Ares I-X DFI Lessons Learned
Colin Brooks EV33/Jacobs

Presented By
Colin Brooks

Thermal & Fluids Analysis Workshop
TFAWS 2011
August 15-19, 2011
NASA Langley Research Center
Newport News, VA
Outline

• Brief introduction to Ares I-X
• Instrumentation types
• Lessons learned
 – Instrumentation locations
 – Installation
 – Data acquisition techniques
 – Other/general
• Conclusions
Ares I-X

• Demonstrated control of a long, solid-fueled, single-motor flight vehicle with a low fundamental structural frequency.
• Provided an overall assessment of crucial design and induced environments.
• Partially validated selected Ares I thermal environments math models and processes.
Aerothermal Instrumentation Summary

- 50 Calorimeters with embedded sensor thermocouples
- 6 Radiometers
- 7 Gas temperature probes (GTP)
- 47 Static pressure gauges
- 2 Flow direction probes
Why These Gauges?

• Main measurement is heating rate (\dot{q})

$$\dot{q}_{\text{total}} = h_c (T_{\text{rec}} - T_{\text{wall}}) + \dot{q}_{\text{rad}}$$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measured by</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\dot{q}{\text{total}}, T{\text{wall}}$</td>
<td>Calorimeter, Thermocouple</td>
</tr>
<tr>
<td>T_{rec}</td>
<td>Calculated or Gas temperature probe</td>
</tr>
<tr>
<td>\dot{q}_{rad}</td>
<td>Radiometer</td>
</tr>
<tr>
<td>h_c</td>
<td>Calculated</td>
</tr>
</tbody>
</table>

• h_c determined more accurately than in the past
• Flow direction probes characterize plume induced flow separation region
• Static pressures provide local flow conditions and CFD validation data
What Makes Data Unique?

• First NASA launch vehicle to fully utilize calorimeters with embedded sensor temperature measurements

• Ascent
 – Very long vehicle length causes thick boundary layer
 – First Stage (FS) nozzle instrumented for the first time
 – Single Solid Rocket Motor (SRM) plume induced radiation, convection, and gas temperature measured for the first time

• Near-field small motor plume impingement heating data acquired
 – Roll Control System (RoCS) and Booster Deceleration Motor (BDM) plume impingement heating

• FS re-entry data expands Aerothermal database
 – Low altitude tumble is unique
 – Top plate configuration outside Aerothermal database
 – Instrumented thermal curtain in flight for the first time
Calorimeters

- Schmidt-Boelter type with type K thermocouple mounted next to thermopile
 - Medtherm model 20850

- Performance
 - Sensor temperature measurements worked well (only lost one late in re-entry)
 - Only one high flux gauge failed

- Lessons Learned
 - When in doubt, specify higher range gauge
RoCS Module B (-Roll) Burns #3-6 Calorimeter Response

043306 Over Ranged

RoCS Chamber Pressure

Chamber Pressure

Heat Flux

Time (Sec)

AAD274R (CA043306)

Module B -Roll Motor Pc
Calorimeters

- In high heat flux areas:
 - Gauges were ranged correctly
 - Most functioned and survived
Radiometers

- Calorimeter with a sapphire window
 - Medtherm model 20850

- Performance
 - Mortality rate higher than desirable

- Lessons Learned
 - GN\textsubscript{2} purge required to mitigate contamination (Al\textsubscript{2}O\textsubscript{3} or other) and allow acquisition of mid-to-late flight data
Radiometers

- All radiometers appear to fail eventually
Gas Temperature Probes

• Base Gas Temperature Transducer
 – Medtherm model 11190

• Performance
 – All gauges functioned

• Lessons Learned
 – Must account for radiation losses
Pressure Gauges

• Thin Line IS Pressure Transducer
 – Kulite LL-080 Series

• Performance
 – Gauge type and installation were not tolerant to significant heating

• Lessons Learned
 – 0-20 psi gauges provided the necessary level of fidelity
The gauge was completely burned out by the BDM firing.
Flow Direction Probes

• Flow direction probes
 – Medtherm model 50532

• Performance
 – Newly designed, functioned well

• Lessons Learned
 – May interfere with other gauges: shock heating to nearby calorimeter
Flow Direction Probes

X57194 - Aft Segment Attach Ring Stub

- AAD119P (DP057194)
- AAD122P (DP057032)

Pressure vs. Time from 15:30:000.217 (sec)

TFAWS 2011 – August 15-19, 2011
Lessons Learned - Instrument Locations

• Ensure there are a few true clean skin calorimeters
 – Measured heating amplifications due to proximity of cork runs near gauges
 – Below, separation occurs over the protuberance due to cork run / antenna
Lessons Learned - Instrument Locations

• Avoid instrument interference/installation effects (e.g. instrument island in the proximity of the flow direction probe)
Lessons Learned - Instrument Locations

- Add internal aft skirt camera for thermal curtain breakup nature and timing
Lessons Learned - Instrument Locations

- Coordinate with other disciplines to avoid redundancy of measurements
- Co-locate external nozzle calorimeters and GTP’s
Lessons Learned - Installation

• Clearly specify installation procedures
 – Foam trimming, etc.
 – Need to have person on-site for some critical installation steps such as last minute foam application

 – One of the groups of gauges similar to this set was completely foamed over during close out operations.
 • No data was acquired from those gauges.
Lessons Learned - Data Acquisition

- Pre-flight channelization and calibration constants a must
- 2Hz filter was not good - must specify a higher range next time
- Gauge acquisition ranges
 - Want cooling measured
 - Utilize dual range on high flux if possible
- GTP junction temperatures must be measured
Lessons Learned- Other/General

• Measure one or two chamber pressures from all small motors if possible
 – BDM’s, USM’s, BTM’s, ReCS, RoCS
• Have plan in place to specify T=0.0 ASAP after flight
Conclusions

• The flight test was successful
• Useful data were obtained
• The gauges used were appropriately selected and performed well
• Most problems are understood
 – Failures were few and far between.
 – Relatively simple procedural fixes have already been documented and put into action.