
NASA USRP - Internship Final Report

Telemetry and Communication IP Video Player

Zachary L. O'Farrell'

Colorado State University, Fort Collins, Colorado, 80523

Aegis Video Player is the name of the video over IP system for the Telemetry and
Communications group of the Launch Services Program. Aegis' purpose is to display video
streamed over a network connection to be viewed during launches. To accomplish this task,
a VLC ActiveX plug-in was used in C# to provide the basic capabilities of video streaming.
The program was then customized to be used during launches. The VLC plug-in can be
configured programmatically to display a single stream, but for this project multiple streams
needed to be accessed. To accomplish this, an easy to use, informative menu system was
added to the program to enable users to quickly switch between videos. Other features were
added to make the player more useful, such as watching multiple videos and watching a
video in full screen.

Nomenclature

MRL Media Resource Locator
UDP User Datagram Protocol
LAN Local Area Network
VLC Video LAN Client
C# C-sharp (programming Language)
IP Internet Protocol
SQL Structured Query Language

XML = Extendable Markup Language

GUI = Graphical User Interface

LSP = Launch Services Program

I. Introduction

During my internship for the summer of 2011 I worked on a video over IP media player for LSP
Telemetry and Communication called the Aegis Video Player. Video over IP is a way of transferring
video streams over a network connection, and any computer connected to that network can access those
streams. The Telemetry and Communications group of LSP handles all of the video feeds associated with
unmanned expendable launch vehicles. The main purpose of this project is to have a way to monitor
rockets during launches. To meet the purpose, the player has to be easy to use so video streams can be
changed quickly to monitor certain situations during a launch.

, NASA USRP Intern, LSP Telemetry and Communications, Kennedy Space Center, Colorado State University

Summer 20 II Session



NASA USRP - Internship Final Report

II. Related Software

The idea for the Aegis Video Player came from other software already available for use that performs

a similar task. The two main software related technologies used in the Aegis player were the VLC

ActiveX plug-in and Microsoft Visual Studios with the programming language C#.

A. VLC ActiveX plug-in
The main component in the Aegis Player is the VLC ActiveX plug-in. VLC stands for Video LAN

Client. The VLC Media Player is capable of playing different types of media, including several streaming

protocols, which are used in the Aegis Player. ActiveX is a way for program components to be reused in

different programs. For the Aegis Player, the VLC ActiveX plug-in was a way to get the functionality of
the VLC Media Player, while creating a new program with our own specifications.

B. Microsoft Visual Studios C#
The development environment I used was Microsoft Visual Studios. This program provides a visual

way to create GUIs and can be used with C#. C# was picked for the programming language because it is

meant for creating applications with user interfaces and supports the VLC ActiveX plug-in.

III. Development

The Aegis Video Player's goal was to Receive and display IP Video, but it also had several other

requirements to make the player usable during launches. These included an easy way to change the video
streams, choose between watching one or two videos, quickly switching from one or two videos to one

video in full screen, creating easy to read menus, and the ability to send commands to the player from

another program. Not only is the Aegis Player to be used in launches, it is also meant for day-to-day use,

so a requirement was added to add some advanced features. These features gave the user more control in
using the Aegis Player but make the player more unstable and more likely to crash.

A. Menu GUI
My first big requirement was to create a way to change videos that was fast and easy to use. My two

main options were a pull down menu and adding a right click pop-up menu that displayed a list of videos.
I tried two different ways to make pull down menus. Both worked well but required an extra tool on the

form and were slower than the right clicking. The right click option was much more difficult to do, but
proved to be the best way because of how easy it is for the user to use.

My first drop down attempt was a drop down menu at the bottom of the screen below the video. This

was the easiest option to implement because Visual Studios comes with a tool for drop down menus. This

worked well and provided a way to change the video, but the menu was always visible, even when the

user wasn't trying to change the video.

