MODELING OF SONOS MEMORY CELL ERASE CYCLE

THOMAS A. PHILLIPSa, TODD C. MACLEODa, and FAT D. HOBb

aNational Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama, 35812, U.S.A.
bThe University of Alabama in Huntsville, Department of Electrical and Computer Engineering, Huntsville, Alabama 35899, U.S.A.

INTRODUCTION

- Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages.
- These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics.
- In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model.
- Comparisons were made between the model predictions and experimental data.

SONOS Device

- The modeled SONOS device is shown in Figure 1.

![SONOS Device Layout](image)

Figure 1: SONOS Device Layout

- SONOS device parameters
 - Tunneling oxide thickness (t_{tunnel}) – 6nm
 - Floating gate thickness – 6nm
 - Oxide thickness (t_o) – 7nm
 - Channel length (l) – 0.35µm
 - Device width (w) – 0.25µm
 - Gate length (l')
 - Gate overlap over Drain/Source (x_j)

- Calculated Capacitances
 - $C_{sg} = (c_{sg}/w) l'$
 - $C_{otun} = (c_{otun}/w) A_{un}$
 - $C_{cg} = (c_{cg}/w) A_{un} x_j$
 - $C_{tun} = (c_{tun}/w) x_j$
 - $C_{oxg} = (c_{oxg}/w) x_j$
 - $C_{gs} = C_{sg} + C_{otun} + C_{cg} + C_{tun}$
 - $C_{oxs} = (c_{oxs}/w) x_j$
 - $l' = l + 2x_j$
 - $A_{un} = w x_j$

ERASE MODEL DEVELOPMENT

- Applying Gauss’ Law to the floating gate provides

$$Q_{FG} = C_{sg} (V_{FG} - V_{GB}) + C_{otun} (V_{FG} - V_{DB}) + C_{cg} (V_{FG} - V_{BG}) + C_{oxg} (V_{FG} - V_{BG})$$

During Erase cycle device is in accumulation mode

- V_o should be on the order of a few hundredths of a volt and can be neglected
- Taking the time derivative of equation 1, and realizing that

$$dQ_{FG}/dt = dV_{FG}/dt$$

Rearranging equation 2 to solve for the floating gate voltage provides

$$(dV_{FG}/dt) = (C_{tun} dV_{GB}/dt) - C_{cg} (dV_{GD}/dt)$$

Equation 3 can be solved for the floating gate voltage by numerical methods.

- Now the tunneling Electric Field can be calculated.

$$E_{tun} = (V_{FG} - V_{GB})/t_{tun}$$

Then the tunnel current can be calculated using the Fowler-Nordheim equation

$$I_{tun} = I_{tun,free} A_{un} E_{tun}^2 \exp(-\phi_{Fnerase}/E_{tun})$$

For the SONOS erase operation V_{GB} was set to -8 VDC, V_{DB} and V_{SB} were set to 0 VDC.

RESULTS

- For the SONOS erase operation V_{GB} was set to -8 VDC, V_{DB} and V_{SB} were set to 0 VDC.
- The calculated floating gate voltage is shown in Figure 3.

![Tunnel Current](image)

Figure 4: Tunnel Current

![Threshold Voltage](image)

Figure 5: Threshold Voltage

CONCLUSION

- A nonquasi-static model was developed for the SONOS memory cell erase cycle.
- The floating gate voltage, tunnel current, and threshold voltages were calculated based on the SONOS device parameters.
- The calculated threshold voltage curve had a slightly different slope than the threshold voltage curve from the Cho & Kim device, but there was still fairly good agreement between the two curves.

REFERENCES