
NASA MSGR – Internship Final Report

1
NASA MSFC 08/05/2011

The Creation of a CPU Timer for High Fidelity Programs

Aidan A. Dick1

NASA Marshall Space Flight Center, Huntsville, AL, 35812

Using C and C++ programming languages, a tool was developed that measures the
efficiency of a program by recording the amount of CPU time that various functions
consume. By inserting the tool between lines of code in the program, one can receive
a detailed report of the absolute and relative time consumption associated with each
section. After adapting the generic tool for a high-fidelity launch vehicle simulation
program called MAVERIC, the components of a frequently used function called
“derivatives ()” were measured. Out of the 34 sub-functions in “derivatives ()”, it
was found that the top 8 sub-functions made up 83.1% of the total time spent. In
order to decrease the overall run time of MAVERIC, a launch vehicle simulation
program, a change was implemented in the sub-function “Event_Controller ()”.
Reformatting “Event_Controller ()” led to a 36.9% decrease in the total CPU time
spent by that sub-function, and a 3.2% decrease in the total CPU time spent by the
overarching function “derivatives ()”.

Nomenclature
CPU = Central Processing Unit
MAVERIC = Marshall Aerospace Vehicle Representation in C
µ = Average
σ = Standard Deviation
Windows = Microsoft Windows Series
Red Hat = Red Hat Enterprise Linux Release 6.1

I. Introduction
ome members of the Flight Mechanics and Analysis Division (EV40) at NASA use a program called MAVERIC
to collect flight data. MAVERIC is a high fidelity launch vehicle simulator that uses computational integration

to calculate the trajectory of a vehicle. The state of the vehicle is updated two hundred times per simulated second,
which requires that various functions be called at that same rate, resulting in tens of thousands of function calls per
MAVERIC run.

 During the design phase of launch vehicle development, EV40 makes extensive use of MAVERIC. During
this phase, MAVERIC itself is run hundreds of thousands of times. Small increases in the speed of MAVERIC can
result in hours of decreased simulation run time. Inversely, functions that use excess CPU time result in hours of
wasted time spent waiting for simulations to run. Keeping each aspect of MAVERIC efficient is essential to
maintaining productive use of time in the EV40 division.

 To help in efforts towards maintaining MAVERIC’s efficiency, a generic tool to measure CPU time was
created. The tool was then adapted specifically for MAVERIC’s output system. Employing such a tool reveals
which functions are the most costly, where improvements can be made, and how effective your improvements are.

II. Background
 MAVERIC is stored and executed on a shared server, which is connected to by members of EV40 using the

Windows program X-Win32. The server operates using the Linux-based operating system called Red Hat. Most
Linux and UNIX systems have built in time functions that can be called by programs. The most common function in
C, “clock ()”, is too imprecise to be used for high fidelity programs. In Red Hat, there is a built in function called

1 NASA Marshall Space Grant Research (MSGR) Intern, Space Craft & Vehicle Systems Department, Marshall
Space Flight Center, University of Minnesota – Twin Cities.

S

NASA MSGR – Internship Final Report

2
NASA MSFC 08/05/2011

Figure 1. The Difference between Wall Clock and CPU Time. A
process timeline is labeled according to process type on the left, and
is labeled according to timer type on the right.

“clock_gettime ()”, which provides access to several useful timers, some of which have the resolution of
nanoseconds (Rutenberg, 2007).

III. Technical Approach

 The concept for the CPU timer was simple, but the design had to meet several important requirements. To
use the CPU timer, the timer is placed in the program’s code. When the program runs with the probed code, the
CPU function makes measurements, stores the data, and then reports the data in a consolidated, easily read format.

A. Wall Time vs. CPU Time
 One concern to address when creating a CPU timing function is the distinction between the ‘wall-clock time’

and the CPU time. The wall-clock time is a measurement of the total time that elapses between two points in the
code. Wall clock-time includes process time, communication channel delay, and other programmed delays. The
delays that effect the wall-clock time are independent of the code, and therefore should not be taken into
consideration. In order to accurately
measure the program’s code, the only
thing that should be measured is the
CPU time, which can be performed by
using the UNIX function “clock_gettime
()”. This UNIX function fills a
previously declared struct, a storage type
in C and C++ that combines a set of
objects into a single object, with the
current CPU timestamp. To record the
amount of CPU time a specific function
takes, the “clock_gettime ()” function
needs to be called twice. It should be
called once right before the timed
section of code, to record the timestamp
at the beginning, and once right after the
timed section of code, to record the
timestamp at the end. The amount of
CPU time the process took is equal to
the difference in the two timestamps.