My second drop down menu was designed to make the drop down menu invisible while the user
wasn't trying to change the video. This was accomplished by only showing a small bar on the left side of

the screen. When the user hovered over the bar, the menu popped out from the side bar allowing the user
to select a video. I decided not to use this because it was too slow. The User had to hover over a small bar
and wait for the menu to pop up. This method was better than the drop down menu, but it was not ideal.
The main programming complication with this design was making the menu display at the correct time. I

had to create events for hover, mouse over and mouse leave. When the mouse hovered over the side bar,

2 Summer 2011 Session



NASA USRP - Internship Final Report

the menu needed to appear and it needed to stay until the user was done selecting a video. To make sure

the menus were shown while the user was selecting a video, I had to use an on mouse enter event. This

event worked by showing the menus when the mouse entered the menus. After a video was selected the

menus went away but it the user did not click the menus still stayed visible on the screen. To overcome

this I did a mouse leave event on the menu, so when the mouse left the menu, the menus were hidden.

After trying both of these designs I realized that the number of menus had to be equal to the number of

videos. The requirement of this player

was to have one or two videos playing

which meant having one or two

dropdown menus displayed at one time.

This was reasonable because of the

small number, but in the future, as

computers get faster and are able to

support more videos, the number of

videos will continue to grow and the

number of menus with them. I felt that

even doing four separate menus would

make the screen too cluttered with four

videos and a menu for each one. The

right click method allowed just one

menu for in infinite number of videos

and only one instance of the menu could
Menu shown is displayed when the user right clicks on the video. be brought up at anyone time. Despite
Accomplished by overriding the "wndProc" method and
intercepting the message sent by Windows for right click. The being more difficult, the right click was
same menu appears for each video, but the video changes the best solution because it satisfied all
denendinl! on the mouse location. the criteria for providing a way to

change the video source. Using right click allowed the user to click anywhere on a video, whereas drop

down menus required the mouse to be at a certain position. Most tools in C# provide an event handler that

deals with right click, however the VLC ActiveX plug-in does not support mouse events. When the plug

in is playing a video, small windows, that are invisible to the user, pop-up and take focus away from the

player, because the pop-up windows have focus, all mouse events are sent to them instead of the plug-in.

Currently, the VLC plug-in does not provide a way to capture the clicks on the pop-up windows, nor is

there a way to take the messages sent to the pop-up windows and forward them to the plug-in.

I tried several different workarounds to overcome the lack of the ability to right click on the video. My

first attempt was to send the mouse events to the main form. The main form is the base window where all

of the tools, such as buttons, labels, and the VLC ActiveX plug-in, are located. The problem with this

method is that when the mouse enters another tool, such as the VLC plug-in, the focus switches from the
main form to the specific tool. After implementing this idea, the Player accepted right clicks on the

background of the forms, but not on the video.

My second attempt was to add a tool on top of the plug-in, make it transparent, and send mouse events
to it. For this I used a panel tool. A panel is a tool that is used to group multiple tools together; it allows

both mouse events and has a transparent setting that makes it invisible to the user. This did not work

because tools that are transparent send all events to their parent forms. So when no video was playing, the

3 Summer 2011 Session



NASA USRP - Internship Final Report

Users can select to display one or two videos, two
video option shown. One can be played to the left of
the blue line and one to the right. The middle bar can
be resized to make one video bigger and the other
smaller while keeping the window the same size.
Double clicking one of the videos stops the other one
and makes the selected one go full screen.

panel sent mouse clicks to the main form, but if there was a video playing the mouse event was sent to the

plug-in and then lost to the pop-up windows.

My third attempt was to intercept the mouse click messages on the whole form before anything
processed them. I was able to do this by overriding the method "wndProc". "WndProc" stands for

Windows Procedures, which handles everything from appearance, to moving the window, to mouse

events. Overriding this method allows all messages sent through this method to be intercepted and

redirected. I was able to use this by checking all of the messages that were sent through and comparing

them to the codes for a right mouse click. Messages were only received by the program when it had focus,
so no other windows features where affected by overriding the Windows Procedure method. After I had
overridden the method, I was able to detect right clicks and then display a pop-up list of videos to play
where the mouse was. A problem with this was that the right click worked anywhere on the screen when I
only wanted it to work when the mouse was over a video. To solve this I put in a mouse position test after

receiving a message, and if the mouse wasn't within the borders of a plug-in the right click event did not

trigger.

After several attempts, the right click proved to be the best solution to changing the video because it

does not require anything to be put on the screen as other methods do, and it is easy to use. The right click

fulfilled the requirement of a fast, easy way to switch between videos.

B. Number of Videos
A goal of the Aegis player is to be able to switch between one and two videos. More videos would be

preferable but computer resources limit the number of videos that can be played at one time. Playing more
than two videos at one time uses over half of the
CPU; this is unacceptable because during

launches, there are other programs running on
each computer that need CPU as well. While the

player is running, the user can switch between one
and two videos by selecting a radio button.

Only allowing two videos on the player limits

the CPU usage, but if enough windows are opened

the player can crash the computer. To solve this I
added a "mutex". "Mutex" stands for mutual

exclusion. A mutual exclusion is a way to keep
track of computer resources and ensure that
something is not being used twice. The Aegis

player uses this to look at the processes running on
the computer and determine if the Aegis Player is

running or not. If there is already an instance of

the player running, the newly opened one is closed
and the old one is brought to the front of the
screen, otherwise, a new Aegis Player window

opens.

The Aegis player allows multiple videos to be viewed while still limiting the resources. Both of these
are important because it allows users to monitor multiple videos and still run process in the background.

4 Summer 2011 Session



NASA USRP - Internship Final Report

As the computers used become faster and better at handling video streaming, more videos will be added

to the player.

C. Double Click
Another requirement of the player was inspired by the VLC Media Player, double clicking a video to

go full screen. The idea is that if someone is watching one or more videos and they want to make just one
go full screen, they can double click on it and that video will go full screen and when they double click
again the video returns to its previous size and continues playing the videos it was playing. When I tried

implementing this I had already enabled the right click feature, so I used the "wndProc" method that was
already implemented. After looking at the messages sent by through the windows procedure method, I
realized that the system did not send a double click message.

To overcome not having a double click message, I used the left click message and a timer. When the
left mouse button was clicked, I started a timer. The next time the left mouse button was clicked I stopped

the timer and checked the time. If the time was less than a specified time, the mouse position was checked

and the video that the mouse was over went full screen. If it was greater than the specified time, a normal
left click event was fired and the timer restarted.

87

235

104

234

ATLAS 5 206

ATLAS 7 208

ATLAS 6 207

ATLAS II 212

ATLAS 10 211

ATLAS 9 210

ATLAS 8 209

ATLAS 4 205

ATLAS 2 203

AS STK 201

ATLAS 3 204

D217-2 233

D217-1 232

• ATLAS 1 202

D. Usable Menus
After creating a way to easily access a menu of videos, I had

to make the menus usable. The first menus I used just showed the

MRL. MRL is the address of the media to be played; this is

similar to a URL but gets Media instead of generic information.

This is useless for most people because it doesn't show what

video is actually playing on that source. Hard coding names into

the menus were not possible because they change so much. To

get a useable name for each video I had to make a call to a
database using SQL. In the call I got the name of the video, the
number of the video, the MRL, a thumbnail, and an array of

categories. I put all of this information into a class that the menus
could access to display the correct information. After creating the
menus, each source displayed a thumbnail, the name of the video,

and the number of the video. To further simplify the menu, each

source was put into one or more categories, such as "All" that
contained all of the videos and "Weather" that had videos related
to weather. Categories could be added to or removed from each

video through the database. The categories were set as the first

layer of the menus. On right clicking, a menu popped up that
Menu shown uses categories on the first
popup window. Moving the mouse over listed all of the categories, by moving the mouse over a category
any category opens a menu that another menu popped up that displayed all of the videos in that
contains all the videos in that category. category.
Menu shown has the "All" category The limitation of using a database is that if the database is not
open, and all of the video sources are
shown to the right of the category working the player becomes unusable. To overcome this I used a
menu. XML configuration file. The configuration file contains the call to
the database, as well as the MRL for each source and a name that can be entered. By doing this, if the

database is down, or if there is no database, someone can go into the XML file and change the MRL and

5 Summer 2011 Session



Message Box that is shown when
the keyboard shortcut is used on
the player. Users have the option
of turning off single instance
operation or not, and canceling
the operation.

