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Abstract 
 

Friction stir welding (FSW) is a solid state welding process with potential advantages for 
aerospace and automotive industries dealing with light alloys.  Self-reacting friction stir welding 
(SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and 
Space Administration (NASA) for use in the fabrication of propellant tanks.   Friction plug 
welding is used to seal the exit hole that remains in a circumferential SR-FSW.   

The objective of this study was to evaluate the deformation response at the tips of cracks 
located in the heat affected zone of friction plug welds and to study the fracture behavior of 
welds with defects in the form of fatigue cracks.  The study used existing 2014-T6 to 2219-T87 
self-reacting friction stir weld panels with 2219-T87 friction plug welds.  Electro-discharge 
machined (EDM) notches were machined into the heat affected zone of the plug at the plug-to-
base metal interface.  Samples were then cycled to generate a fatigue crack emanating from the 
notch.  After the fatigue crack reached a pre-defined length, a speckle pattern was applied and 
the ARAMIS® system (a three dimensional imaging correlation system) was used to measure the 
deformations at the crack tip under a sequence of loads.  Testing was conducted at ambient 
laboratory conditions.   

Fracture data from the testing was analyzed to evaluate residual strength capability of the 
panel as a function of flaw size.  ARAMIS® strain data was evaluated to examine strain and 
deformation patterns that develop around the crack tip and at the plug/weld interfaces.  Four 
samples were used in this study, with three samples in a post-weld heat treated condition.  Three 
samples contained large diameter plugs (M5) and one sample contained a small diameter plug 
(M3).  Two samples were 4 inches in width and two samples were 8.5 inches in width.  All 
samples failed through the precrack with residual strengths ranging from 37 ksi to 42 ksi.   

Introduction 

 Friction-stir welding (FSW) is a solid-state joining process invented and patented by The 
Welding Institute (Thomas, Nicholas et al. 1991), a British research and technology organization.  
The process is applicable to aerospace, shipbuilding, aircraft and automotive industries. Two key 
benefits of this new technology are it allows aluminum alloys to be welded together that cannot 
be readily fusion arc welded, the traditional method of welding, and, in general it creates stronger 
welds than fusion arc welding.  

FSW utilizes frictional heating combined with forging pressure to produce high-strength 
bonds virtually free of defects.  FSW transforms the metals from a solid state into a "plastic-like" 
state, and then mechanically stirs the materials together under pressure to form a welded joint.  A 
schematic illustrating the friction stir weld process is shown in Figure 1.  In self-reacting FSW, 
there are two rotating shoulders: one on top (or front) and one on the bottom (or back) of the 
workpiece.   A threaded shaft protrudes from the tip of the pin to beyond the back surface of the 
workpiece.  The back shoulder is held axially in place against tension by a nut on the threaded 
shaft. 



 

Figure 1.  Schematic of Friction Stir Weld Process 

The main axial force exerted on the workpiece by the tool and front shoulder is reacted through 
the back shoulder and the threaded shaft, back into the FSW machine head, so that a backing 
anvil is no longer needed (Tech Briefs, 2006).  The opposing forces balance, simplifying the 
backup tooling required for making welds in tanks.   

During longitudinal FSW, the tool travels off the workpiece to excess material at the end 
of the panel that is later trimmed off to remove any hole left by the friction stir weld tool.  
However, many components in the aerospace industry require a circumferential frictional stir 
welds which leaves an exit hole in the metal when the tool is removed.  A process called friction 
plug weld (FPW) is used to plug the exit hole.  Friction plug welding is an innovative weld repair 
technique whereby a hole is drilled through the weld at the location of the exit hole.  A rotating 
tapered plug is then welded into the hole. The complete conical section of the tapered plug is 
welded to the surface of the drilled hole almost simultaneously.  Considerable heat is generated, 
and the plug and work piece are welded together.  Excess plug protruding from the repaired hole 
is removed and the surface is prepared for non-destructive inspection.   A photograph of samples 
containing friction plug welds is shown in Figure 2.   

 

 

 

 

 

 

 

 

 

Figure 2  Friction Plug Welds in Test Samples 



Experimental 

 The study examined the deformation response at the tips of cracks located in the heat 
affected zone of friction plug welds and the fracture behavior of welds with defects in the form 
of fatigue cracks.  The study used existing 2014-T6 to 2219-T87 self-reacting friction stir weld 
panels with 2219-T87 friction plug welds.  Electro-discharge machined notches were machined 
into the heat affected zone of the plug at the plug-to-base metal interface.  The sample was 
cycled to generate a fatigue crack emanating from the notch.  After the fatigue crack reached a 
pre-defined length, a speckle pattern was applied and the ARAMIS® system was used to measure 
the deformations at the crack tip under a sequence of loads.  Testing was conducted at ambient 
laboratory conditions.   

