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INTRODUCTION

SONOS Device

RESULTS

CONCLUSION
• A nonquasi-static model was developed for the SONOS 

memory cell erase cycle.
• The floating gate voltage, tunnel current, and threshold voltages 

were calculated based on the SONOS device parameters.
• The calculated threshold voltage curve had a slightly different 

slope than the threshold voltage curve from the Cho & Kim 
device, but there was still fairly good agreement between the 
two curves.

MODELING OF SONOS 
MEMORY CELL ERASE CYCLE 

• The modeled SONOS device is shown in Figure 1.

• SONOS device parameters
• Tunneling oxide thickness (toxtun) – 6nm
• Floating gate thickness – 6nm
• Oxide thickness (tox) – 7nm
• Channel length (l) – 0.35µm
• Device width (w) – 0.25µm
• Gate length (l’)
• Gate overlap over Drain/Source (xj) 

• Calculated Capacitances
• Coxg= (εox/tox) w l’
• Coxtun= (εox/toxtun) Atun

• Coxgd= (εox/toxtun) w xj

• Coxgs= (εox/toxtun) w xj

• Ctotal= Coxg+ Coxtun+ Coxgd+ Coxgs

• l’ = l + 2xj 

• Atun= w l 

• For the SONOS erase operation VGB was set to -8 VDC, VDB
and VSB were set to 0 VDC.  

• The calculated floating gate voltage is shown in Figure 3.

• The calculated tunnel current is shown in Figure 4.  The 
calculated threshold voltage and the threshold voltage from 
the Cho & Kim device is shown in Figure 5.
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• Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) 
nonvolatile semiconductor memories as a flash memory has 
many advantages.

• These electrically erasable programmable read-only memories 
(EEPROMs) utilize low programming voltages, have a high 
erase/write cycle lifetime, are radiation hardened, and are 
compatible with high-density scaled CMOS for low power, 
portable electronics.

• In this paper, the SONOS memory cell erase cycle was 
investigated using a nonquasi-static (NQS) MOSFET model.

• Comparisons were made between the model predictions and 
experimental data.

Figure 1:  SONOS Device Layout

Figure 4:  Tunnel Current

Figure 3:  Gate Voltages

ERASE MODEL DEVELOPMENT
• Applying Gauss’ Law to the floating gate provides

QFG = Coxg ( VFG – VGB) + Coxtun (VFG-φS-φMS) + Coxgs(VFG-
VSB) + Coxgs(VFG-VDB)  (1)

• During Erase cycle device is in accumulation mode 
• φS should be on the order of a few hundredths of a volt 

and can be neglected
• Taking the time derivative of equation 1, and realizing that 

dQFG/dt = -Itun leads to 
dQFG/dt = -Itun=Ctotal(dVFG/dt) - Coxg(dVGB/dt) (2)

• Rearranging equation 2 to solve for the floating gate 
voltage provides
(dVFG/dt)=[Coxg(dVGB/dt) - Itun]/Ctotal (3) 

• Equation 3 can be solved for the floating gate voltage by 
numerical methods.

• Now the tunneling Electric Field can be calculated.
Etun=(VFG- φS)/toxtun (4)

• Then the tunnel current can be calculated using the 
Fowler-Nordheim equation
Itun=αFnerase Atun E2

tun exp(-βFnerase/Etun) Etun > 0   
(5.1)

Itun=-αFnerase Atun E2
tun exp(-βFnerase/|Etun|)    Etun < 0   

(5.2)
Itun= 0    Etun = 0  (5.3)

• Fowler-Nordheim constants
αFnerase = 1.23e-6
βFnerase = 2.37e+8

• Now an updated value for the
floating gate charge can be 
obtained from
dQFG/dt = -Itun (6)

• Finally an updated value for 
the threshold voltage can be 
calculated using
Vth= Vth0 - (QFG/Coxg)    (7)

• A software flowchart is shown 
in Figure 2.

• A logarithmic series was 
implemented for time steps t.

• Each of the equations was
solved for each time step. Figure 2:  Software Flowchart
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Figure 5:  Threshold Voltage
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