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Abstract
The heat transport in highly porous fiber structures is investigated. The fibers are supposed to
be thin, but long, so that the number of the inter-fiber connections along each fiber is large. We
show that the effective conductivity of such structures can be found from the correlation length
of the two-point correlation function of the local conductivities. Estimation of the parameters,

determining the conductivity, from the 2D images of the structures is analyzed.

PACS numbers: 65.80.-g, 44.30.+v, 68.65.-k, 44.35.4+c¢



I. INTRODUCTION

The composite materials comprising long fibers of high thermal conductivity immersed in
some amorphous matrix of low thermal conductivity are now quite popular in applications.
Such materials can be used as the thermal barrier coatings. The long fibers are necessary
to ensure the mechanical strength of the coating. Long high-TC fibers are also useful to
enable anisotropic properties of the coating. Ablative thermally protective systems is an
example of such structures. These systems typically consist of low density but rigid carbon
fiber material infiltrated with the phenolic resin. Such structures have a very low density
(~ 0.27g/cm?; this means that fibers occupy approx. 12% of the bulk of the specimen),* the
typical diameter of the carbon fibers is 14-16 ym and their length exceeds 1600 pym. Using
special manufacturing methods enables the parallel orientation of fibers in order to promote
minimum through-the-thickness thermal conductivity, which is one of the critical properties.

In spite of many detailed studies, potential of highly-porous fiber materials seems to be
not realized. Further progress depends on the possibility of accurate estimation and mod-
eling of their properties. There exist some sophisticated approaches and software packages
for modeling of these protection systems, for example the program package FIAT (Fully Im-
plicit Ablation and Thermal response code) developed by NASA for one-dimensional (1D)
simulation of kinetically controlled pyrolysis, in-depth conduction, blowing due to pyroly-
sis gases, surface recession as the function of time using 1D model of ablation of porous
material.2# The program package TITAN, also developed by NASA, allows 2D modeling.?
Several other software packages for modeling of fiber materials properties are available: TI-
TAN/GIANTS (integrated procedure), MARC (commercial FEM code)®, and data base
TPSX (http://tpsx.arc.nasa.gov/).”

Nevertheless, direct numerical calculation of the transport properties in 3D fiber compos-
ites is very difficult (see, e.g., Ref. 8). Indeed, it is necessary to consider the 3D transport
equation in a fine-structure mesh. The mesh spacing should be much smaller than the fiber
thickness, while the total size of the mesh network should exceed the fiber length. More-
over, the composite structure is very complicated and its microscopic description requires
a lot of parameters.” The question arises whether all of these parameters are important for
the thermal conductivity (TC) estimation or whether it can be estimated from a few other

parameters related to them. We have shown that the two-point correlation function (CF) of



the local conductivities is the only parameter, which is necessary for TC estimation in the
non-homogeneous materials of low porosity.!%! It is not clear, however, whether the CF is
sufficient for the modeling of thermal conductivity of highly-porous fiber materials (porosity
~ 80 — 90%) or whether the higher order correlation functions should also be employed.

An important property of the fiber structures is their anisotropy. Anisotropy can be en-
abled artificially, however, a typical fiber structure is always anisotropic due to the nematic
ordering. Effect of anisotropy on the electrical conductivity in such structures has been
studied!? and exact scaling laws have been obtained.'® The dependence of thermal conduc-
tivity of fiber composites on the fiber orientation was observed, e.g., in oriented fibrous
carbon insulation.? The room-temperature in-plane thermal conductivity of the carbon in-
sulation at 1575 K was 0.05 W/mK normal to the fibers plane and 0.14 W/mK in the
fibers plane. It was also reported, that the thermal conductivity of the fiber materials of the
phenolic resin infiltration in the direction of fibers alignment is ~ 2.4 higher than that across
the thickness.!* Also filled honeycombs, multilayers, tile-like structures are manufactured to
provide anisotropic properties of the structure.!®

Qualitative estimation of conductivity of the fiber structures has been done in Ref. 16.
It was shown that the conductivity can be expressed via porosity of the structure, thickness
of the fibers, and mean distance between fiber connections. It is not clear, however, how to
estimate these parameters from the two-point correlation function, which is not simple since
CF cannot be approximated with a single exponent or Gaussian function. This problem
will be considered in this paper. We show that total porosity and the correlation lengths
along each (z, y, and z) direction are the only parameters necessary for estimation of the
conductivity of the fiber structures.

