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ABSTRACT: This paper proposes an uncertainty analysis framework based on the characterization of the un-
certain parameter space. This characterization enables the identification of worst-case uncertainty combinations
and the approximation of the failure and safe domains with a high level of accuracy. Because these approxi-
mations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily
tight upper and lower bounds to the failure probability. The methods developed herein, which are based on non-
linear constrained optimization, are applicable to requirement functions whose functional dependency on the
uncertainty is arbitrary and whose explicit form may even be unknown. Some of the most prominent features
of the methodology are the substantial desensitization of the calculations from the assumed uncertainty model
(i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such
a model with a practically insignificant amount of computational effort.

1 INTRODUCTION

This paper studies the reliability of a system for which
a parametric mathematical model is available. The
acceptability of the system depends upon its ability
to satisfy several design requirements. These require-
ments, which are represented by a set of inequality
constraints on selected output metrics, depend on the
uncertain parameter vector p. The system is deemed
acceptable if all inequalities are satisfied. The require-
ments/constraints partition the uncertain parameter
space into two sets, the failure domain, where at least
one of them is violated, and the safe domain, where all
of them are satisfied. The reliability analysis of this
system consists of assessing its ability to satisfy the
requirements when the uncertain parameter p is free
to take on any value from a prescribed set. The most
common practice in reliability analysis is to assume a
probabilistic uncertainty model of p (i.e., the random
variable that models the uncertainty), and estimate the
corresponding probability of failure. Calculating the
failure probability is usually difficult since it requires
evaluating a multi-dimensional integral over a com-
plex integration domain. Sampling-based approaches
(Niederreiter 1992, Kall and Wallace 1994) and meth-

ods based on asymptotic approximations of the fail-
ure domain (Rackwitz 2001, Royset et al. 2001) are
the engines of most (if not all) of the numerical tools
used to estimate this probability.

Reliability assessments whose figure of merit is the
probability of failure are strongly dependent on the
assumed uncertainty model. Quite often this model
is created using engineering judgment, expert opin-
ion, and/or limited observations of p. The persistent
incertitude in the model resulting from this process
makes the soundness of the reliability analyses based
on failure probabilities questionable. Besides, the un-
certainty in the uncertainty model is commonly re-
fined throughout the analysis cycle of the system. This
process prevents leveraging the computational effort
spent performing previous analyses. Furthermore, in
the hypothetical case when the uncertainty model is
perfect and final, the failure probability fails to de-
scribe practically significant features of the geometry
of the failure event. Some of these features are the
separation between any given point and the failure do-
main, the location of worst-case uncertainty combina-
tions, and the geometry of the failure domain bound-
ary.

This paper proposes techniques that characterize



the uncertain parameter space with a high level of fi-
delity. A significant thrust of this research is the gen-
eration of sequences of inner approximations to the
safe and failure domains by subsets of readily com-
putable probability. These sequences are chosen such
that they almost surely fill up the region of inter-
est. The strategies proposed are applicable to require-
ment functions having arbitrary functional dependen-
cies on the uncertainty whose explicit form may even
be unknown. The companion paper (Crespo et al.
2011) proposes strategies with the same goals but re-
stricted to polynomial requirement functions. Overall,
the methodology enables the substantial desensitiza-
tion of the calculations from the assumed uncertainty
model as well as the accommodation for changes in
such a model with a practically insignificant amount
of computational effort.

This paper is organized as follows. Basic concepts
are established in Section 2. This is followed by Sec-
tion 3 where analytical expressions for bounds on
the failure probability bounds are derived. Section 4
presents strategies for generating and refining the fail-
ure domain approximations that enable calculating
the bounds. Finally, a few concluding remarks close
the paper. Proofs are omitted due space limitations.

2 BASIC CONCEPTS AND NOTIONS

Uncertainty models of p ∈ Rs, where s is the number
of uncertain parameters, can be probabilistic or non-
probabilistic. A set whose members are all possible
uncertain parameter realizations is a non-probabilistic
model. This set, called the support set, will be de-
noted as ∆ ⊆ Rs. On the other hand, a probabilis-
tic uncertainty model prescribes a measure of prob-
ability to each member of this set. This model, in
which p is a random vector, is fully prescribed by the
joint probability density function fp(p) : ∆→ R, or
equivalently, by the cumulative distribution function
Fp(p) : ∆→ [0,1].

