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INTRODUCTION ERASE MODEL DEVELOPMENT RESULTS
e  Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS)  Applying Gauss’ Law to the floating gate provides  Forthe SONOS erase operation Vz was set to -8 VDC, V5
nonvolatile semiconductor memories as a flash memory has Qr6 = Coxg ( Vis = Var) + Coxun (Veg-0s-Oms) + Coxgs(Vea- and Vg were set to 0 VDC.
many advantages. Vsg) + Coxgs(VEcVoe) (1) * The calculated floating gate voltage is shown in Figure 3.
 These electrically erasable programmable read-only memories » During Erase cycle device is in accumulation mode | '
(EEPROMS) utilize low programming voltages, have a high * ¢¢ should be on the order of a few hundredths of a volt .
erase/write cycle lifetime, are radiation hardened, and are and can be neglected 2 ao
compatible with high-density scaled CMOS for low power, . . L . - _/ e
. « Taking the time derivative of equation 1, and realizing that
portable electronics. -
In thi the SONOS | | Qre/al = “lyy leads 10
* Inthis paper, the memory cell erase cycle was _ 0 = ) ol
investigated using a honguasi-static (NQS) MOSFET model. (IiQFG/dt | hur CtOttG}'(dVZFCt;/dt) | Cogg(ci\r:GE}/ldt)t_(Z) t ey
« Comparisons were made between the model predictions and calfanging equation < 1o solve 1or the Tloaling gate Figure 3: Gate Voltages
. voltage provides . N
experimental data. -  The calculated tunnel current is shown in Figure 4. The
(AVE/d)=[Coxg(AVep/Al) - linl/Crora  (3) calculated threshold voltage and the threshold voltage from
 Equation 3 can be solved for the floating gate voltage by the Cho & Kim device is shown in Figure 5.
_ numerical methods.
SONOS Device  Now the tunneling Electric Field can be calculated. -
« The modeled SONOS device is shown in Figure 1. E..n=(Vegm 0s)owiin (4) ] o o N .
 Then the tunnel current can be calculated using the 2 v "
S Fowler-Nordheim equation L T Lo
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P-TYPE SUBSTRATE (52)
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Figure 1: SONOS Device Layout wn wn
_ * Fowler-Nordheim constants ( Begin > CONCLUSION
* SONOS device parameters oo .= 1.23e-6 + - A nonquasi-static model was developed for the SONOS
* Tunneling oxide thickness (t,.,,) — 6nm 3 — 5 37048 R memory cell erase cycle.
» Floating gate thickness — 6nm nerase « The floating gate voltage, tunnel current, and threshold voltages
_ _  Now an updated value for the .
e Oxide thickness (t.)) — 7nm _ + were calculated based on the SONOS device parameters.
(tox) floating gate charge can be
« Channel lenath () = 0.35um | | calculate  The calculated threshold voltage curve had a slightly different
gth () = obtained from Al -
. Device width (w) — 0.25um 3 slope than the threshold_ voltage curve from the Cho & Kim
| dQrs/dt = -1y, ‘ * device, but there was still fairly good agreement between the
— Ga.te Iength (I) . alculate
Gat | Drain/S  Finally an updated value for Swnitel, two curves.
. ate overlap over Drain/Source (X e S
Calculated C P ) 09) the threshold voltage can be -
. alculated Capacitances .
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