We start with a simple model of TC, which is a generalization of that proposed in Ref. 16
for an anisotropic media. We suppose the fibers are long enough, so that each of them
has many crossing points along its length. This means also that the number of fibers per
unit volume essentially exceeds the percolation threshold. This is the main point which
distinguish our model from the previous studies where the conductivity near the percolation
threshold has been investigated.'?> We have found that TC can be expressed via porosity
of the structure and mean distance between the fibers in each direction. In the following
two sections we show that all these parameters can be estimated from the CF of the local

conductivities.



In Sec. III we consider the 2D models of the structures consisting of straight square
fibers of equal thickness and length. By changing the length of the fibers, we can measure
all parameters of the structure and compare them with the CF calculated using the image
of the structure. We relate the parameters of the structure with the correlation lengths of
CF. We show that CFs of the structures with the same fiber thickness and main distance

between the fibers are close. In Sec. IV we generalize this result to the 3D case.

II. THERMAL CONDUCTIVITY OF FIBER STRUCTURES

A. Thermal conductivity of the Fiberform

Fiberform is the structure composed exclusively of fibers without the resin infiltration.
The heat propagation through the fiber network is the only mechanism of the thermal
transport in such structure. By assuming the Fiberform as an array of cylindrically shaped
fibers, each fiber can be geometrically characterized by its length [ and diameter d. If n is the
fiber concentration, i.e. the number of fibers in the unit cube, then these three parameters:
[, d, and n are the characteristic of the Fiberform. We introduce also the Fiberform density
as Vy = mnd?l/4 (V; = ndl in the 2D case). All fibers are intersecting in a 2D model, if they
are long enough and close. This is not the case in the 3D model, as not coplanar fibers can
be skewed.

We suppose that the fibers are thin (d < 1) and long, so that the mean distance between
the neighboring connecting points A is small compared to the fiber length, (A < [). This
also means that the concentration of the fibers is large enough, so that we are well above
the percolation threshold.

Suppose an external thermal gradient applied along the z-axis, and assume the cylindric
symmetry of the Fiberform with regards to this axis, i.e., we consider the heat flow along
the z-direction (Fig. 1). Let us choose two points in the fibers at the plane z = const.
The temperature, T', at these points can be different but its average values are equal. In-
deed, the condition A < [ means the existence of percolation between the points, while
(T'(r;)) # (T'(rg)) ensures the heat flux between them. The latter is forbidden by the
cylindric symmetry, therefore (T'(r;)) = (T'(ry)).

Let us find the heat flux, [;;, through a fiber connecting two points r; and r; at two close
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FIG. 1: Schematic of heat transport in a fiber structure. z is the direction of heat flux.

planes z = 0 and z = h, respectively (see Fig. 1):
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[T(r:) — T(ry)).

Here rs is the fiber thermal conductivity, l;; = |r; — ;| = h/| cos8;;|, and 0;; is the angle
between the fiber and the z-axis. The total flux through the plane z = 0 is equal to sum of

all fluxes over all the fibers crossing the plane

b= 1y = ) - (),

This allows us to determine the effective thermal conductivity k.g as:

o mrpd* N
T AS[T () — (T ()]

(cos 0 [T'(ri) — T'(r)])-

Here N = 45/7D? is the total number of fibers crossing the plane z = 0, S is the side area

of the specimen in this plane, and D, is an average distance between the fibers crossing the

plane z = 0. Supposing that (cos 0;;[T'(r;) — T'(r;)]) = (cos b;;)([T'(r;) — T(r;)]), one finds
d? D

—K OF  FKeff = —————PDK+, 1
Dz "o+ D, 1)

Reff =

where D) is an average distance between the fibers along the z-direction, so that V; =
(2D + Dy)/(D1Dy).

In a similar way we can consider the TC across the z-axis. The results are

d2 d2
— D—ilﬁf, Kl = D”DJ_Hf’
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or equivalently,
Dy D,
K| = =———Viks, k) = —"-Viky, 2
Y T TR A A Ty s T (2)
where ) and x are the components of the effective TC along and across the z-axis, respec-

tively. Thus,

ki + 2k = Viky, (3)
K/J_/K/” = DJ_/D”.