Consider a system that depends on the uncertain
parameter p. The design requirements imposed upon
such a system are given by the vector1 inequality
g(p) < 0, where g : D→ Rv, v is the number of con-
straint functions, and ∆ ⊆ D ⊆ Rs. The set D, where
the constraint functions are defined, will be called the
master domain.

The failure domain, denoted as F ⊂ Rs, is com-
prised of the parameter realizations that fail to satisfy
at least one of the requirements. Specifically, the fail-

1Throughout this paper, it is assumed that vector inequalities
hold component-wise, super-indices denote a particular vector
or set, and sub-indices refer to vector components; e.g., pj

i is the
ith component of the vector pj .

ure domain is given by

F =
v⋃

i=1

{p : gi(p) ≥ 0} . (1)

The safe domain, given by S = C(F), where C(·) de-
notes the complement set operator given by C(X ) =
D \ X , consists of the parameter realizations satisfy-
ing all the design requirements. The failure probabil-
ity associated with a probabilistic uncertainty model
is given by

P [F ] =

∫
F
fp(p)dp, (2)

where P [·] is the probability operator. Techniques
for approximating F and S will be presented below.
The resulting approximations are comprised of hyper-
rectangles or quasi-ellipsoids.

The hyper-rectangle having m > 0 as the vector of
half-lengths of the sides and p̄ as its geometric center,
is given by

R(p̄,m) = {p : p̄−m < p < p̄ + m} . (3)

An alternative representation of this hyper-rectangle
is given by

R(p̄,m) = δ(p̄−m, p̄ + m), (4)

where

δ(x,y) = [x1,y1]× [x2,y2]× · · · × [xs,ys], (5)

is the Cartesian product of intervals. Note that the first
and second argument of δ are the lower and upper lim-
its of the set. The components of l may be real num-
bers or minus infinity while those of u may be real
numbers or infinity. Recall that the `∞ norm is defined
as ‖x‖∞ = sup{|xi|}. Let us define the m-scaled `∞
norm as ‖x‖∞m = sup{|xi|/mi}. A distance between
the vectors x and y can be defined as ‖x− y‖∞m. Us-
ing this distance, R(p̄,m) is the unit ball centered at
p̄.

A subdivision is the process of dividing a set into
subsets. Let ρ(·) be an operator whose input is any
given set and its output are the subsets. A bisection-
based subdivision in the ith direction is given by

ρ(R) = {R(p̄ + w,m−w),R(p̄−w,m−w)},

where w = [0, . . . ,0,mi/2,0, . . . ,0]. Alternatively,

ρ(R) = {δ(v1,v1 + m), . . . , δ(v2s

,v2s

+ m)},

where vk is a vertex of δ(l, l + m), leads to 2s rect-
angular subsets each of volume

∏s
i=1 mi.



The quasi-ellipsoid having m > 0 as the semi-
principal axes vector and p̄ as its geometric center,
is given by

E(p̄,m, n) =

p :

(
s∑

i=1

(
pi − p̄i

mi

)n
) 1

n

< 1

 (6)

where n is an even natural number. Note that E
is a closed set in Rs having a polynomial bound-
ary of degree n. Further notice that E(p̄,m, n) ap-
proaches R(p̄,m) asymptotically from the inside as
n→∞. Recall that the `p norm is defined as ‖x‖p =
(
∑
|xi|p)1/p. Let us define the m-scaled `n norm as

‖x‖nm = (
∑

(xi/mi)
n)1/n. A distance between the

vectors x and y can be defined as ‖x− y‖nm. Using
this distance, E(p̄,m, n) is the unit ball centered at p̄.