B. Familiarizing with “clock_gettime ()”
 Before implementing the clock function in a program, it’s important to first familiarize with its capabilities.

After testing the clock function in various smaller programs, it became evident the timer takes a notable amount of
CPU time to run itself. The two CPU timestamps recorded when two “clock_gettime ()” functions are placed one
after the other have a difference of 1.3-1.8 million nanoseconds. This is a small, but not entirely negligible amount
of CPU time. This is a limiting factor in the resolution error of the CPU timer used for MAVERIC.

C. Creating the Structure for the Timer
 Many complex programs use functions that are called multiple times. In order to accurately measure the total

CPU time used by a particular function, or a particular section of code, it’s important to have the ability to store
multiple timestamps. For ease of use, the function should also be capable of handling multiple timers at once.
Addressing both of these requirements (i.e., handling multiple function calls and handling multiple timers), the
function uses a vector system to store data.

NASA MSGR – Internship Final Report

3
NASA MSFC 08/05/2011

Figure 2. The Timer Process. On the left, a start timer and an
end timer (in red) are inserted before and after the section of code
to be timed. On the right are the sub-processes that are executed
when each line on the left is called.

probe_data_time(“name” , “start”);

probe_data_time(“name” , “end”);

Figure 3. The Start and End Probes. These lines of code are
inserted before and after the segments of code that are to be timed by
the CPU timer.

 In order for the program to
distinguish between different timers, each
timer is given a name in the implemented
code. The timer is also given a position
statement (i.e., start or finish) as shown in
Figure 2 and Figure 3. When the timer is
called, it uses those two pieces of
information. If it is the first time that
specific timer has been seen by the
program, it creates a new vector to store
the data. If the program has seen that
timer’s name before, it records the current
timestamp and stores it in its vector. After
the data struct in the vector has both a start
time and an end time, it subtracts the
difference between the two times, and
stores the value, which corresponds to the
CPU time used by that section of code.
This process is repeated each time that
section of code is executed, and is not
limited by any storage value.

 In order to ensure that the time
recorded best reflects the true CPU time
for the timed section of code, the Unix
function that records the timestamp is
called as close to the program’s code as

possible, as seen in Figure 2. This ensures that the majority of the CPU time recorded corresponds to the timed
section of program code, and doesn’t correspond to the code for the timer itself.

 To keep the [word for used memory] at an appropriate level, the CPU timer consolidates its data and stores it
to file at various check points throughout program execution.

D. Using the Timer
 To time a function or section of

code within a program, the timing function
“probe_data_time ()”, needs to be placed
once before the timed section, and once
after the timed section. The timer also
requires two parameters to be given. The
first function parameter to be given is the
name that will be assigned to the section of
code, and the second parameter is whether
it is the “start” or “end” of the timed
section of code.

 Maintaining that each timer has a matching pair for every “start” or “end” timer is critical for ensuring that
each timer measures accurately. Timer pairs that are placed on different sides of “for” and “while” loops or “if” and
“else” statements all have potential to produce incorrect CPU times.

E. The “Relative” Timer
 A special timer was also developed to be compared by the other individual timers. This timer was named the

“relative” timer. When the program is finished running, the total values for each timer are calculated. The individual
total times are then calculated as a percentage of the “relative” timer, if the “relative” timer has been implemented,
and are reported alongside their total values, as shown in Figure 5.

 This feature allows users to set a timer as a reference point to compare data to. By reading CPU time as a
percentage of another function, as opposed to in total CPU time format, users can more intuitively develop an
understanding of the results.

NASA MSGR – Internship Final Report

4
NASA MSFC 08/05/2011

Figure 4. The Resulting CPU Time Gaps. Due to
CPU time spent processing the timer’s commands;
empty CPU gaps appear, shown between the dotted
lines.