The former equality represents the trace of the conductivity tensor, which is invariant with
respect to the axis used. The latter equality is in agreement with Ref. 13. In particular, for
an isotropic structure Dy = D, = D and the effective TC becomes

d? 1

Keff = ﬁ/@f = 3Vf/ﬂ)f.

The factor 1/3 appearing in the last equation indicates that the rule of mixtures cannot
be applied to the fiber structures. To understand the reason, let us consider the TC along the
side of a simple cubic fiber network. We assume the thin fibers, so that the heat propagation
exists only along the fibers, but does not across them. Therefore, only the fibers oriented
along the applied temperature gradient participate in the TC. Effect of the other 2/3 fibers
can be estimated, if we replace the cube side D by D — d. Then keg = d*/(D — d)? =~
(1+2d/D)d*/D?. The factor 1/3 disappears when d ~ D.

B. Thermal conductivity of ATPS

ATPS is the material comprising the fibers immersed in some matrix of small TC, k), <
kf. The effect of the matrix can be two-fold. First, the direct heat flux across the matrix.
Second, the heat transport through fibers and narrow bridges between two skewed fibers.
The second effect can be important, if thermal resistivity of such bridges is of about the
resistivity of the fibers between two connection points. Let us first consider the second effect.

Let ¢ be the length of such a bridge. The bridge is important if its resistivity is less
or about the resistivity of the appropriate fiber part, i.e. §/ky S A/ky. Here A* is the

distance between two bridges which size is less than 4. It can be estimated similar to that
of Eq. (9):

A= 3 .

2n(d +0/2)1
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FIG. 2: Two dimensional models of fiber structures and corresponding correlation functions, W,

taken along the horizontal axis, x. (a) Short-fiber models with aspect ratio, (I/d) = 2,6 and 10,

Vi =0.01, 0.04, and 0.07, respectively. (b) Long-fiber models with aspect ratio, (I/d) = 10,20 and

36, Vy = 0.13, 0.17, and 0.21, respectively. All fibers have the same positions, orientations and

thickness in each model. A thickness value of d = 0.5 unit was used in the computations.

Considering the cube, A* x A\* x \*, we can write its resistivity as

el (0 \D_ 1
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FIG. 3: Long fibers. Small circle intersects the fiber two times (bold line). Large circle has many

points of intersection (dashed line).

from which one finds:

- )\*d2/D2 - d2/D2
N )\*/Hf—l—é/lﬁM N 1/I£f—|—6/)\*I£M

(4)

Reff

The above relation coincides with a similar estimation for ke in Ref. 16, if we suppose,
8/ X = d?/A?* or 6 ~ V;d. Equation (4) turns into Eq. (1), if the last term in its denominator
is omitted. This is possible when 6/\* < ks /Ky or V362 /d* < ki /Ky

Another way to take the bridges into account consists in assuming each fiber surrounded
by some layer, so that the thickness of each fiber is 0y > d and its effective TC is, k =
[iopd* + kar (63 — d?)]/65. Substituting the latter into Eq. (1) with d — &y yields:

kpd? + kg (62 — d?)
D2

Reff =

This means that the fiber network and the matrix can be considered as two resistors con-

nected in parallel. Therefore, the TC of the structure can be estimated as:'”

1 4
et = g Vpior + (1— gW)ﬁM- (5)

III. CORRELATION FUNCTION OF THE 2D FIBER STRUCTURES

In order to estimate the parameters D and D, required for the TC modeling, we consider
the CF of fiber structures. We introduce CF as

W(r ) = ([n(r) = @E)NinG") — @)))

4Vi(1 = V) ’ ©)




where (- --) denotes an ensemble average and the characteristic function n(r) is given by

1, if r is inside a fiber

n(r) = ,
—1, otherwise.

For the statistically homogeneous media, Eq. (6) depends only on the difference between
two arbitrary points r and v/, [W(r,r") = W(r —')]; it is equal to unity at the coordinates
origin, W(0) = 1 and vanishes at the infinity. If the media is also isotropic, then W (r,r’) =
W(|r —7'|). The aim of this section is to calculate the CF using the structure image and
estimate the parameters of the structure from the appropriate correlation lengths. We will
see that the CF is determined by the fiber thickness d and the distance between the inter-
crossing points of the fibers, if their density is large enough. Otherwise, the fiber length
becomes the second correlation length. In evaluating CF from digital images we employed
the procedure outlined in Ref. 18.