The probability of the sets R(p̄,m) ⊆ ∆ and
E(p̄,m, n) ⊆ ∆ can be analytically calculated or
bounded under the following conditions. The proba-
bility of a hyper-rectangle can be calculated analyti-
cally when the components of p are independent ar-
bitrarily distributed random variables. The probabil-
ity of a quasi-ellipsoid on the other hand, can be cal-
culated analytically when the components of p are
independent, uniformly distributed random variables
and E ⊆ ∆. The probability of the ellipsoid E can be
bounded from below when the components of p are
independent arbitrarily distributed random variables.
Failure probability bounds result from approximating
the failure and safe domains with the union of hyper-
rectangles or quasi-ellipsoids and using these analyt-
ical expressions. The following section presents the
mathematical background required to calculate prob-
ability bounds based on the approximations. The sec-
tions that follow provide means to generate and se-
quentially refine these approximations.

3 PROBABILITY BOUNDS

The key development in this section is the calcula-
tion of the probability of inner approximations to the
failure and safe domains. These approximations are
comprised of a collection of almost disjoint hyper-
rectangles or quasi-ellipsoids. Two sets are almost
disjoint if they overlap at most in mutual boundary
points. Let F sub and Ssub denote inner approxima-
tions (sub-sets) of the failure and safe domains. Thus,
F sup = C(Ssub) is an outer approximation (super-
set) of the failure domain. Because ∅ ⊆ F sub ⊆ F ⊆
F sup ⊆D, we have 0≤ P [F sub]≤ P [F ]≤ P [F sup]≤
1. Therefore, P [F sub] and P [F sup] are lower and up-
per bounds to the failure probability. Note that the
bounds approach the failure probability when F sub

approaches the failure domain and Ssub approaches

the safe domain. Further notice that C(Ssub ∪ F sub)
contains the failure domain boundary ∂F .

The failure domain and its approximations, as well
as the worst-case uncertainty combination introduced
later, are intrinsic features of the failure event that
do not depend on the uncertainty model. While this
model affects the failure probability via the integrand
of (2), the integration domain F and its approxima-
tions are independent of it. Probability bounds corre-
sponding to a given F sup are presented next. Exten-
sions corresponding to F sub follow.

Theorem 1. Assume that p is an independent
random vector with continuous joint cumulative
distribution function Fp(p) supported in ∆. If
{R(p̄1,m1), . . . ,R(p̄k,mk)} is a collection of
hyper-rectangles where each member is a subset of
S and any two members are almost disjoint, then

F sup = C

(
k⋃

i=1

R(p̄i,mi)

)
, (7)

is an outer approximation to the failure domain and

P [F sup] =1−
k∑

i=1

s∏
j=1

{
Fpj

(
p̄i

j + mi
j

)
− Fpj

(
p̄i

j −mi
j

)}
,

(8)

is an upper bound to the failure probability.

The bound is a function of the uncertainty model
via Fp(p), but the the outer approximation F sup and
the containment conditions F ⊆ F sup ⊆ D are not.
Note that while most of the computational effort will
be devoted to generate F sup, the effort required to
evaluate the probability bound is practically insignif-
icant. Furthermore, notice that if additional hyper-
rectangles are appended to Ssub until, in the limit; they
almost cover S, the upper bound approaches P [F ]
from above.

Suppose the uncertainty model of p is changed
from Fp(p) to F̂p(p) in p ∈ ∆̂. If ∆̂ ⊆ D, F sup still
covers the failure domain and a probability bound for
the new uncertainty model can be calculated by re-
placing Fp(p) by F̂p(p) in (8). Therefore, with the
outer approximation in hand, we can readily calcu-
late probability bounds corresponding to any uncer-
tainty model supported in the master domain. This en-
ables us to efficiently accommodate for changes in the
uncertainty model while leveraging all the computa-
tional effort devoted to generate F sup.

The common practice of transforming the prob-
abilistic uncertainty model of p to a space where
the joint density function takes on a particular form
(Rackwitz 2001) will be used subsequently. One



space of interest is the uniform space, where the un-
certain parameters become mutually independent uni-
form random variables with support set [0,1]. The cor-
responding transformation, denoted by u = U(p), is
a one-to-one mapping of the support set ∆ onto the
unit cube. Since this is a probability preserving trans-
formation P [F ] = P [U(F)].