Figure 5. A Screenshot of the Report File. Once MAVERIC is finished running, the CPU time data is consolidated
and printed to a report file, where it can be easily read and analyzed. The report is a consolidation of the data
collected for test case ISS Mean 6DOF of the Ares-I Rev8 series of MAVERIC. CPU usage of each sub-function of
“derivatives ()” is expressed as a percentage of the total CPU time used by “derivatives ()”.

F. Error in the Timer
 As discussed, the function “clock_gettime ()”

requires a small but significant amount of CPU time to be
processed. When multiple timers are placed within
another timer, such as the “relative” timer, small gaps
appear in the timed sections, as shown in Figure 4. These
gaps represent CPU time being measured by various
timers that do not correspond to CPU time used for
processing MAVERIC’s code, but CPU time used for
processing the timers themselves.

 Because this timer is to be used as a utility for
better understanding the code, and not for precise
measurements, a small resolution error is acceptable.

G. Reporting the Information
 Once the program has finished executing, the

results are consolidated into a report file. After gathering
data that has been previously stored to file, the program
ranks each timer by size. The program then reports each
timer’s data in order of size, as shown in figure 5.

NASA MSGR – Internship Final Report

5
NASA MSFC 08/05/2011

Figure 6. Breakdown of “Derivatives ()”. After inserting probes in one of the main functions
of MAVERIC, data was collected for test case ISS Mean 6DOF of the Ares-I Rev8 series of
MAVERIC. CPU usage of each sub-function of “derivatives ()” is expressed as a percentage of
the total CPU time used by “derivatives ()”.

IV. Discussion of Results
After the CPU timer was created, it was put to use to test MAVERIC and search for potential areas for

improvement.

A. Timing MAVERIC
The CPU timer was inserted in one of the main functions in MAVERIC called “derivatives ()”. “Derivatives ()”

is a function in MAVERIC that is used to calculate the simulated vehicle’s new state, and is called dozens of
thousands of times per execution of MAVERIC. The “relative” timer was placed around the whole “derivatives ()”
function, and individual timers were placed around every sub-function within “derivatives ()”. Several runs of
MAVERIC were executed with the timers placed in MAVERIC’s code, and descriptive statistics were calculated.
The results, shown in Figure 6, showed that the top 8 sub-functions made up 83.1% of the total CPU time spent. The
top four most costly functions being “Update_Flex ()”, “Update_Mass_Properties ()”, “Update_Aerodynamics ()”,
and “Event_Controller ()”.

NASA MSGR – Internship Final Report

6
NASA MSFC 08/05/2011

Averages, Standard
Deviations

Event Controller Percent
Decrease Old Enhanced

“Derivatives ()”
Total Cycles

µ 5.36E+10 5.23E+10
2.4% σ 1.19E+09 1.43E+09

σ / µ 2.2% 2.7%
Event

Controller Total
Cycles

µ 4.80E+09 3.03E+09
36.9% σ 3.30E+08 2.13E+08

σ / µ 6.9% 7.0%

Percent of
“Derivatives ()”

µ 9.0% 5.8%
35.3% σ 0.6% 0.3%

σ / µ 6.3% 4.8%

Table 1. Averages, Standard Deviations, and Percent Decrease of CPU Time for the
Event Controller. After enhancing the Event Controller, the percent decrease in CPU
Time was calculated for test case ISS Mean 6DOF of the Ares-I Rev8 series of MAVERIC.

B. Changing the Event Controller
 With the help of my mentor, Curtis Zimmerman, an adaption to the function called “Event_Controller ()”

was made to increase efficiency. MAVERIC was run five times before and after the enhancement for statistical data,
shown in Table 2 and Table 3, found in the appendix. The averages, listed in Table 1, show that the CPU time used
by “Event_Controller ()” decreased by 36.9%. The overall CPU time used by “derivatives ()” decreased by 3.2%.

 The decrease in CPU time from the change in the Event Controller corresponds to a 1.7 second decrease in
real time. For a 2000-count Monte Carlo run, which is performed thousands of times per year during the design
phase of vehicle development, the decrease in CPU time corresponds to a 59 minute decrease in real time. This

small change in efficiency has led to hours of saved CPU time, which can be used for other tasks, instead of waiting
for simulations to finish.