Results 

Four samples were tested in this study.  Table 1 outlines the test matrix for the specimens 
showing the pre-crack length, the EDM notch length, test environment, plug size, flaw location 
and if the specimen was in the PWHT condition.  Each sample was intended to be notched at the 
tri-point area (TP) were the plug, initial weld and base metal intersected.  The notch was 
successfully placed on three of the samples.  One sample was notched slightly inward, toward 
the plug. 

 Each sample was precracked then a speckle pattern was applied before testing.  Figure 3 
shows the precrack in sample CX05-P2 and the applied speckle pattern used for imaging during 
testing.  All samples were tested in the same manner.  The three specimens with the larger flaws 
had a residual strength of 37, 39 and 39 ksi which is approximately 71% of the strength of a weld 
with no flaw.  The specimen with the smaller flaw had a residual strength of 42 ksi which is 
approximately 78% of the strength of a weld with no flaw. The estimated surface crack stress 
intensities (KIe) were an average of 22.5 ksi-√in for the larger flaws and 17 ksi-√in for the 
smaller flaw.  Detailed test results are shown in Table 2. 

Figure 4 shows photographic images of sample CX05-P1 specimen after failure showing 
the minor diameter side, speckle pattern and the fatigue pre-cracked flaw in the specimen.   The 
ARAMIS® imaging results, detailed in Figure 5 shows strain results from sample CX05-P1 
which indicate a large strain accumulation on the retreating side of the weld with the greatest 
concentration of strain at the crack traveling along the weld through the plug.  Figure 6 shows the 
crack growth along the weld through the plug. 

Conclusions 

Residual strengths were measured for friction plug weld samples in 2014/2219 self-
reacting friction stir welds with fatigue pre-cracked flaws at the tri-point.  Various plug 
diameters and post weld conditions were evaluated.  The flaws ranged from 0.200 inches to 
0.400 inches in length with residual strengths ranging from 37 ksi to 42 ksi.  As expected, 
residual strengths varied inversely with flaw size.  Although the database is very limited, it 
appears that residual strength is not affected by plug diameter, but may be influenced by post 
weld heat treat condition.     

 



 

 

 

 

Specimen 

Width  

[in] 
PreCrack 

[in] 
EDM 

Notch [in]
Test 

Environment 
Plug Flaw 
Location L/R PWHT

CB 180-P3 4” 0.380 0.33 RT M3 Major 
TP Ret Left N 

CB 185-P2 4” 0.380 0.33 RT M5 Major 
TP Ret Right Y 

CXO5-P1 8.5” 0.380 0.33 RT M3 Major 
TP Ret Right Y 

CXO5-P2 8.5” 0.200 0.15 RT M3 Major  
on Plug Ret Right Y 

Table 1. Test matrix for first pathfinder test series of 2014/2219 M3 and M5 plug welds  

Figure 3. Sample CX05-P2 with EDM notch and applied speckle pattern. 



 

 

 

Specimen PWHT Plug 

2c 

(inches) 

a 

(inches)

Test Temp

(°F) 

Failure 

Location 

Residual  
Strength 

(ksi) 

KIe 
Estimate 
ksi√in  

CB 180-P3 N M3 0.402 0.181 70 Precrack 37 22 

CB 185-P2 Y M5 0.390 0.175 70 Precrack 39 23 

CXO5-P2 Y M3 0.394 0.181 70 Precrack 39 23 

CXO5-P2 Y M3 0.213 0.100 70 Precrack 42 17 

Table 2:  Residual Strength of 2014/2219 M3 and M5 Friction Plug Welds  

Figure 4.  Sample CX05-P1: Top Left - the minor diameter side of the specimen; Top Right - the major 
diameter side with speckle pattern; Lower Left – pre-cracked flaw and fracture surface across part of the 

sample; Lower Right – close up of EDM notch and pre-cracked flaw.   



 

 

 Figure 6. Photograph of sample CX05-P1 with crack growth through the plug. 
 

Figure 5. Strain pattern in sample CX05-P1 showing large strains at the crack (red region) with an 
accumulation of strain along the weld heat affected zone on the retreating side of the initial weld. 