Theorem 2. Assume that p is an independent random
variable with joint cumulative distribution function
Fp(p). Denote by u = U(p) a transformation of this
distribution to uniform space in the unit cube δ(0,1).
If {E(ū1,m1, n), . . . ,E(ūk,mk, n)} is a collection of
quasi-ellipsoids of degree n where each member is a
subset of U(S) and any two members are almost dis-
joint, then

F sup = C

(
k⋃

i=1

E(ūi,mi, n)

)
, (9)

is an outer approximation to the failure domain and

P [F sup] = 1−
2sΓ

(
n+1

n

)
Γ
(

n+s
n

) k∑
j=1

s∏
i=1

mj
i , (10)

where Γ is the Gamma function, is an upper bound to
the failure probability.

Due to the transformation, D = ∆. Since the ap-
proximation F sup is a function of the uncertainty
model via the transformation U , the bound in (10)
does not apply to other uncertainty models. Note how-
ever that F ⊆ U−1(F sup). Unfortunately, the prob-
ability bound P [U−1(F sup)] corresponding to other
uncertainty models cannot be calculated analytically.
Conditional sampling algorithms (Crespo et al. 2009)
can be used to approximate this probability.

Theorem 3. Assume that p is an independent ran-
dom variable with joint cumulative distribution func-
tion Fp(p). If {E(p̄1,m1, n), . . . ,E(p̄k,mk, n)} is a
collection of quasi-ellipsoids of degree n where each
member is a subset of S and any two members are
almost disjoint, then

F sup = C

(
k⋃

i=1

E(p̄i,mi, n)

)
, (11)

is an outer approximation to the failure domain and

ψ(F sup) = 1−
k∑

i=1

s∏
j=1

{Fpj

(
p̄i

j + ηmi
j

)
−

Fpj

(
p̄i

j − ηmi
j

)
}, (12)

where η = n
√

2/(s(s+ 1)), is an upper bound to the
failure probability.

This bound results from adding the probabilities of
the largest hyper-rectangle that fits within each quasi-
ellipsoid. These hyper-rectangles are R(p̄i, ηmi) for
i = 1, . . . , k. This bound is conservative (i.e., it
does not converge to the actual failure probability
as F sup approaches F), since P [C(R(p̄i, ηmi)) ∩
E(p̄i,mi, n)] > 0 in general. Note that the volume of
C(R(p̄i, ηmi)) ∩ E(p̄i,mi, n) approaches zero as n
goes to infinity. As a result, ψ(F sup) → P [F ] from
above when F sup → F and n→∞. As in Theorem
1, the approximation F sup can be readily used to esti-
mate the probability bound corresponding to any un-
certainty model supported in the master domain.

It is important to notice that the bounds above are
probabilities of events and as such they always range
from zero to one. This cannot be said of other bounds
found in the literature. For example, bounds based
on the Markov’s and Chebyshev’s inequalities (Ross
1998) result from applying the expected value oper-
ator to an algebraic inequality and may actually lie
outside [0,1], often rendering them impractical.

The probability bounds in Theorems 1-3 can be ex-
tended to the case where an inner approximation of
the failure domain is available. In such a case, the
subsets are in the failure domain, F sub is given by
the complement of the sets at the right hand side of
Equations (7), (9), and (11); and the corresponding
lower bounds are given by one minus the right hand
side of Equations (8), (10) and (12). Therefore, hav-
ing an inner and an outer approximation of the failure
domain enables bounding its probability from below
and above. An excessively large lower bound, which
will only become larger as F sub → F , can be used
as the figure of merit supporting the unacceptability
of the system. A sufficiently small upper bound on
the other hand, which will only become smaller as
F sup → F , can be used as the figure of merit sup-
porting the acceptability of the system. Tighter ap-
proximations should only be generated when neither
of these two conditions are applicable.