V. Conclusion
 As large computer programs grow, it is important to continually enhance them to avoid inefficiency. Having

proper tools is critical for any task. This particular tool is especially important to have, because the small change in
CPU time attained from enhancement of a function is nearly impossible to accurately measure and assess without a
timing function of this type.

 Though the program is currently adapted to work with MAVERIC’s output system, it can be easily adapted
to be used with other programs. With a few small changes, the function can be used to profile most programs in C
and C++, as well as most programs written in a compatible programming language.

 The CPU timer is very flexible, and is easily implemented. By using a CPU timer, accurate measurements
can be made to determine which functions need improvement. By making small enhancements in the program’s
code to decrease CPU time, hours of time spent waiting for simulations to finish can be saved.

NASA MSGR – Internship Final Report

7
NASA MSFC 08/05/2011

Enhanced Event Controller

Run
CPU Time %

Event
Controller “Derivatives ()”

Percent of
“Derivatives ()”

1 3.301E+09 5.335E+10 6.2%
2 3.193E+09 5.391E+10 5.9%
3 2.797E+09 5.035E+10 5.6%
4 2.975E+09 5.147E+10 5.8%
5 2.876E+09 5.229E+10 5.5%

Table 3. Run Times for the Enhanced Event Controller. Data was
collected for test case ISS Mean 6DOF of the Ares-I Rev8 series of
MAVERIC.

Un-Enhanced Event Controller

Run
CPU Time %

Event
Controller “Derivatives ()”

Percent of
“Derivatives ()”

1 4.478E+09 5.198E+10 8.6%
2 5.195E+09 5.443E+10 9.5%
3 5.072E+09 5.386E+10 9.4%
4 4.753E+09 5.279E+10 9.0%
5 4.486E+09 5.486E+10 8.2%

Table 2. Run Times for the Un-Enhanced Event Controller. Data was
collected for test case ISS Mean 6DOF of the Ares-I Rev8 series of
MAVERIC.

Appendix

Acknowledgments
 I’d like to thank my mentor, Curtis Zimmerman, for all of his help. I would also like to thank NASA Funded

National Space Grant College and Fellowship Program for funding this project.

References
Eckel, B. (1993). C++ Inside & Out. Berkeley: McGraw-Hill, Inc.
Lippman, S. B. (1998). C++ Primer. Upper Saddle River: AT&T.
Rutenberg, G. (2007, September 26). Profiling Code Using clock_gettime. Retrieved from Guy Rutenberg Web

site.: http://www.guyrutenberg.com/2007/09/22/profiling-code-using-clock_gettime/
Swanson, C. (2010, Spring). CSci 1113: C++ Programming. Retrieved from University of Minnesota: College

of Science and Engineering:
http://www-users.cselabs.umn.edu/classes/Spring-2010/csci1113/index.php?page=day_class_notes

	Using C and C++ programming languages, a tool was developed that measures the efficiency of a program by recording the amount of CPU time that various functions consume. By inserting the tool between lines of code in the program, one can receive a detailed report of the absolute and relative time consumption associated with each section. After adapting the generic tool for a high-fidelity launch vehicle simulation program called MAVERIC, the components of a frequently used function called “derivatives ()” were measured. Out of the 34 sub-functions in “derivatives ()”, it was found that the top 8 sub-functions made up 83.1% of the total time spent. In order to decrease the overall run time of MAVERIC, a launch vehicle simulation program, a change was implemented in the sub-function “Event_Controller ()”. Reformatting “Event_Controller ()” led to a 36.9% decrease in the total CPU time spent by that sub-function, and a 3.2% decrease in the total CPU time spent by the overarching function “derivatives ()”.
	Nomenclature
	I. Introduction
	II. Background
	III. Technical Approach
	A. Wall Time vs. CPU Time
	B. Familiarizing with “clock_gettime ()”
	C. Creating the Structure for the Timer
	Using the Timer
	E. The “Relative” Timer
	Error in the Timer
	G. Reporting the Information

	IV. Discussion of Results
	A. Timing MAVERIC
	B. Changing the Event Controller

	Conclusion
	Appendix
	Acknowledgments
	References

