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Activities and Product Lines We Support

• Solid propellant rocket motors 

• Pyrotechnics (flares, etc.)

• Energetic material formulation and 

synthesis

• Composite materials

• Ammunition

• Gas generators
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Why Do We Do Thermokinetic Modeling ?

• Need mathematical descriptions of reaction rates

• Pyrolysis of rocket motor insulators

• Thermal hazards of energetic systems

• Curing of thermosetting polymers

• Aging

• Models are often used in engineering evaluation

• Data must be in a format that engineers can use in their simulation codes

• Occasionally, models will provide mechanistic information 

• Presence or absence of autocatalysis
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Test Methods We Use

• Differential Scanning Calorimetry (DSC)

• Milligram sized samples; extrapolation to lower temps often required 

• Thermogravimetric Analysis (TGA)

• Milligram sized samples; extrapolation to higher heating rates often required 

• In cases where gases react with polymer matrix, mechanism may be different 

between small and large samples

• Accelerating Rate Calorimetry (ARC)

• Measure bulk exotherms – kinetic analysis may not be valid for solid energetics

• Isothermal Microcalorimetry (Heat Flow Calorimetry)

• Reaction Calorimetry

• Dynamic Mechanical Analysis (DMA)

• Gas Evolution Methods

• Useful for energetic materials
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Modeling Tools We Use (or Would Like to Have)

• Spreadsheet calculations 

• Custom kinetics codes

• Math programs (e.g., Mathematica, Mathcad)

• Commercial thermokinetics software

– Netzsch Thermokinetics and Thermal Safety Simulations

– AKTS

– Other programs available from Mettler, TA Instruments, Perkin-Elmer, etc.

• IsoKin

– Model-free kinetics freeware program from University of Utah (Prof. Charles Wight)

– Based on Vyazovkin advanced isoconversional method
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Caveats

• Ideally, rates should be measured as closely as possible to experimental 

temperature conditions

• Sometimes extrapolation is necessary 

• It is useful to make an independent measurement at lower temperature to confirm 

validity of extrapolation

• Be careful about extrapolating results across a phase transition such as a melt!

• Measurements at a single heating rate or single isothermal hold temperature 

cannot be reliably extrapolated outside the experimental conditions

• A major conclusion of the ICTAC Kinetics Project!

• Watch out for autocatalytic reactions

• Rate can increase with increasing conversion, meaning material becomes more 

“unstable” with time – commonly observed with energetic materials! 

• Causes can be true chemical autocatalysis or other phenomena such as nucleation 

and growth

• Detect via isothermal experiments or model-free analyses (Friedman plot)
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Rate Expressions

General form (α = fractional conversion; 0 ≤ α ≤ 1):

Rate constant (E = activation energy): 

Functional form of conversion dependence:
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Examples

• Pyrolysis of rocket motor insulators

• Curing model for solid propellant

• Cure model and hazard prediction for epoxy composite parts
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“In-House” Isoconversional Method for Pyrolysis Kinetics

TGA and DTGA of natural rubber flexseal

“Ozawa plots” from peaks (or constant α) 

in multiple heat rate (2.5, 5, 10, 20, 40 

°C/min) DTGA data 

• Get E, A values from Ozawa plots 

(ASTM E698 method)

• Hold E, A constant throughout analysis

• Model as three independent reactions

• Vary reaction orders and iteratively 

solve ODEs until a good fit is obtained at 

all heating rates
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Modeling of Pyrolysis of Hydroxy-Terminated Polybutadiene

(HTPB) Rocket Motor Liner with Thermokinetics Software

TGA, DTGA of liner:
Model-free estimation of activation 

energies from multiple heat rate data:
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HTPB Liner Pyrolysis (Continued)

• Modeling approach

• Determine number of reactions (3) 

from DTGA, activation energy vs. 

conversion plot

• Get initial estimates of activation 

energies from model-free analysis

• Perform multiple nonlinear regression 

curve fit using model-free values as a 

starting point

• Results

• Data fit successfully at all heating rates

• E1 = 52.67 kJ/mole, E2 = 149.15 

kJ/mole, E3 = 245.21 kJ/mole 

• A1 = 1.01 x 103 sec-1, A2 = 8.79 x 109

sec-1, A3 = 2.80 x 1015 sec-1

• n1 = 2.09, n2 = 1.46, n3 = 0.93

• Curve fits to 2.5, 5, 10, 20 °C/min data:
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Engineering Use of Pyrolysis Kinetics Data

• Kinetic parameters are used as inputs in rocket motor performance codes

• Classical code (Aerotherm Charring Materials Ablation) assumes up to three 

independent, nth order decomposition reactions

• More modern codes recently developed by ATK also allow kinetics to be input in 

alternative formats 

- Advanced isoconversional method – use IsoKin to generate model-free activation energy vs. 

conversion

- Discrete reactions with non-nth order rate expressions

• Other inputs include density, heat capacity, thermal conductivity, elemental 

composition, and heat of formation

• Predictions are validated by comparison with data from subscale or full-scale 

rocket motors/test articles
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Curing of AP-Based Solid Propellants

• Propellant ingredients:

• Ammonium perchlorate (AP) oxidizer 

• Aluminum powder fuel 

• Polymeric binder

• Burn rate modifiers, bonding agents, plasticizers, cure catalysts, etc.