4 REQUIREMENTS WITH ARBITRARY
FUNCTIONAL DEPENDENCIES

This section presents a nonlinear optimization-
based technique for calculating hyper-rectangular and
quasi-ellipsoidal subsets of the safe and failure do-
mains. This technique is applicable to arbitrary func-
tional dependencies of g on p. The explicit form
of this dependency may even be unknown. This ap-
proach relies on the convergence of a nonlinear con-
strained optimization algorithm to a global minimum.
Absolute guarantees of convergence to such a point
are not possible from the outset due to the general-
ity in the structure of g. However, a variety of algo-
rithmic safeguards can be used to deal with this de-



ficiency (Crespo et al. 2009). This technique should
not be used when the dependency of g on p assumes a
known polynomial form. In such a case the techniques
in (Crespo et al. 2011) are preferred since the correct-
ness of their results is formally verifiable. The notion
of homothetic deformations (Crespo et al. 2008, Cre-
spo et al. 2009), of paramount importance for the de-
velopments that follow, is briefly introduced next.

4.1 Homothetic Deformations

A homothetic deformation results from a uniform, ra-
dial expansion or contraction of the space about a
fixed point. The distance from any point in the space
to the fixed point changes by a factor α after the de-
formation. This factor is called the similitude ratio of
the homothetic deformation. Note that if α is greater
than 1, the deformation is an expansion, while if α is
less than 1, the deformation is a contraction. A ref-
erence set, denoted as Ω ⊂ Rs, will be deformed with
respect to a fixed point p̄ ∈D. This point can be an ar-
bitrary parameter realization having no particular sig-
nificance, or can be our best deterministic estimate of
the actual value of p. We choose p̄ to be the geometric
center of the reference set.

Intuitively, one can imagine that Ω is being de-
formed with respect to p̄ until its boundary just
touches ∂F . This deformation will be called here-
after the maximal deformation. The set resulting from
this deformation, denoted as M, is the maximal set.
A critical parameter value, denoted as p̃, is (one of)
the point(s) where the maximal set touches ∂F . If
p̄ is our best estimate of the actual value of p, the
critical parameter value is the worst-case uncertainty
combination associated with the norm that prescribes
the boundary of Ω (e.g., the critical parameter value
corresponding to the maximal deformation of a hyper-
rectangle is the worst-case uncertainty combination in
the sense of the m-scaled `∞ norm from p̄). The crit-
ical similitude ratio, denoted by α̃, is the similitude
ratio of that deformation and is a non-dimensional
metric proportional to the separation between p̄ and
∂F . Techniques for evaluating set containment, for
performing maximal deformations and for generating
failure domain approximations are presented next.

4.2 Set Containment

We want to determine if the reference set Ω, having
one of the geometries in (3) or (6), is fully contained
in the safe or failure domains. This determination will
be based on the calculation of the critical similitude
ratio α̃. The set containment condition can be stated as
follows. Let σ = 1 when p̄ ∈ S and σ =−1 otherwise.
Ω ⊆ S if and only if σ = 1 and α̃ ≥ 1. Likewise, Ω ⊆
F if and only if σ = −1 and α̃ ≥ 1. The formulation
required to calculate α̃ is presented next.

4.3 Maximal Deformation

The means for calculatingM, p̃ and α̃ are presented
next. Let the master domain be D =R(a,b).

The maximal deformation of the reference set Ω =
R(p̄,m) leads to

p̃ = argmin
p

{
‖p− p̄‖∞m : σmax

j
gj(p) ≥ 0

}
, (13)

α̃ =
‖p̃− p̄‖∞m
‖m‖

, (14)

M =R(p̄, α̃m)∩D. (15)

Therefore, when σ = 1, the problem of finding the
critical parameter value becomes the problem of find-
ing a vector p̃ in ∂F of minimal distance in the
m-scaled `∞ norm from p̄. Notice that R(p̄, α̃m)
may not be contained in the master domain. This
possibility is allowed for two reasons. First, because
the maximal set corresponding to the case where
R(p̄, α̃m) 6⊆ D is larger than it would be if we require
R(p̄, α̃m)⊆D. Second, becauseD∩R(p̄, α̃m) will
remain hyper-rectangular, and therefore, we can cal-
culate its probability analytically.