Figure 2 displays the 2D fiber models and the corresponding CF. All the structures
are composed of similar fibers; they have the same positions and orientations, and can be
distinguished by the fiber length only. Fibers in Figure 2(a) are short, so that they do not
intersect. The corresponding CF have two correlation lengths: one of them is relevant to
the fiber thickness (r/d = 1) and the other one to the fiber length. The CF of different
structures of this figure are well distinguished.

On the contrary, the CF in Fig. 2(b) are very close. This is because the second correlation
length for the long fibers is the mean distance between the inter-crossing points, but not
the fiber length. Direct calculation of this distance (from the image using, e.g., Photoshop
softwear) yields about 9d for all the structures in Fig. 2(b).

In order to understand the difference between the CF behavior in Fig. 2(a) and Fig. 2(b),

let us consider the two-point probability function!®2

S = (mo(r)m(r)), (7)

where

1, if r is inside a fiber

mo(r) = .
0, otherwise.

Then S = V;, if |r — /| < d, i.e. if both r and 7' are either inside or outside the

fiber. In order to estimate S for a longer distance, |r — 7’| > d, we have to multiply the
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FIG. 4: Cross-sections images and corresponding correlation functions of 3D models of fiber struc-
tures. (a) Fibers randomly positioned and oriented in the space. (b) Cross section image of (a)
at z = 15. (c) Correlation functions W (z,0) and W(0,y) of (b), taken along the x and y axis
respectively. (d) Fibers randomly positioned with preferred orientation along the z-axis. (e) Cross
section image of (d) at x = 10. (f) Correlation functions of (e) taken along the y and z axis. A
total number of N = 2000 cylindrical shaped fibers with aspect ratio (I/d) = 40 and V; = 0.21,

were considered in the simulations.

probability that the point r belongs to the fiber [P(r € fiber) = V| by the probability for
the point 7’ belongs to the fiber [P(7’ € fiber)| provided by the first point 7 is in the fiber.
The latter probability can be easily estimated, if we suppose isotropy of the fiber structure
and draw a circle around 7, as shown in Figure 3. Then P(7’ € fiber) can be estimated
as the ratio of the fiber thickness inside the circle to the circle length. For the short fibers
[Fig. 2(a)], P(r" € fiber) = d/x|r —¢'|, if d < |r — 7| < [, and P(r' € fiber) = V},
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if [» — 7’| > [; in the latter case both probabilities are independent. For the long fibers
[Fig. 2(b)], P(r" € fiber) = d/x|r — 7|, if d < |r — 7’| < I, where [, is the mean distance
between the crossing points. Note that P(r" € fiber) has an increase, when |r — /| > [..
Such increase can be found in the CF of Fig. 2(b) at |r — /| ~ 10d. For |r — 7| > I,
S = Vf2 as P(r € fiber) and P(r’ € fiber) are independent at the large distances. From the

above, Eq. (7) can be rewritten as

Vf, |'I"—'l"/| <<d,
S = ﬁ, d<|r—7| <.,
V7, P — 7| > 1.

Since n(r) = 2ny(r) — 1, it follows from Egs. (6) and (7) that

W( /) S(T - 'I"/) - ‘/}2
r—7r)=
Vi(1—Vy)
thus
1’ |T - 'I"/| < d>
n o__ V /
Wir—r) =4 sl — o d<Ir =7 <L, (8)
0, lr —7'| > ..

A similar behavior of CF was found in Fig. 2(b). Note that d/ |r — /| > V}, if |[r — r'| < L.

Apparently, it is the connectivity (A), i.e. the mean distance between the crossing points,
but not the mean length of the fibers that determines the transport properties in the fiber
structure. We have shown that the connectivity coincides with the correlation length of the
CF in the 2D case, A =~ [.. Therefore it can be estimated from Eq. (6). It is the connectivity
which determines the conduction pathways. They are roughly the same in the Fig. 2(b) thus,
all these structures have the same TC. Elongation of the fibers in this case means increase of
the dead ends, but it does not change the conductivity. Increase of the TC can be expected
when the fibers becomes so long that the number of the crossing points increases. This

means decrease the connectivity value and, therefore, increase of the conductivity.

