FOD Prevention at NASA-Marshall Space Flight Center

Nikki M. Lowrey
Sr. Contamination Control Engineer
Jacobs ESTS Group
32nd NAFPI Conference, Dallas, TX
August 16-18, 2011
INTRODUCTION

- NASA now requires all flight hardware projects to develop and implement a FOD Prevention Program that conforms to NAS 412 (ref. NASA-STD-6016)
- With the increasing use of composite and bonded structures, NASA now also requires an Impact Damage Protection Plan for these items (ref. MSFC-RQMT-3479)
- In 2009, Marshall Space Flight Center released an interim directive that required all Center organizations to comply with FOD protocols established by on-site Projects, to include prevention of impact damage
- The MSFC Technical Standards Control Board authorized the development of a new MSFC technical standard for FOD Prevention.
AUTHORITY

NASA-STD-6016
Standard Materials and Processes Requirements for Spacecraft

Requires a FOD Prevention Program for flight hardware that conforms to:

NAS 412
Foreign Object Damage/Foreign Object Debris (FOD) Prevention

NASA-STD-5019
Fracture Control Requirements for Spaceflight Hardware

MSFC-RQMT-3479
Fracture Control Requirements for Composite and Bonded Vehicle and Payload Structures

Susceptible structures to be protected by an:

Impact Damage Protection Plan

MPD 5340.1
Foreign Object Damage/Foreign Object Debris (FOD) Prevention Operations

MSFC-STD-3598
Standard for Foreign Object Damage/Foreign Object Debris (FOD) Prevention

MSFC Project FOD Control Plans

MSFC Laboratory FOD Plans
Why a MSFC FOD Directive?

- Numerous Projects, Center Organizations, and Contractors operate at MSFC and its Michoud Assembly Facility (MAF)

- An MSFC directive was needed to establish common requirements for FOD operations in MSFC facilities
 - Establishes a MSFC FOD Focal Point and MSFC FOD Database
 - Requires flight hardware Projects to assign a FOD Focal Point and establish a FOD prevention program in compliance with the directive
 - Requires that all support organizations and contractors (crane operators, facility maintenance, security, etc.) accessing FOD Sensitive Areas comply with FOD protocols and have FOD training
 - Permits Projects and Laboratories to designate high-value non-flight hardware and test facilities as FOD sensitive
Why a MSFC FOD Standard?

● To establish a common approach for FOD prevention
 – Use of common terminology and signage is necessary for communication of FOD requirements to all personnel
 – Standard FOD training is needed for support personnel accessing numerous FOD Sensitive Areas

● To tailor NAS 412 to address FOD concerns specific to MSFC hardware and facilities
 – NAS 412 was written with aircraft in mind – While establishing a sound framework for FOD prevention, it does not adequately address some FOD hazards that are of particular concern to launch vehicles and spacecraft
STATUS

● MSFC-STD-3598 Standard for Foreign Object Damage/Foreign Object Debris (FOD) Prevention was released on August 11, 2010

● MSFC Policy Directive MPD 5340.1 Foreign Object Damage/Foreign Object Debris Prevention Operations was released November 22, 2010

● A MSFC FOD training program was developed:
 ● On-line FOD Awareness Training module for facility support personnel
 ● Instructor-led training modules for FOD Sensitive Area workers, designed to be tailored for the specific Project and hardware.

● MSFC FOD Prevention Policy is now fully implemented
Now let’s talk specifics:

How does MSFC-STD-3598 tailor NAS 412?

<table>
<thead>
<tr>
<th>PARAGRAPHS</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Purpose</td>
<td>2</td>
</tr>
<tr>
<td>2.0 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>3.0 FOD Advisory Board</td>
<td>3</td>
</tr>
<tr>
<td>4.0 General</td>
<td>4</td>
</tr>
<tr>
<td>4.1 Scope</td>
<td>4</td>
</tr>
<tr>
<td>4.2 Definitions</td>
<td>4</td>
</tr>
<tr>
<td>4.3 References</td>
<td>5</td>
</tr>
<tr>
<td>5.0 Implementation Control Methods</td>
<td>6</td>
</tr>
<tr>
<td>5.1 Measuring Performance</td>
<td>7</td>
</tr>
<tr>
<td>5.2 Training</td>
<td>7</td>
</tr>
<tr>
<td>5.3 Material Handling and Parts Protection</td>
<td>8</td>
</tr>
<tr>
<td>5.4 Housekeeping</td>
<td>9</td>
</tr>
<tr>
<td>5.5 Tool Accountability</td>
<td>9</td>
</tr>
<tr>
<td>5.6 Hardware Accountability</td>
<td>10</td>
</tr>
<tr>
<td>5.7 Lost Items</td>
<td>10</td>
</tr>
<tr>
<td>5.8 Hazardous Material</td>
<td>10</td>
</tr>
<tr>
<td>5.9 Physical Entry into FOD Critical Areas</td>
<td>10</td>
</tr>
<tr>
<td>5.10 Focal Point</td>
<td>11</td>
</tr>
<tr>
<td>6.0 Design Considerations</td>
<td>12</td>
</tr>
<tr>
<td>7.0 Assembly Operations</td>
<td>13</td>
</tr>
<tr>
<td>8.0 Test Cell Environment</td>
<td>14</td>
</tr>
<tr>
<td>9.0 Field Operations</td>
<td>15</td>
</tr>
<tr>
<td>10.0 Reporting/Investigation</td>
<td>16</td>
</tr>
<tr>
<td>11.0 National Aerospace FOD Prevention, Inc.</td>
<td>18</td>
</tr>
</tbody>
</table>