Now consider the deformation of Ω = E(p̄,m, n).
In this case, we have

p̃ = argmin
p

{
‖p− p̄‖nm : σmax

j
gj(p) ≥ 0

}
, (16)

α̃ = min

{
‖p̃− p̄‖nm
‖m‖

,min
i

{
bi − |p̄i − ai|

mi

}}
(17)

M = E(p̄, α̃m, n). (18)

As before, when σ = 1, the problem of finding the
critical parameter value becomes the problem of find-
ing a vector p̃ in the failure domain of minimal dis-
tance in the m-scaled `n norm from p̄. In contrast
to Equation (13), Equation (16) ensures the contain-
ment of E(p̄, α̃m, n) by the master domain. This is
required since in the case where the deformation ex-
tends beyond D, P [D ∩ E(p̄, α̃m, n)] cannot be cal-
culated analytically. Note that M ⊂ S when σ = 1,
andM⊂F when σ = −1.

4.4 Failure Domain Approximations

In this section we generate a sequence of fail-
ure domain approximations using the devel-
opments above. These sequences, given by



{F sub
1 ,F sub

2 , . . .} and {F sup
1 ,F sup

2 , . . .} (or equiva-
lently {C(Ssub

1 ),C(Ssub
2 ), . . .}) approach the failure

domain from inside and outside as their num-
ber of terms increase. Note that the sequences
{Ssub

1 ,Ssub
2 , . . .} and {C(F sub

1 ),C(F sub
2 ), . . .} ap-

proach the safe domain in the same fashion. Two
algorithms for calculating these sequences are
presented next.

4.4.1 Algorithm 1
This algorithm generates the approximations by unit-
ing maximal sets that satisfy the almost disjoint con-
dition of the Theorems. This condition is attained by
making the maximal set contained in the safe (fail-
ure) domain at any given iteration a part of the failure
(safe) domain in subsequent iterations. The additional
constrained functions gF and gS , yet to be defined,
are used to implement this idea. The algorithm’s setup
is as follows.

Let g(p) < 0 denote the set of system require-
ments and f̂p(p) be a joint density function of uni-
form random variables supported in D. Let Pmax be
the largest admissible failure probability associated
with the system for a given uncertainty model fp(p),
for all p ∈ ∆ ⊆ D. If the reference set Ω is chosen to
be the hyper-rectangle let n =∞. If the reference set
Ω is chosen to be the quasi-ellipsoid make n an even
natural number. Set i= 1, F sub

i = ∅, Ssub
i = ∅, gF = ∅

and gS = ∅.

1. Find a sample p̂ of f̂p(p) conditional on p̂ ∈
C(F sub ∪ Ssub). Let p̄ = p̂ and calculate σ.

2. If σ = 1, calculate the maximal set M using
the inequality constraint [g,gF ] ≤ 0, let Ssub

i+1 =
Ssub

i ∪M and F sub
i+1 = F sub

i ; and redefine gF as
[gF ,1−‖p− p̄‖nm]. If σ = −1, calculateM us-
ing the inequality constraint [minj(−gj),gS ] ≤
0, let F sub

i+1 = F sub
i ∪M and Ssub

i+1 = Ssub
i ; and

redefine gS as [gS ,1− ‖p− p̄‖nm].

3. Let F sup
i+1 = C(Ssub

i+1). Evaluate P [F sub
i+1] and

P [F sup
i+1 ], or the lower bounds ψ(F sub

i+1) and
ψ(F sup

i+1), according to fp(p) and the applicable
Theorem.

4. If P [F sub
i+1] ≥ 1 − Pmax declare the system ac-

ceptable and stop. If P [F sup
i+1 ] ≤ Pmax declare

the system unacceptable and stop. Otherwise in-
crease i by one go to Step (1).