IV. CORRELATION FUNCTION OF THE 3D FIBER STRUCTURES

The main difference between the 2D and 3D models concerns the intersection of the

fibers. Indeed, the fibers in the 2D model intersect, if they are long enough and close. In
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general, the fibers in the 3D structure can be skewed; this happens with the fibers which
are not coplanar. If so, then the mean distance between the crossing points should exceed
the distance between the fibers. The question arises what is the second correlation length
discussed in the previous section? Is it relevant to the connectivity or to the mean distance
between the fibers?

Let us first estimate the connectivity A. Consider a large parallelepiped, L x L x A
(L — o00). The number of fibers within it is N = nL?)\, and their total projection on the
L x L plane is, (2/3dl)N. This projection should cover the entire plane, if A is the distance

between the crossing points. Thus,
3

A= ——. 9
2ndl (9)
The mean distance between the fibers D, can be estimated as D?nl = 1, or

1
D=—.
Vnl

Then for the ratio A/D, we obtain
A3 [T 1

i tiaabia
where V; = nd?l/4 is the density of the 3D fiber structure. This value is not so large for
Vi~ 0.1.
It is interesting to compare A with the fiber length (:
A 3

[ 2nd?

From this relation it is evident that A ~ [, if ndl®> ~ 1, i.e., the fiber concentration
n. = (di*)~! determines the percolation threshold. Indeed, at n = n. we have only one fiber
in the [ x [ x d box. The fibers are not connected, if n < n., but connected in the opposite
limit. The mean number of connections per fiber is, [/D ~ [\/In. In this paper we assume
this value to be large.

For a rough estimation of the correlation function in 3D we have to replace the circle in
Fig. 3 with a sphere, so that the conditional probability P(r’" € fiber) provided by the first
point r is in the fiber is now, P(+ € fiber) = d?/8 |r — 7/|°. Therefore Eq. (8) becomes:

17 |T - 'I"/| < d>
2 v,
W(r—7r'") = 8|T_T,Tﬂ(1_vf) — 1_{/f, d<|r—7|<D, (10)
07 |7° — 'I"/| > D.

12



K (wave vector)

FIG. 5: Cross-section of a 3D Fiberform (a), its correlation function, W (b), and Fourier transform

of W in z and y directions. [Image (a) provided to NASA courtesy of Xradia, Inc.]

For the correlation length we obtain thus, [. ~ D.
Just with the purpose to illustrate how the 3D case can be treated, we have simulated 3D
fiber structures and extracted the cross-section images from them (Fig. 4). The algorithm

employed to produce such structures allows free intercrossing of the fibers, so that nematic
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ordering does not occur. It relies on the basic ideas exposed by Berryman,'® but it has
been readapted to the cylindrical geometry in this work. Figures 4(b) and 4(c) displays one
of such cross-sections (z = 15) and the corresponding W (z,0), W(0,y) of a fully random
fiber structure. As it can be appreciated, these functions are very close because both z
and y direction are equal. The CF allows to estimate the mean distance among fibers as
D = 2d. This does not occur when the fibers have a preferred orientation [Fig. 4(d)] and we
examinate a cross-section containing the preferred axis [Fig. 4(e)]. The CF measured along
the preferred axis and along the direction perpendicular to it, display different correlation
lengths as shown in Figure 4(f).

It is interesting to consider the Fourier transform of the correlation function. For the

simple CF given in Eq. (10) and d < D, it has the form
(sin kD — kD cos kD). (11)

In Eq. 11 we omit the small values, which oscillate as cos kd. Thus, we can estimate the D
value analyzing the oscillations of Fourier transform of the CF. This is important for the
correlation functions measured from the structure images.

Figure 5 illustrates the cross-section of a 3D Fiberform material, its correlation function
and the Fourier transform. It is not easy to estimate the correlation length directly from
the CF, because of the noise [Fig. 5(b)]. However, it can be estimated from the Fourier
transform: the period of the shortest oscillations is equal to 27/D. For an anisotropic
structure, as that shown in Fig. 5(a), this criteria allows estimation of the ratio D, /D),
which determines the anisotropy of the thermal conductivity along and across the structure
axis.

Let us estimate the thermal conductivity of the Fiberform presented in Fig. 5. Volume
fraction of the fibers can be calculated directly from the digital image of Fig. 5(a), we found
it equal to Vy = 0.1. Diameter of the fibers is the first correlation length of CF; we found
d ~ 15um from Fig. 5(b). If we assume for the fiber length | = 1600 pm, then for the
fiber concentration, n = 4V} /wd?l, we found n & 3.5-10° em™?; this value much exceeds the
percolation threshold n. = 1/dI* ~ 2.6 - 10* cm™. Rough estimation of the mean distance
between the fiber connections is, A = 3/2ndl ~ 180 pum; so that there are about [/ ~ 10
connections for each fiber. Thus, all assumptions previously made to estimate the heat

transport are satisfied. The distances between two adjacent peaks in both, bold and dashed,
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curves in Fig. 5(c) are equal to 0.045m™". This means that Dy = D, ~ 140 gm. This
estimate can be observed in Fig. 5(b) as well. Then Eq. (3) yields rj = 1, ~ 0.03r;.

V. DISCUSSION

We found the inequality n > n. holds well for the structure Fig. 5. The same estimation
can be done also for the ablative thermal protection structure! mentioned in the Introduc-
tion. Note also that of the percolation threshold Vi, = nd?In./4, which has been estimated
in Ref. 12 for [/d = 80, yields V}. = 0.03, while typical volume concentration of the fibers in
such structures is V; = 0.1-0.2. This means that Eq. (3) can be used for the TC estimation,
and the result is in agreement with the experiments.?

More interesting is the effect of anisotropy. In Sec. II we found the simple estimation
Eq. (2), which depends on the correlation lengths D and D, but is independent on the
connectivity A. This result seems surprising, but it can be understood from the following
example. Let us consider the thermal conductivity of a cubic mesh of fibers. It can be
estimated as the thermal conductivity of the A x A x A cube. The number of disconnected

fibers within the cube is (A\/D)? and the resistivity of each fiber is, 4\/7d?r;. The resistivity
of the cube can then be written as (4\/mwd?k¢) - (1 D?/4X?) or 1/Akeg. Thus,

a2
Keff = <5> Kf.

This result would not changed, if we had disconnected some of the contacts in the cubic
mesh. The result changes only if we disconnect all the contacts along the fibers. Therefore,
the error of the estimation Eq. (3) cannot be better than A/l ~ n./n. This is the effect
of dead ends, which is not important far from the percolation threshold n.. For the same
reason, the small bridges of the matrix material do not affect the thermal conductivity in
the case of the immersed fibers.

Another reason for the error in Eq. (3) comes from the dispersion of resistivity of the

fiber segments between two contacts. This effect can be estimated with the factor?!

202\ 7!
o—(1+22
(+5F)

where ¢ is the relative dispersion of the resistivity (i.e., relative dispersion of the length
between adjacent contacts in our case) and N > 6 in the 3D resistor net. Assuming o < 0.5,

we estimate the relative error as 0.1.
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Typically, the matrix material (phenolic resin) can be porous itself. The size of its
pores is very small, and their effect can be estimated, if we make the substitution'” sy, —
K (1 — %p M), where p,/ is the intrinsic matrix porosity. This makes the effect of the matrix
inessential.

Estimation of the conductivity of anisotropic structures can be performed using Eq. (3).
Indeed, the fiber density V; can be obtained from the structure porosity, while the ratio of
the correlation lengths, D, /D, can be estimated by analyzing the oscillations of the Fourier
transforms of the CF across and along the structure [Fig. 5(b)].

In order to calculate the correlation function, we have used the model structures. The
same calculation can be made also using the real SEM or optical images of the cross-sections.
Similar images can be obtained from the X-ray tomography [Fig. 5(a)]. Basically one slice
is enough for the CF calculation; however its accuracy can be significantly increased, if we
use a few slices and average the results of calculations.

In conclusion, we have analyzed the expressions (2) for the thermal conductivity of the
fiber structures and investigated the estimation of their parameters from the information
provided by the CF.

This work was supported by the Swiss National Science Foundation (grant 200021 —
130274/1).
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