EM50

MSFC TECHNICAL STANDARD

STANDARD FOR FOREIGN OBJECT DAMAGE/FOREIGN OBJECT DEBRIS (FOD) PREVENTION

Approved for Public Release; Distribution is Unlimited

CHECK THE MASTER LIST at https://repository.msfc.nasa.gov/directives.htm
VERIFY THAT THIS IS THE CORRECT VERSION BEFORE USE
The emphasis in NAS 412 is prevention of ingestion or entrapment of FOD in air-breathing aircraft
- MSFC does not manufacture or test aircraft
- MSFC does not control any aircraft runways

Launch vehicles and spacecraft, and their subcomponents, are designed, manufactured, assembled, and tested at MSFC facilities
FOD Sensitive MSFC Products

- Large scale propulsion systems, especially Liquid Oxygen/Liquid Hydrogen systems
- Large scale composite and bonded structures
- Pressure Vessels – Composite Overwrap, Titanium
- Large space telescope optic components
- Environmental Control Life Support Systems
- Test facilities – Propulsion Test, Thermal Vacuum Chambers
FOD Hazards for MSFC Products

- **Entrapment of small items:**
 - Plug or restrict fluid supply lines and vent lines
 - Cause an ignition within liquid propellant systems
 - Interfere with mechanical actuators, pumps, switches, or valves
 - Cause impact damage when the FOD is shaken loose during transportation, handling, dynamic tests, or launch
 - Cause open or short circuits in electrical connectors
 - Become liberated on orbit, potentially endangering crew
Impact Damage

- Spacecraft are designed to be as lightweight as possible; leading to hardware that is vulnerable to impact damage during ground processing.
- The sheer size of launch vehicles makes hardware handling particularly challenging.
- Composite and bonded structures are increasingly being used in launch vehicles and spacecraft; these may be vulnerable to impact damage that is not visually apparent on the hardware surface.
Leaks, Drips, and Spills

- Serious and very costly damage has occurred, or nearly occurred, over the years from facility failures in the aerospace industry. Examples:

 - A facility water valve failed, flooding a room overnight where flight hardware was ready to ship but was uncovered.
 - A fire-suppression sprinkler head failed, dowsing highly sensitive hardware.
 - A water-soaked ceiling tile fell, very close to flight hardware.
 - Crane drips, roof leaks, and plumbing failures are a constant concern in aging facilities.
Addressing MSFC FOD Hazards

- The FOD Prevention Program structure in NAS 412, which focuses primarily on entrapment, readily lends itself to control of impact sources and leak hazards with only minor modifications:
 - Added emphasis on facilities as a major source of FOD
 - Require a facility FOD risk review prior to activation of any new FOD Sensitive Area
 - Restriction and control of overhead operations in all FOD sensitive areas regardless of level of control
 - FOD Control Plans are required to identify Impact Damage Susceptible (IDS) items as well as items susceptible to entrapment.
 - FOD Training to address entrapment, impact, and leaks
 - Workers are instructed to also LOOK UP during FOD walkdowns
MSFC FOD Program Features

- MID 5340.1 and MSFC-STD-3598 adopt common terms and strategies from both NAS 412 and heritage FOD prevention programs used for Space Shuttle operations
 - United Space Alliance FOD Program at Kennedy Space Center
 - Lockheed Martin FOD Program at MSFC-Michoud Assembly Facility
 - Also benchmarked other aerospace industry FOD programs

- Key is the adoption of three levels of FOD Sensitive Area, with corresponding levels of access restriction and operational control:
 - FOD Awareness Area
 - FOD Control Area
 - FOD Critical Zone