As i increases, the failure domain approximations
approach the failure domain (i.e., F sub and Ssub

expand by the addition of new reference sets while
F sup contracts by the removal of new reference
sets). Note that P [F sub

i ] and ψ(F sub
i ) are mono-

tonically increasing functions, while P [F sup
i ] and

Figure 1: Fsub (red), Ssub (green) and ∂F (line).

ψ(F sup
i ) are monotonically decreasing functions.

Further notice that a good coverage of the master
domain may require an impractically large number
of deformations. Conversely, depending upon the
problem, convergence may be achieved in relatively
few iterations.

Example 1: Consider the constraint functions

g1 = p2
1p

4
2 + p4

1p
2
2 − 3p2

1p
2
2 − p1p2 +

p6
1 + p6

2

200

− 7

100
+ sin(p1p2)

3, (19)

g2 = −p2
1p

4
2 − p4

1p
2
2 + 3p2

1p
2
2 +

p5
1p

3
2

10
− 0.9

−tanh(p1 − p2)

10
, (20)

for D = R(p̄,m) where p̄ = [0,0]> and m =
[2.1,2.1]>. These constraint functions were chosen so
the failure and safe domains are multiply connected.
Figure 1 shows the hyper-rectangular maximal sets
that constitute the approximationsF sub (red) and Ssub

(green). At this particular step of the sequence, i =
250 subsets cover 70% of the master domain. Note
that, by construction, none of the subsets composing
the approximations cross ∂F . Besides, each subset ei-
ther touches this boundary or touches another subset.
Further notice that the number of subsets required to
well cover the master domain is a function of the ge-
ometry of the failure domain and not necessarily of
the size of such a set.



Figure 2: Probability bounds for several uncertainty models.

Figure 2 displays the failure probability bounds
corresponding to several uncertainty models as a
function of the iteration number i. A uniform distri-
bution (red circle line), a generalized beta with pa-
rameters [10,1] (blue diamond line), and a general-
ized beta with parameters [2,3] (black square line) are
considered. The support set of these three models is
the master domain. The horizontal lines correspond to
high-fidelity Monte Carlo approximations to the fail-
ure probability. Additional iterations lead to the en-
largement of the approximations and consequently to
the tightening of the bounds. In the limit, they con-
verge to P [F ]. The size of the subset being annexed
to the approximation as well as its probability tend
to decrease with i. Therefore, the generation of ar-
bitrarily tight bounds may require an impractically
large number of subsets where many of them will
have very small probability. Note however that for any
uncertainty model satisfying ∆ ⊆ F sub ∪ F sup, both
bounds take on the exact failure probability value. Re-
call that the calculation of probability bounds shown
in Figure 2 and those corresponding to any uncer-
tainty model supported in D require a practically in-
significant amount of computational effort.

4.4.2 Algorithm 2
The algorithm below iteratively generates the indexed
sets Λi,Ssub

i , and F sub
i where Ssub

i is an inner approx-
imation to the safe domain, F sub

i is an inner approxi-
mation to the failure domain, and Λi is a region whose
containment in F or S is to be determined. The terms
in the inner approximations are reference sets of var-
ious homothetic deformations. At any given iteration
we first chose a hyper-rectangle from those in Λi. By
the means presented in Section 4.2 we determine if
the reference set inscribed in this hyper-rectangle is
contained in the safe or failure domains. If the ref-

erence set is contained in the safe domain, the inner
approximation to the safe domain is expanded with
this element. If the reference is contained into the fail-
ure domain, the inner approximation to the failure do-
main is expanded with this element. Otherwise, the
rectangle is subdivided into smaller subsets (see sec-
tion 2 for two subdividing logics), and these subsets
are appended to Λi. The algorithm terminates when
the bounds to the failure probability exceeds a pre-
scribed limit. The algorithmic representation of this
procedure is as follows.

Use the same setup of Algorithm 1. Furthermore,
set i = 1, Λi = {D}, F sub

i = ∅ and Ssub
i = ∅.

