

4. Keep abort paths close to normal flight 

5. Provide a crew escape capability 

6. Automate aborts and abort determination 

7. Provide the crew situation awareness 

8. Test the flight hardware 

9. Verify the flight software for all expected flight environments 

10. Maintain a strong commit-to flight process 

11. Explain all flight anomalies 

12. Train for the unexpected 

13. Provide sufficient ground support for flight status, abort confirmation and replanning 

14. Improve planning tools with flight data 

15. Update abort capabilities and perform necessary verification for all changes 

16. Provide provisions for modular updates for new capabilities  

 

VI. Conclusions 

In conclusion, the abort capabilities evolved throughout the life of the Space Shuttle program as changes 

occurred. There was a lot of learning as we went along; in hindsight more planning for upgrades and for 

automation would have helped keep systems more current. The shuttle abort capabilities were significantly 

improved along with added vehicle certification for the planned aborts. More importantly, improvements in 

training, crew procedures, situation awareness, and mission rules all led to much safer flights. Crew safety and a 

safe Orbiter return were maximized for the loss of a single main engine and crew survivability was significantly 

improved for multiple engine failures.   
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