Quality Control Algorithms and Proposed Integration Process for Wind Profilers Used by Launch Vehicle Systems

Ryan Decker (NASA)
BJ Barbre (Jacobs)
3 August 2011

Presentation to the 15th Conference on Aviation, Range, and Aerospace Meteorology
Outline

- Introduction
- 50-MHz Doppler Radar Wind Profiler (DRWP) description
- 50-MHz DRWP quality control (QC) process
- Resulting database
- Forward work
Introduction

• Impact of winds to space launch vehicle
 – Design
 – Certification
 – Day-of-launch (DOL) steering commands
 • Develop “knockdowns” of load indicators
 • Temporal uncertainty of flight winds

• Currently use databases from weather balloons
 – Discrete profiles and profile pair datasets
 – Issues
 • Larger vehicles operate near design limits during ascent
 • 150 discrete profiles per month
 • 110-217 seasonal 2.0 and 3.5-hour pairs
 • Balloon rise time (one hour) and drift (up to 100 n mi)

• Alternative approach using DRWP
 – Obtain larger sample size
 – Provide flexibility for assessing trajectory changes due to winds
 – Better representation of flight winds
50-MHz DRWP Description

- Identical systems at Kennedy Space Center (KSC) and Vandenberg Air Force Base (VAFB)
- Clear air return via Bragg scatter
 - Signal obtained through temperature and humidity fluctuations in the atmosphere that are small compared to DRWP wavelength (6.0 m)
- Doppler return signal at each beam converted to an estimate of radial velocity at each range gate
 - Median filter first guess (MFFG) algorithm

Area = 15,600 m2
50-MHz DRWP Description

- Temporal and spatial coverage
 - 111 (or 112) gates within altitudes from ~2500 m (8200 ft) to ~18,500 m (60700 ft)
 - 150 m (492 ft) sampling interval
 - Data reported approximately every five minutes
 - Changed since DRWP’s installation in 1990
 - Instrument upgrade in summer 2004

- Fields:
 - Wind speed (WS) [m/s], wind direction [deg], spectral width (SW) [m/s], signal power [dB], noise power [dB], vertical velocity (w) [m/s], # first-guess propagations, internal shear value [s⁻¹] at each altitude (z) [m]
 - Calculate east-west (u), and north-south (v) wind components

- Daily files from Aug 1997 to present archived at MSFC, but not routinely QC’d
 - Objects in atmosphere, Ground clutter
 - Rain, False signal from sidelobes
 - Weak signal, others…
QC Process

- Developed automated checks based on Carr et al (1995), Merceret (1997), and data examination
 - Filled in time gaps with missing data
 - Initial screening of vertical beam
 - DRWP internal shear and meteorological shear
 - Vertical velocity, spectral width
 - “Unrealistic” values
 - First Guess Propagations
 - Small-median test, Isolated datum
 - Rain / convection flags
 - Missing signal or noise from oblique beams

- Developed manual QC process
 - Side lobes, ground clutter, convection-contaminated data removal
 - Removed data based on user-specified thresholds of a variable
 - Graphical User Interface
QC Process

- Examine and QC data quickly
- Automated saving of images and logs
- Compare to Rawinsonde data
- Scrutinize QC process and add data
QC Results

• Complete profiles
 − Approximately 30,000 profiles per month
 − Subsets selected for vehicle loads and trajectory assessments

• Complete pairs
 − Roughly 15,000 pairs per month and time separation
 − Different time intervals available
 • Not limited to 2.0 and 3.5 hours
 • Enhanced flexibility in knockdown calculations and DOL procedures

• ~100x sample size increase from balloon datasets
50-MHz DRWP Uses

- Provided subsets to the MSFC loads and trajectory community
 - Discrete profile sets
 - January (n = 28,200 profiles)
 - February (n = 30,059 profiles)
 - March (n = 34,649 profiles)
 - Temporal wind sequences
 - 3.0-hour pairs for January (n = 14,080 pairs), February (n = 15,314 pairs), and March (n = 17,746 pairs)
 - 3.0 and 1.0 hour February triplets (n = 9,259 triplets)
 - 4.0, 3.0, 2.0, 1.0, and 0.5 hour February sextuplets (n = 7,194 sextuplets)

- Issue
 - Boundary layer winds of interest to end user
 - 50-MHz DRWP does not sample altitudes below 2.7 km
Forward Work

• Generate vertically complete DRWP-generated wind profiles for use in vehicle design cycles and on day-of-launch

• QC 915-MHz DRWP data from KSC

• Combine 915-MHz DRWP and 50-MHz DRWP profiles
 – Vertically complete profiles over extensive POR
 – Same spectral resolution
 – Fare / interpolate 915-MHz DRWP data to 50-MHz DRWP data

• Repeat process for VAFB
 – One 50-MHz and six 915-MHz DRWPs

• Transition algorithms for operational use
 – Reduced uncertainty in DOL loads and trajectory assessments due to winds
 – Allow for go / no-go decision making closer to launch (e.g., Atlas launch scrub)
 – Winds used in DOL assessments will be more representative of vehicle ascent environments