Abstract

Future x-ray observatories will require high-resolution (< 1″) optics with very-large-aperture (> 25 m²) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kg/m² or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

Key words: X-ray telescopes, x-ray optics, adaptive optics, piezoelectric devices

Abstract will be submitted to SPIE Optics + Photonics 2011 (August 21-25, San Diego) Conference OP403, Optics for EUV, X-ray, and Gamma-ray Astronomy V.
Toward adaptive x-ray telescopes

Steve O’Dell
on behalf of the Smart X-ray Optics (UK)
and the Generation-X (USA) collaborations
Co-authors represent Smart X-ray Optics (UK) and Generation-X (USA) teams.

Steve O’Della, Carolyn Atkinsb,c, Tim Buttond, Vincenzo Cotroneoe, Bill Davise, Peter Doelb, Charly Feldmanf, Mark Freemane, Mikhail Gubareva, Jeff Kolodziejczaka, Alan Michetteg, Brian Ramseya, Paul Reide, Daniel Rodriguez Sanmartind, Timo Sahah, Dan Schwartze, Susan Trolier-McKinstryi, Rudeger Wilkei, Dick Willingalef, & Will Zhangh

a NASA Marshall Space Flight Center (USA)
b University College London (UK)
c University of Alabama in Huntsville (USA)
d University of Birmingham (UK)
e Harvard–Smithsonian Center for Astrophysics (USA)
f University of Leicester (UK)
g King's College London (UK)
h NASA Goddard Space Flight Center (USA)
i Pennsylvania State University (USA)
Astronomical x-ray telescopes need large area and high-resolution imaging.

- **Einstein Observatory (1978-1981)**
 - HPD = 10", A = 0.04 m² (f = 3.3 m)

- **ROSAT (1990-1999)**
 - HPD = 5", A = 0.10 m² (f = 2.4 m)

- **Chandra X-ray Observatory (1999-?)**
 - HPD = 0.6", A = 0.11 m² (f = 10 m)

- **XMM-Newton (1999-?)**
 - HPD = 14", A = 0.43 m² (f = 7.5 m)

- **IXO | ATHENA | Con-X (2022+)**
 - HPD = 5"-10", A ≈ 1-3 m² (f ≈ 11-20 m)

- **Generation-X (2035+)**
 - HPD = 0.1"-1", A ≈ 5-50 m² (f ≈ 20-60 m)
Higher resolution improves both imaging quality and sensitivity (noise reduction).

Aperture area improves sensitivity (signal increase), down to the confusion limit.
X-ray optics for in-space applications have some unique requirements.

- The standard metric for image quality is the half-power diameter (HPD) = half-energy width (HEW).
 - If axial-slope deviations (σ_α RMS) dominate and are gaussian, then $\text{HPD} = 1.35 \times 2(\sqrt{2}) \sigma_\alpha = 3.82 \sigma_\alpha$.
 - Here “high-resolution” means $\text{HPD} < 15''$ ($\sigma_\alpha < 19 \mu r$).
 - Generation-X goal is $\text{HPD} < 0.1''$ ($\sigma_\alpha < 0.13 \mu r$).

- Science objectives call for large aperture areas A_{ap}.
 - At grazing angle α, mirror surface area $A_{surf} \approx (2/\alpha)A_{ap}$.
 - Achieving this area requires highly nested shells.
 - Mass and volume limitations then require very thin, lightweight mirrors (1 kg/m2), which easily distort.
 - High degree of nesting leaves no room for reaction structures for active optics \Rightarrow thin-film bimorphs.
The aperture areal-mass constraint for Generation X is similar to that of IXO.

\[\approx 100 \times \text{better angular resolution} \]
The aperture-area requirement for Generation X more than 10× that of IXO.

Approximately 10× larger aperture area
In principle, some segmented optics may be scalable to arbitrarily large areas.
Programmatic constraints require innovation for manufacturing readiness.

- Optimize mandrel fabrication and replication.
 - Minimize post-replication corrections.
- Automate all processes as fully as possible.
 - Implement closed-loop fabrication & metrology.

```
10000 m^2
0.1-μrad (RMS)
mirror surfaces
```

- **Mass constraint**
 - Total mirror mass ≤ 10 tonne
- **Monetary constraint**
 - Total mirror cost ≤ 0.5 G$
- **Schedule constraint**
 - Mirror fabrication time ≤ 4 years

- Mirror areal density ≤ 1 kg/m^2
- Mirror areal cost ≤ 50 k$/m^2
- Production rate ≥ 8 m^2/day
Summary

- Fundamental needs for future x-ray telescopes
 - Sharp images ⇒ excellent angular resolution.
 - High throughput ⇒ large aperture areas.
- Generation-X optics technical challenges
 - High resolution ⇒ precision mirrors & alignment.
 - Large apertures ⇒ lots of lightweight mirrors.
- Innovation needed for technical readiness
 - 4 top-level error terms contribute to image size.
 - There are approaches to controlling those errors.
- Innovation needed for manufacturing readiness
 - Programmatic issues are comparably challenging.
Smart X-ray Optics (SXO) consortium

- **Funding**
 - UK Engineering and Physical Sciences Research Council (EPSRC), Basic Technologies Grant

- **Current members of the SXO consortium**
 - University College London (UCL)
 - King’s College London (KCL)
 - Scottish Microelectronic Centre (SMC)
 - University of Leicester (UoL)
 - University of Birmingham (UoB)
 - Daresbury Laboratory (DL)
 - Diamond Light Source [Associate member]
 - Silson Limited [Associate member]
Shaped piezoelectric pads, glued to back of mirror, modify the mirror’s figure.
Distortion created by addition of the piezos – Power off

Distortion created by addition of the piezos – Power on

Change of HEW

Change of FWHM
Generation-X Adjustable X-ray Optics team

- