Lattice thermal conductivity of ultra high temperature ceramics \(ZrB_2\) and \(HfB_2\) from atomistic simulations

John W. Lawson,\(^1a\) Murray S. Daw,\(^2\) and Charles W. Bauschlicher, Jr.\(^3\)

\(^1\)Thermal Protection Materials Branch, Mail Stop 234-1, NASA Ames Research Center, Moffett Field, CA 94035
\(^2\)Department of Physics and Astronomy, Clemson University, Clemson, SC 29631
\(^3\)Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035

Atomistic Green-Kubo simulations are performed to evaluate the lattice thermal conductivity for single crystals of the ultra high temperature ceramics \(ZrB_2\) and \(HfB_2\) for a range of temperatures. Recently developed interatomic potentials are used for these simulations. Heat current correlation functions show rapid oscillations which can be identified with mixed metal-Boron optical phonon modes. Agreement with available experimental data is good.

\(^a\)Electronic mail: John.W.Lawson@nasa.gov
The class of materials referred to as ultra high temperature ceramics (UHTC), including ZrB$_2$ and HfB$_2$, have high melting points, good chemical stability and reasonable mechanical properties. They are candidate materials for applications involving high temperature environments such as sharp leading edges for hypersonic vehicles, propulsion systems and refractory crucibles$^{1-3}$. They have also been discussed as buffer materials for microelectronics4. Unlike most ceramics, these materials are distinguished by their high thermal conductivity. High thermal conductivity offers a number of advantages for high temperature applications, including improved thermal shock resistance and enhanced thermal radiation by efficient distribution of thermal energy over available surfaces.

ZrB$_2$ and HfB$_2$ are broadly similar materials, but have nontrivial differences. Zr and Hf have comparable atomic radii and valence electronic structure, making their diboride analogues electronically almost indistinguishable. However, the large mass difference between Zr and Hf atoms lead to significant deviations especially in the vibrational spectra of the diborides. These differences are expected to affect their lattice thermal conductivity as well. The crystal structure of ZrB$_2$ and HfB$_2$ is the AlB$_2$-type $C32$ with space group $P6/mmm$. These materials are layered with alternating planes of closed packed hexagonal Zr/Hf and open hexagonal, graphitic B. Metal atoms are situated directly above/below 6-membered rings in the adjacent Boron planes. A detailed ab initio study of the structure and properties of these materials was recently presented6.

High thermal conductivity ceramics such as ZrB$_2$ and HfB$_2$ have significant contributions from both electronic and phononic thermal carriers to the total thermal conductivity κ_{tot}.5. The electronic component κ_e can be estimated from the electrical conductivity σ using the Weidemann-Franz (WF) empirical relation, $\kappa_e = \kappa_0 \sigma T$, where κ_0 is the Lorentz constant ($2.45 \times 10^{-8} W \cdot \Omega \cdot K^{-2}$) and T is the temperature. The phonon part κ_{ph} cannot be measured directly and is usually inferred by subtracting κ_e from κ_{tot}. The lattice thermal conductivity can be accessed directly however from molecular dynamics (MD) simulations.

Thermal conductivity measurements for single crystal ZrB$_2$ at room temperature have been reported as $140 W/(m \cdot K)$ in the basal direction and $100 W/(m \cdot K)$ along
the c-axis11. These single sample results included neither a characterization of defects which will reduce κ_{tot} nor individual estimates for κ_{e} and κ_{ph}. Thermal conductivity data has not been reported for single crystal HfB_2 although such samples have been fabricated12.

Thermal conductivity of polycrystalline ZrB_2 and HfB_2 has been more thoroughly studied8–10. Room temperature measurements give $60W/(m \cdot K)$ for ZrB_2 and $104W/(m \cdot K)$ for HfB_2. The reduction of κ_{tot} relative to single crystals comes primarily from the thermal resistance of grain boundaries. Variations of κ_{tot} with grain size can be substantial8,10. For ZrB_2 at 300K, κ_{e} was estimated to be $32W/(m \cdot K)$ using the WF relation, giving $28W/(m \cdot K)$ for κ_{ph}. As a function of temperature, κ_{tot} for polycrystalline ZrB_2 rises gradually up to at least 1800K primarily due to a monotonically increasing κ_{e}. Conversely, κ_{ph} decreases as $1/T$, saturating to a value of $18W/(m \cdot K)$ above 1000K which is well above the Debye temperature ($T_D = 750K$) for this material. For HfB_2, κ_{tot} is generally higher than for ZrB_2 although a detailed comparison controlling for defect distributions and microstructure has not been done. Separate estimates for κ_{ph} in HfB_2 have not been made although behavior similar to ZrB_2 is expected. Based on these results, we estimate the lattice contribution to κ_{tot} to be on the order of 40%. This suggests for single crystals that the lattice component will be at least $56W/(m \cdot K)$ within the planes and $40W/(m \cdot K)$ in the normal direction.