"

NASA USRP - Internship Final Report

name of each source. If the database is not found, the program uses the XML file to create the menus by

default, these menus are less useful than the ones created by the database, but they allow the player to be

used if there is a problem with the database. The advantage of using an XML file is that is more readable

than the Aegis Video Player code. The XML file contains less than fifty lines of code whereas the Aegis

Player has more than a thousand lines. So it is much easier to change the XML file than it is to change the

code in the program.

E. Mail Slots
Iris is a program written and used by LSP that can display information about launch vehicles. One

feature of Iris is being able to send commands to different programs. The Aegis player was added to the

list of programs that Iris can send commands to. Iris can send messages to the Aegis player that can

change the video currently playing, and start the program remotely.

The sending and receiving of messages is done through mail slots. A mail slot is a file created by one

program that can be written to by another. The program that creates the file can only read the mail slot,

and other programs can only write to it. The mail slot on the server side (the side that can read) is put on a

separate thread from the rest of the program and periodically checks the mail slot for any messages.

When a message is received it is in the form of an array of bytes, the program then decodes it to a string

and processes it. When it is determined what the command is, the player executes the command.

Commands can be anything, but for the Aegis player they are limited to what video is playing and starting
the player.

F. Advanced Features
Although the main goal of the Aegis Video Player is an lP Video player that can be used during

launches, there is also a need to use it in day-to-day activities. These include testing video equipment and

continuous monitoring of videos. To accomplish this, some advanced features were added to the player.

Most of the advanced controls remove features that make the player more stable. These are only intended

for people who know the limitations of their computer and understand that the player can crash their

computer if they overuse it. I used two separate methods for using 2!J

advanced controls, a series of command line arguments and a Er<."'.IlPtos«Yideo(ex.""'//ClZ31.'.O.',889S,x.bo<weenlord21
o.,..,WoritoonoblemUt\llo_n

keyboard shortcut that could be used while the program is running.

Command line arguments are used when running the program

from a command prompt and are input as strings from the user. The

strings are then sent to the program to be sorted through. Each string is

tested to contain certain words, phrases, or characters and then a

command is executed based on the

string. For example, if a string is input

through the command line the program looks for the substring "full", if it

is found the player opens in full screen mode, if it is not found other tests

are run, if no matches are found the string is ignored. The main command

is the ability to disable only opening one instance of the program. This is

accomplished by checking for the argument "disable", if it is found the
Text field that is shown during

player runs whether or not another instance of the program was opened.advanced mode operation.
Allows user to select a stream Other features include specifying how many videos to play, the MRL of
to watch by entering the MRL. each, the size of each video if there are two videos, and making the

window stay on top of other windows, even when loosing focus.

6

'"----------------------------------- ----- --

Summer 20 II Session



---------------------------- --- ---

NASA USRP -Internship Final Report

A keyboard shortcut to use some of the advanced features was added because command line
arguments are only used when the program starts and from the command prompt. The advanced features
are used by pressing the control key and the 'D' key. When the advanced features are enabled this way, a
pop-up box appears and asks the user if they want to disable single instance operation of the application.
If they choose yes, another instance can be opened, if no then another instance cannot be opened. Either
way, a text field appears that allows user input. The text field allows the user to type in a MRL for each
video playing to change the video playing.

IV.Conclusion

At the end of my ten week internship I successfully created an IF video player that would be used
during LSP launches. This project had several requirements that I had to meet to accomplish the goal
of the player, which was to make a fast, easy to use video over IF player. Aegis has yet to be used on a
launch yet, but it is ready to be used pending the installation of the software on the launch consoles.

This project allowed me to learn several new skills. I learned C#, which I had never programmed in
before, how to use Microsoft Visual Studios, how to make SQL database calls, and how to create and
use XML configuration files. Although I did not need the information to do my project, I was able to
learn about some of the hardware involved in transporting video over an IF network. Overall, my
project was a success because I was able to accomplish the goals of the Aegis Player and learn about
the hardware and software related with IF video.

7 Summer 2011 Session