1. Let R(p̄,m) be a largest element of Λ. Let
Ω = R(p̄,m) for hyper-rectangles and Ω =
E(p̄,m, n) for quasi-ellipsoids.

2. Calculate σ and α̃.

3. If α̃ < 1, set Λi+1 = (Λi \ R) ∪ ρ(R), Ssub
i+1 =

Ssub
i , and F sub

i+1 = F sub
i . If α̃ ≥ 1 and σ = 1,

let Λi+1 = Λi \ R, Ssub
i+1 = Ssub

i ∪Ω and F sub
i+1 =

F sub
i . If α̃ ≥ 1 and σ = −1 let Λi+1 = Λi \ R,
F sub

i+1 = F sub
i ∪Ω and Ssub

i+1 = Ssub
i .

4. Let F sup
i+1 = C(Ssub

i+1). Evaluate P [F sub
i+1] and

P [F sup
i+1 ] or their lower bounds ψ(F sub

i+1) and
ψ(F sup

i+1) depending upon the applicable Theo-
rem.

5. If P [F sub
i+1] ≥ 1 − Pmax declare the system ac-

ceptable and stop. If P [F sup
i+1 ] ≤ Pmax declare

the system unacceptable and stop. Otherwise in-
crease i by one, and go to Step (1).

Note that the subdividing logic used to generate
reference sets ensures the almost disjoint condition
required by the Theorems. As i increases, the approx-
imations approach the failure domain (i.e., F sub and
Ssub expand by the addition of new reference sets
while F sup contracts by the removal of new reference
sets). As before, P [F sub

i ] and ψ(F sub
i ) are monoton-

ically increasing functions of i, while P [F sup
i ] and

ψ(F sup
i ) are monotonically decreasing functions of

the same variable. Note that the elements left in Λi

are an approximation of ∂F . The larger the value of i
the smaller the volume of this approximation.

Example 2: Figure 3 shows the failure domain
approximations resulting from applying Algorithm
2 to the same requirement functions in Example 1.
Note that the approximation of the failure domain
boundary (white) is significantly better than that of
Algorithm 1. As a result, the approximations give a
better sense of the connectedness of the actual failure
domain than those resulting from Algorithm 1. A



Figure 3: Fsub (red), Ssub (green), and ∂F (line).

better coverage of the master domain is attained be-
cause F sub and Ssub grow from the inside out. In this
particular case, i = 250 subsets cover 78% of D. This
improved coverage comes at the expense of having to
perform many deformations whose maximal sets are
not ultimately annexed to the approximations. In this
example, 654 deformations were required to generate
these 250 sets. This is the basis that makes Algorithm
1 more computationally efficient than Algorithm 2
in general. Figure 4 shows the probability bounds
corresponding to the same uncertainty models used
in Figure 2. These bounds are tighter than those
from Algorithm 1 because the approximations are
improved by appending/removing the largest subset
among those available.

5 CONCLUSIONS

This paper proposes an uncertainty analysis frame-
work for characterizing the failure and safe domains
of a system whose design requirements have an arbi-
trary functional dependency on the uncertainty. The
characteristics of interest are worst-case uncertainty
combinations, metrics that evaluate the separation be-
tween any given point and the failure domain, approx-
imations to the failure and safe domains; as well as
lower and upper bounds to the failure probability. A
nonlinear constrained optimization-based approach is
proposed. This and all other methods requiring the ex-
ploration of the uncertain parameter space suffer from
the curse of dimensionality, and as such, their compu-
tational demands grow exponentially with the num-
ber of uncertain parameters. Unfortunately only this

Figure 4: Probability bounds for several uncertainty models.

space can provide the sense of causality required to
understand and prevent failure. The high dimension-
ality of this space along with the inability to guaran-
tee that optimization problems posed there will con-
verge to the global optimum are the main liability of
the engineering decisions supported by the outcomes
of these methods. A significant feature of the method-
ology proposed is that it allows accommodating for
changes in the uncertainty model with practically in-
significant computational effort. Furthermore, the al-
gorithms proposed allow for data parallelism (i.e.,
perform computations simultaneously on elements of
a subdivision of the master domain). This will help to
mitigate the formidable challenges of having a large
number of uncertain parameters.
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