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We provide a mathematical formalism for optimizing the mirror nodal positions along the optical axis and the tilt of a commonly employed detector configuration at the focus of a x-ray
telescope consisting of nested mirror shells with known mirror surface prescriptions. We adopt the spatial resolution averaged over the field-of-view as the figure of merit M. A more

complete description appears in our paper in these proceedings.

. . . 2. Application to an inverted pyramid of detectors
1. Variance in ray position on a focal surface S
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rays through shell j, we have shown:
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Consider a pyramid of four tilted detectors, with apex pointing away from the nested
When Wj,k =1, then Wj = nj and W = N. The ensemble average of a quantity, say the ray X pOSition on the surface S, shells, and each Occupying a quadrant with one corner on the diagona| intersecting
for multiply reflected rays from shell J is given by: the optical axis (see Figure). In this case, the focal surface S = S, corresponds to the
flat, but tilted, surfaces of the four detectors. We denote the tilt angle by @. If shelljis
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<Xj >s e ij,k (Xj,k )s <XJ?>3 _ = ij’k (Xi,k )s displaced along the optical axis so that the apex of the inverted pyramid is a distance
Wi k=1 Wj k= 0z; from the on-axis focus for that shell, then we have:

Where w;, is the weight assigned to the k-th ray from the j-th mirror shell. In order to account for dependence on
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energy E, say for optics with two segments per mirror shell, the natural weight to use is the product of the reflectivities Os1 =40 j,0 €% j,0 €% j,0 j,0 Y% j,0

from the primary, Ry, and secondary, Rg, mirror surfaces:

In our coordinate system, 0z < 0 if the apex is further from the shell mid-plane than its
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on-axis focus. The coefficients a,, etc. are evaluated in the flat plane perpendicular to

Here op;, and ag;, are the primary and secondary graze angles for the k-th ray from the j-th mirror shell. the optical axis and passing through the on-axis focus for shell j. Each coefficient is an
ensemble average of the appropriate corresponding combination of the ray position and

Important result: os? is not a simple sum over the over the variances o;¢? of the individual shells. . : :
! wave-vectors, and are given in our paper. To second order in tan ¢ and the dz, we also

3. The merit function have:

Making use of additional definitions given in our paper to make the notation more compact, we write: Ojs = &0 + (bij,o &i n bji,O 5Zj )+ Cio 5Zi 5Zj
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4. Configuration solutions

The telescope/detector configuration is optimized by solving:
For a single mirror shell with j = J = 1, the solutions for dz, and tan ¢ reduce to:
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For a set of J nested mirror shells, we have J linear equations for the dz, and an

Solve for tan ¢: equation for tan ¢ in terms of the 8z,. We suggest that this system of linear equations

ought to linearly independent in the sense that the determinant |B| # 0. However, even
If this condition is satisfied, current wide field telescope designs approach 100 closely
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J
1 nested mirror shells, so numerical precision and convergence my be issues for any
computer implementation of the solution of these equations.

Substitute into equations for &z,, and express in linear algebra (matrix) form:

E'g‘i = ? When optimization of the prescriptions for the reflecting surfaces of the mirror shells
The column vectors &z and Y are given by is desired, the above procedure becomes more complex. For example consider the case
of so-called polynomial x-ray optics assuming two mirror segment surfaces and J mirror
é_i - {5Zk’ (k =1, J )} Y = {(Do )M (EI:,O)M _ (|:0 )M (BI:,O)M ’ (k =1 ] )} shells, for which M-1 higher order polynomial terms py,;<(Z — o)™, With m = (2,M),
j=(1,J) and s=(1,2) are added to a Wolter | prescription for the mirror segment radius
The element of the J x J matrix B in the k-th row and J-th column is given by: squared. The merit function will now depend on the p,;, and derivates with respect to
these new parameters set to zero and simultaneously solved for in addition to the dz,
By = Sy [(Fo )M (Ck,O)M _(Elz,o)i,. i— (1—§kj)[(|:0 )M (Cjk,O)M —(EQ’O)M (Eik,o),\,, i and tan ¢. Assuming the p,,;; are small enough to permit linearization of the new
conditions, the linear system of equations now consists of (M x J + 1) equations

Here 9, is the Kronecker delta equal to 1 when k = j and 0 otherwise. (including the equation for tan o).
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