Recently, we developed Tersoff style interatomic potentials7 for ZrB_2 and HfB_2. In this paper, we report results of atomistic Green-Kubo simulations of the lattice thermal conductivity κ_{ph} for single crystal ZrB_2 and HfB_2. Direct measurement of κ_{ph} is difficult in materials with high κ_{e}, therefore, simulations of the lattice component can be useful to isolate that particular thermal conduction mechanism. These computations represent the first atomistic simulations for ZrB_2 and HfB_2 and also the first nontrivial test of these new potentials.
I. METHOD

The Green-Kubo theorem relates the lattice thermal conductivity tensor κ_{ij} to the integral of the ensemble average of the time correlation function of the heat current $J_i(t)$

$$\kappa_{ij} = \frac{V}{k_B T^2} \int_0^\infty \langle J_i(0)J_j(t) \rangle dt \tag{1}$$

where $i, j = x, y, z$, V is the volume, k_B is Boltzmann’s constant and T is the temperature. The instantaneous heat current can be evaluated from the phase space configuration of the system at time t as

$$\vec{J}(t) = \frac{1}{V} \left[\sum_i e_i \vec{v}_i + \sum_{i<j} (\vec{f}_{ij} \cdot \vec{v}_j) \vec{x}_{ij} \right] \tag{2}$$

where e_i is the per atom energy of atom i, \vec{f}_{ij} is the force on atom i due to neighbor j, \vec{v}_i is the velocity of atom i and $\vec{x}_{ij} = \vec{x}_i - \vec{x}_j$ where \vec{x}_i is the position vector of atom i.

MD simulations were performed using the LAMMPS package14. Systems were prepared first with a NPT run to allow the volume to expand, followed by a NVE run to equilibrate the system at the desired T. Timsteps ranging from 0.1fs to 1fs were used as required to maintain energy conservation. Larger timesteps were generally used at low T and smaller timesteps at higher T. After equilibration, time series data for the heat current was collected under NVE. To reduce statistical noise for κ, long NVE runs were required. For lower temperatures, $T = 300K$ for example, runs of $10ns$ with a $1fs$ timestep were performed. For higher temperatures with smaller timesteps, runs with a comparable or larger number of steps were used. The largest number of steps considered was 4×10^7 steps. Eight independent simulations were performed for each system and at each temperature to control for the randomized initial velocities.

Correlation functions were evaluated from the heat current time series. To increase the statistics, correlations were considered in a sliding window through the data set. This approach gives errors that increase with the correlation time. The integral of the heat current correlation function ($HCCF$) $C_{ij}(t) = \langle J_i(0)J_j(t) \rangle$ was evaluated using the trapezoid rule. Time correlations up to $200ps$ gave well-converged values.
for the thermal conductivity.

Recently derived Tersoff style interatomic potentials were used for both \(ZrB_2\) and \(HfB_2\). For \(ZrB_2\), two potentials were developed that were denoted “Pot 1” and “Pot 2”. “Pot 2” however gives lattice thermal conductivity values for \(\kappa_{zz}\) that are higher than the in-plane component which is not consistent with experiment. “Pot 1” does give the correct ordering, and therefore we focus our investigations using it.

Unit cells contain 12 atoms with 4 \(Zr/Hf\) atoms and 8 Boron atoms. Simulation cells of size \(8 \times 8 \times 16\) were utilized giving 12,288 atoms. Thermal conductivity values are well converged with respect to system size at this level.

II. RESULTS

Lattice thermal conductivity was obtained for both \(ZrB_2\) and \(HfB_2\) at temperatures of \(T = 300K, 600K, 800K, 1000K\). In Fig 1, the normalized HCCF \(C_{xx}(t)\) is presented for three different systems: \(ZrB_2\) at \(T = 300K\), \(HfB_2\) at \(T = 300K\) and \(HfB_2\) at \(T = 1000K\). Analogous results can be obtained for \(C_{yy}\) and \(C_{zz}\). A distinctive feature of these curves is their rapid and regular oscillation. The oscillation frequency and decay for \(ZrB_2\) and \(HfB_2\) at 300K is similar, reflecting the broad commonalities of these materials. However, for \(HfB_2\) at 1000K, there is a significantly stronger damping. These features will be directly reflected in the values for \(\kappa\). This oscillatory behavior is different from many HCCF reported in the literature. The HCCF for Silicon, for example, decays monotonically without any oscillations. Oscillatory HCCF have been observed previously, usually in systems with nontrivial mass differences.