- Both entrapment-sensitive and IDS hardware are designated as FOD-sensitive
Required Elements of FOD Control

- **Design Consideration for FOD Prevention:**
 - Damage Tolerance (impact, corrosion, contamination)
 - Screens, caps, and covers

- **Control of Manufacturing and Test Operations**
 - Identify and control FOD Sensitive Areas
 - Tool controls for hand tools, fasteners, shop consumables, etc.
 - Housekeeping and Clean-As-You-Go methods
 - Precautions for lifting, handling, and moving FOD sensitive items

- **Facility risk assessment and cleaning prior to FOD area activation**
 - Remove loose debris, make repairs/mitigations

- **FOD Prevention Training**
 - Train all personnel with access to FOD Sensitive Areas
 - Access controls and escort for non-trained personnel

- **Measurement, Trending, and Feedback**
 - Incident/Mishap reporting system, trend tracking
 - Routine area inspections and reporting
 - Near-Miss reporting and corrective action
MSFC-STD-3598 requires the use of common signage to assure easy recognition of the presence of FOD sensitive hardware.

- FOD Awareness Area
- FOD Control Area
- FOD Critical Zone

The NO FOD logo is encouraged for use on ALL FOD signage and awareness media.
<table>
<thead>
<tr>
<th>FOD Control Area Work Rules - Quick Reference Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOD Awareness Area</td>
</tr>
<tr>
<td>Sign</td>
</tr>
<tr>
<td>Training Requirements</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Visitors</td>
</tr>
<tr>
<td>Area Agreement Posted</td>
</tr>
<tr>
<td>FOD Awareness Banners</td>
</tr>
<tr>
<td>Food and Drinks</td>
</tr>
<tr>
<td>Personal Items</td>
</tr>
<tr>
<td>Jewelry</td>
</tr>
<tr>
<td>Eyeglasses</td>
</tr>
<tr>
<td>Tool Controls</td>
</tr>
<tr>
<td>Small Parts control</td>
</tr>
<tr>
<td>Lost Tools/Items</td>
</tr>
<tr>
<td>Dropped Tools/Items</td>
</tr>
<tr>
<td>Scheduled FOD Walk Downs</td>
</tr>
</tbody>
</table>

¹. Required for FOD Monitors and FOD Site Managers only.
². All loose items shall be tethered, secured, or removed when over IDS hardware.

Work rules are tailored, within specified limits, by the Project FOD Focal Point and each FOD Site Manager
FOD Area Agreement

FOD CONTROL AREA

FOD Sensitive Area Requirements

<table>
<thead>
<tr>
<th>Process:</th>
<th>State Operation Here</th>
<th>Location:</th>
<th>Enter Building and Room or Zone here</th>
<th>Start Date:</th>
<th>Click here to enter a date.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOD Focal Point</td>
<td>Project FOD Focal Point</td>
<td>Phone</td>
<td>Phone number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOD Risk: Specify Impact Damage Susceptible Hardware, FOD entrapment concerns, other risks

FOD Work Rules for this Area

<table>
<thead>
<tr>
<th>PEOPLE</th>
<th>TOOLS</th>
<th>OPERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>List work rules for operations</td>
<td>List work rules for operations</td>
<td>List work rules for operations</td>
</tr>
</tbody>
</table>

Work Rules that everyone must follow in this area

Site Manager Contact info--

- **Site Manager:**
 - Click here to enter text.
 - **Phone:**
 - Click here to enter text.

After hours emergency contact--

- **After Hours Emergency Contact:**
 - Click here to enter text.
 - **Phone:**
 - Click here to enter text.
• FOD Sensitive Areas will be clearly marked with:

Access control: door locks, ropes, etc
A FOD sign with logo showing the LEVEL of FOD control
A FOD Area Agreement that shows:
 – The FOD sensitive hardware being processed
 – Work Rules for PEOPLE, TOOLS, and OPERATIONS
 – Contact information
Summary

- MSFC Policy Directive MPD 5340.1 requires FOD prevention for all flight hardware projects, and requires all support organizations to comply.
- MSFC-STD-3598 implements a standard approach for FOD prevention, tailored from NAS 412.
- Three levels of FOD Sensitive Area are identified, adopting existing practices at other NASA facilities.
- Additional emphasis is given to prevention of impact damage and mitigation of facility FOD sources, especially leaks and spills.
- Impact Damage Susceptible (IDS) items are identified as FOD-sensitive as well as hardware vulnerable to entrapment of small items.
Questions?