The pair of particle may react as follow [3]:

\[A + B \rightarrow (AB) \rightarrow AB \]

The radiation chemistry code can be used to calculate the reaction rate constants (\(k_{obs}, k_{dif}, k_{act} \)), reaction radii (\(R \)), probability of geminate recombination (\(\alpha \)) for reactions between radiolytic species [5].

In this work, we discuss an approach based on the exact Green functions for diffusion-influenced reactions which may be used to simulate radiation chemistry and eventually extended to study more complex systems, including DNA.

The exact Green functions for an isolated pair are:

\[\gamma^\pm=\alpha+\beta+\gamma \]
\[\alpha-\gamma=\alpha-\beta=\beta-\gamma \triangleq \Omega \]
\[\Omega=\pi/2 \]

The coefficients \(\alpha, \beta, \gamma \) are related to the reaction rate constants (\(k_0=4\pi R D \)):

\[\alpha=\beta+\gamma=\Omega+2\gamma \]
\[\alpha=\beta=\gamma=\Omega \]
\[\alpha=\beta+\gamma=\Omega-\gamma \]
\[\alpha=\beta=\gamma=\Omega-\beta \]

\[\alpha=\beta+\gamma=\Omega-\alpha \]
\[\alpha=\beta=\gamma=\Omega-\alpha \]
\[\alpha=\beta+\gamma=\Omega-\beta \]
\[\alpha=\beta=\gamma=\Omega-\beta \]

Many-particles system

- When more particles are added to the system, the number of interactions grow quickly
- 2 Particles
 - 1-2 (1 interaction)
- 3 Particles
 - 1-2, 1-3, 2-3 (3 interactions)
- 4 Particles
 - 1-2, 1-3, 1-4, 2-3, 2-4, 3-4 (6 interactions)
- N Particles
 - N(N-1)/2 interactions \(\Rightarrow \) Grows as \(N^2 \)

The Green Functions can be used to build a radiation chemistry code [4], by using average positions generated by sampling the inter-particle distance at each timestep.

Chemical reactions and radiolytic yields

- The chemical reactions between radiolytic species with no electrostatic interaction (i.e. their charge product is 0) can be simulated by using the Green Functions described above.
- The radiation chemistry code can be used to simulate the time evolution of the radiolytic species (radiation chemistry) and radiochemical yields [5,6].