The HCCF oscillations can be analyzed in more detail by examining the Fourier transform. In Fig 2, the power spectra for six different HCCF are displayed: the \(C_{xx}\) and \(C_{zz}\) components for \(ZrB_2\) at \(T = 300K\) and the same components for \(HfB_2\) at \(T = 300K\) and at \(T = 1000K\). Interestingly, the spectra are peaked around single frequencies which can be identified with specific optical phonon modes. Phonon spectra for these interatomic potentials have been calculated previously. For example, for \(ZrB_2\) at \(T = 300K\), the power spectra for \(C_{xx}\) spikes at \(\omega = 364cm^{-1}\).
This frequency corresponds precisely to the in-plane Zr – B optical phonon mode. Similarly, the C_{zz} spectra spikes at $\omega = 510 \text{cm}^{-1}$ which matches the out-of-plane Zr – B optical phonon mode. Analogous results are shown for HfB_2 at $T = 300K$. For HfB_2 at 1000K, we see a broadening of the peaks due to anharmonic effects.

Numerical integration of the $HCCF$ is shown in Fig 3 for ZrB_2 and HfB_2 at $T = 300K$ as a function of the upper integration limit τ. For each material, two independent components of the thermal conductivity tensor are shown: $\kappa_{||}$ is the average of the symmetric in-plane directions κ_{xx} and κ_{yy}, and κ_{zz} is normal to the planes. As can be seen, the curves plateau above 100ps indicating largely converged integrals. Values for the ZrB_2 lattice thermal conductivity when integrated out to 200ps are $60W/(m \cdot K)$ for the in-plane component and $41W/(m \cdot K)$ in the normal direction. For HfB_2, the values are $74W/(m \cdot K)$ and $63W/(m \cdot K)$, respectively. For both of these materials, κ_{zz} is less than $\kappa_{||}$ which agrees with the experimental ordering. Values for HfB_2 are also higher than for ZrB_2.

Results for the $HCCF$ are relatively free of statistical noise, which is a consequence of the very long runs we performed. Other methods have been reported in the literature to obtain reliable numbers from shorter runs. For example, fitting the $HCCF$ to sums of exponentials has been proposed. However, the correct analytic form is not known at this time. Therefore, this approach could introduce errors. Modern computer power appears to be adequate to obtain sufficient statistical convergence without fitting.

Next we consider the temperature dependence of the lattice thermal conductivity. In Fig 4, we plot both the in-plane $\kappa_{||}$ and the normal κ_{zz} conductivities at four different temperatures $T = 300K, 600K, 800K, 1000K$ for ZrB_2 and HfB_2. As expected, there is a rapid decrease as a function of T. In this temperature regime, anharmonic phonon scattering dominates with the phonon mean free path decreasing as $1/T$. Fits of the different data sets to $1/T$ are shown in the graph. All four curves converge to similar values for κ at high T, which at $T = 1000K$ is about $5W/(m \cdot K)$. Compared to experiment however the high T values obtained from our simulations for κ are probably too low. Lattice thermal conductivity for polycrystalline ZrB_2 for example saturates around $18W/(m \cdot K)$ which can be considered a lower bound for
our single crystal results. The low κ values at high T most likely reflect a limitation in the description of the anharmonic part of the interatomic potentials.

