MODELING OF SONOS MEMORY CELL ERASE CYCLE

THOMAS A. PHILLIPSa, TODD C. MACLEODa, and FAT D. HOb

aNational Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama, 35812, U.S.A.
bThe University of Alabama in Huntsville, Department of Electrical and Computer Engineering, Huntsville, Alabama 35899, U.S.A.

INTRODUCTION

- Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages.
- These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics.
- In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model.
- Comparisons were made between the model predictions and experimental data.

ERASE MODEL DEVELOPMENT

- Applying Gauss’ Law to the floating gate provides
 \[Q_{FG} = C_{oxg} \left(V_{FG} - V_{GB} + \frac{C_{oxg}}{C_{oxg} + C_{tun}} (V_{FG} - V_{MS}) \right) + C_{oxg} (V_{FG} - V_{DB}) \]
 \[+ C_{oxg} (V_{FG} - V_{SB}) \]
 \[(1) \]
- During Erase cycle device is in accumulation mode
 \[\phi_{b} \text{ should be on the order of a few hundredths of a volt and can be neglected} \]
- Taking the time derivative of equation 1, and realizing that
 \[\frac{dQ_{FG}}{dt} = -i_{tun} \]
 \[\frac{dQ_{FG}}{dt} = -i_{tun} = C_{oxg} \left(\frac{dV_{FG}}{dt} \right) - \frac{C_{oxg}}{C_{tun}} \left(\frac{dV_{FG}}{dt} \right) \]
 \[(2) \]
- Rearranging equation 2 to solve for the floating gate voltage provides
 \[\frac{dV_{FG}}{dt} = \frac{C_{oxg}}{C_{tun}} \left(\frac{dV_{FG}}{dt} \right) - \frac{C_{oxg}}{C_{tun}} \left(\frac{dV_{FG}}{dt} \right) \]
 \[\frac{dV_{FG}}{dt} = -\frac{i_{tun}}{C_{oxg}} \]
 \[(3) \]
- Equation 3 can be solved for the floating gate voltage by numerical methods.
- Now the tunneling Electric Field can be calculated.
 \[E_{tun} = \frac{V_{FG} - \phi_{S}}{t_{tun}} \]
 \[(4) \]
- Then the tunnel current can be calculated using the Fowler-Nordheim equation
 \[i_{tun} = e \alpha \beta \frac{V_{FG} - \phi_{S}}{t_{tun}} \exp \left(\frac{H_{Fnerase}}{E_{tun}} \right) \]
 \[(5.1) \]
 \[i_{tun} = e \alpha \beta \frac{V_{FG} - \phi_{S}}{t_{tun}} \exp \left(\frac{H_{Fnerase}}{E_{tun}} \right) \]
 \[(5.2) \]
- Fowler-Nordheim constants
 \[\alpha = 2.37 \times 10^{8} \]
 \[\beta = 1.23 \times 10^{-6} \]
- Now an updated value for the floating gate charge can be obtained from
 \[\frac{dQ_{FG}}{dt} = -i_{tun} \]
- Finally an updated value for the threshold voltage can be calculated using
 \[V_{th} = V_{th0} - \frac{Q_{FG}}{C_{oxg}} \]
 \[(7) \]
- A software flowchart is shown in Figure 2.
- A logarithmic series was implemented for time steps t.
- Each of the equations was solved for each time step.

RESULTS

- For the SONOS erase operation \(V_{GB} \) was set to -8 VDC, \(V_{DB} \) and \(V_{SB} \) were set to 0 VDC.
- The calculated floating gate voltage is shown in Figure 3.
- The calculated tunnel current is shown in Figure 4. The calculated threshold voltage and the threshold voltage from the Cho & Kim device is shown in Figure 5.

CONCLUSION

- A nonquasi-static model was developed for the SONOS memory cell erase cycle.
- The floating gate voltage, tunnel current, and threshold voltages were calculated based on the SONOS device parameters.
- The calculated threshold voltage curve had a slightly different slope than the threshold voltage curve from the Cho & Kim device, but there was still fairly good agreement between the two curves.

REFERENCES

Figure 1: SONOS Device Layout

- SONOS Device parameters
 - Tunneling oxide thickness (\(t_{tun} \)) – 6nm
 - Floating gate thickness – 6nm
 - Oxide thickness (\(t_{ox} \)) – 7nm
 - Channel length (\(l \)) – 0.35\(\mu \)m
 - Device width (\(w \)) – 0.25\(\mu \)m
 - Gate length (\(l' \))
 - Gate overlap over Drain/Source (\(x_{j} \))
- Calculated Capacitances
 - \(C_{oxg} = \frac{C_{ox}/t_{ox}}{w \cdot l'} \)
 - \(C_{oxg} = \frac{C_{ox}/t_{ox}}{w \cdot l'} \)
- \(\gamma = l + 2x_{j} \)
- \(A_{in} = w \cdot l' \)