• Binder systems:

• Hydroxy-terminated polybutadiene (HTPB), cured with isocyanate

• Polybutadiene/acrylonitrile/acrylic acid (PBAN), cured with epoxy

• Cure reactions are not highly exothermic and cannot be followed by DSC

• Use isothermal microcalorimetry to measure heat flow in real time

• Objective: provide simple rate expressions for use in engineering calculations
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PBAN Curing Reaction

• PBAN polymer (m >> n,o) : • Curing of PBAN by epoxy:
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Microcalorimeter Curing Studies of PBAN Propellants

Heat flow vs. time for 20.0 – 65.6 °C: Model free kinetics:

• Propellant cure times are several days at 

50 – 60 °C

• Models were developed from 48.9, 57.2, 

and 65.6 °C data and extrapolated to lower 

temperatures
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First Order Model from Microcalorimetry

• Can fit microcal data well with 1st order model 

(multiple linear regression):

• Conversion versus time under isothermal 

conditions:

• Get predicted heat flow by multiplying dα/dt

by total integrated heat of reaction
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PBAN #1 66.9502 6.667 x 105 7.2648

PBAN #2 67.7556 8.093 x 105 10.2638
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DMA Cure Monitoring of PBAN Propellant

Determination of Gel Time at 57.4 °C ln (Gel Time) vs. 1/T Plot

• DMA gel point time agrees with times determined by other methods (FTIR,

solid state NMR, sol/gel)

• Activation energy is within the range determined by model-free kinetics 
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PBAN Propellant Curing Study Summary

• Curing of propellant is observable in real time with a microcalorimeter

• No heat flow signal in DSC, even with a ~ 20 milligram sample

• Measurements are made in the actual temperature range where curing occurs, so 

extrapolation is not required

• Can easily measure rates of cure beyond the gel point (~ 34 hours at 57 °C), which is 

not possible with many other techniques (FTIR, solid state NMR, sol/gel, etc.)

• Cure data were fit by a simple first-order model in the 50 – 65 °C range

• Model-free kinetics will be more accurate, but this approach provides a simple 

algebraic formula for engineering evaluation

• Extrapolation of data to ambient temperature range was also successful
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Curing Model and Hazard Prediction for a Carbon/Epoxy 

Composite Part

• Proposal – cure a composite part using the following:

• Hold at 185 °F (85 °C) for approximately 6 hours

• Hold at 285 °F (140 °C) for approximately 14 hours

• Ramp heat at 2.5 °F/minute (1.4 °C/minute) between steps

• Concern: can this cure cycle result in a catastrophic thermal runaway event?

• Avoid “smoke-off” and/or damage to equipment by exposure to extreme temperature 

• Approach:

• Characterize bulk exotherms using adiabatic calorimetry (ARC) – worst case

• Develop kinetic model from DSC data and couple with heat transfer code to predict 

temperature and cure profiles
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Accelerating Rate Calorimetry of Epoxy Prepreg

ARC temperature/pressure vs. time and 

self-heat rate vs. temperature plots:

• “Thermal runaway” can occur during 6 

hour/185 °F hold

• Worst-case temperature increase from 

this adiabatic runaway presents no 

credible risk of smoke-off 

• But, if the part does not come up to 

temperature until well into the hold and/or 

heat transfer is efficient, the cure energy 

may not be dissipated

• If a substantial amount of cure energy 

remains, this could cause a problem 

during a second (285 °F) hold

• Therefore, a kinetic model was 

constructed from DSC data and inserted 

into a thermal simulation code to better 

understand the behavior
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DSC Analysis of Epoxy Prepreg

Model-free (Friedman) analysis: DSC at 2.5, 5, 10, and 20 °C/minute with 
curve fits:

• Friedman plots indicate autocatalytic reaction

• Multiple linear regression curve fit to 

autocatalytic model:

• E = 81.33 kJ/mole, A = 2.42 x 106 sec-1, 

n = 2.13, Kcat = 239.94, ΔHult = 97.22 J/g
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Validity of Extrapolation of DSC Data

Isothermal DSC at 82 °C (180 °F) –
predicted vs. actual

Predicted conversion vs. time at 82 °C (180 °F)

• Isothermal DSC confirms reaction is autocatalytic; extrapolation of model to 185 

°F/85 °C is reasonable

• If temperature is held above 180 °F for 8 hours or more, degree of cure should 

exceed 90 percent 



23

Thermal Simulations Cure Cycle Predictions –

2 Inch Thick Infinite Slab

Heat Transfer Coefficient = 2 Btu/(hr ft2 °F) Heat Transfer Coefficient = 20 Btu/(hr ft2 °F)

• Should be possible to control exotherm in proposed process
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Composite Part Cure Study Summary

• Proposed cure cycle was approved with the requirement that centerline 

temperature of the part be above 180 °F for eight hours before heating to 285 °F

• Part was successfully cured without undue exotherms

• Maximum centerline temperature during 185 °F hold was 211 °F, similar to model 

prediction

• If necessary, the heat transfer engineering group can create a model that uses the 

DSC kinetics and duplicates the actual geometry of a part

• This can be used by process engineers for cure cycle optimization
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Concluding Remarks

• Thermokinetic modeling has proven its value for measuring thermal response and 

reaction rates of a wide variety of aerospace materials

• Quantitative predictions, useful for engineering calculations, are routinely made

• Extrapolation of results outside the temperature, etc. range where the data are 

acquired must be done with caution 

• It is preferable to check the extrapolation against real data in the actual range of 

operation if possible

• Often, a complete interpretation of the meaning of the results cannot be made 

without considering rates of heat transfer within the material and to the 

surroundings 

• Partnerships with engineers are crucial

• Data must be in a format that engineers can actually use

• Modern thermokinetics software packages are extremely useful and time-saving 

• But, users must understand the underlying theory and limitations of the programs