III. DISCUSSION

Further insight can be obtained by considering the approximate relation $\bar{\kappa}_{ph} = \frac{1}{3} \rho C v_s \lambda_{ph}$ where ρ is the density, C is the specific heat, v_s is the velocity of sound, λ_{ph} is the phonon mean free path and $\bar{\kappa}_{ph}$ is the isotropic lattice thermal conductivity. Both experimental and computed values for these quantities are given in Table I. The specific heat of these materials is comparable with a value of $\sim 48 J/(mol \cdot K)$. The velocity of sound can be evaluated using $v_s = 0.87 \sqrt{E/\rho}$ where E is the bulk modulus, giving 5.16 km/s for ZrB_2 and 3.78 km/s for HfB_2 based on the experimental values while giving 5.45 km/s for ZrB_2 and 5.29 km/s for HfB_2 based on values from the interatomic potentials. Since $v_s \sim \sqrt{1/M}$, ZrB_2 is expected to have a higher v_s than HfB_2 which is reflected in the v_s derived from experimental numbers. However, the HfB_2 interatomic potential gives a modulus too high by a factor of 2X, thus the theoretical values of v_s for the two materials are comparable. Estimates for the phonon mean free path can be obtained using experimental and simulation results for $\bar{\kappa}_{ph}$. For ZrB_2 at 300K, an experimental estimate of 51 $W/(m \cdot K)$ for $\bar{\kappa}_{ph}$ gives $\lambda_{ph} = 11.3 nm$ while the simulation value of 54 $W/(m \cdot K)$ for $\bar{\kappa}_{ph}$ gives $\lambda_{ph} = 11.4 nm$. These results are in very good agreement, although an accurate experimental estimate for $\bar{\kappa}_{ph}$ requires further study. For HfB_2 at 300K, experimental data is not available. The simulation value of 70 $W/(m \cdot K)$ for $\bar{\kappa}_{ph}$ gives $\lambda_{ph} = 14.3 nm$ for that material.

In this paper, atomistic Green-Kubo simulations for the lattice thermal conductivity of ZrB_2 and HfB_2 were performed for a range of temperatures. Interatomic potentials for these materials were recently developed and this paper represents the first non-trivial test of those potentials. Oscillations in the heat current correlation functions can be identified with mixed $Zr/Hf – B$ optical phonon modes arising from the large metal/Boron mass difference. Agreement with available experimental results is very good at room temperature, but is probably too low at higher temperatures e.g. $T = 1000 K$.

7
IV. ACKNOWLEDGMENTS

J.W.L. and C.W.B. are civil servants in the Entry Systems and Technology Division. M.S.D was supported under a NASA prime contract to ELORET Corporation.

REFERENCES

<table>
<thead>
<tr>
<th></th>
<th>(\rho) (g/cm(^3))</th>
<th>(T_{\text{melt}}) (K)</th>
<th>(T_D) (K)</th>
<th>(C) (J/(mol \cdot K))</th>
<th>(E) (GPa)</th>
<th>(v_s) (km/s)</th>
<th>(\lambda_{ph}) (nm)</th>
<th>(\bar{\kappa}_{ph}) (W/m \cdot K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ZrB_2) Exp.</td>
<td>6.119</td>
<td>3518</td>
<td>750</td>
<td>48.2</td>
<td>215</td>
<td>5.16</td>
<td>11.3</td>
<td>51</td>
</tr>
<tr>
<td>MD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(HfB_2) Exp.</td>
<td>11.212</td>
<td>3653</td>
<td>565</td>
<td>49.5</td>
<td>212</td>
<td>3.78</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>MD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE I. Room temperature properties for single crystal \(ZrB_2 \) and \(HfB_2 \) where \(\rho \) is the density, \(T_{\text{melt}} \) is the melting temperature, \(T_D \) is the Debye temperature, \(v_s \) is the velocity of sound calculated from \(v_s = 0.87 \sqrt{E/\rho} \) where \(E \) is the bulk modulus, \(\lambda_{ph} \) is the phonon mean free path calculated from \(\bar{\kappa}_{ph} = \frac{1}{3} \rho C v_s \lambda_{ph} \) and \(\bar{\kappa}_{ph} \) is the isotropic lattice thermal conductivity.
FIG. 1. Normalized heat current correlation function ($HCCF$) for $C_{xx}(\tau)$ as a function of time. Unlike monoatomic systems, the $HCCF$ for ZrB_2 and HfB_2 have rapid, regular oscillations.
FIG. 2. Power spectra of six heat current correlation functions obtained from Fourier transformation. Low temperature spectra are peaked around a single frequency identified with mixed metal-Boron optical phonon modes.
FIG. 3. Integrated $HCCF$ as a function of the upper integration limit τ giving both in-plane (x-y plane) κ_\parallel and out-of-plane (z-direction) κ_{zz} conductivities at 300K for ZrB_2 and HfB_2.
FIG. 4. In-plane κ_\parallel and out-of-plane κ_{zz} lattice thermal conductivity as a function of temperature for ZrB_2 and HfB_2. Curves are fits of the data to $1/T$.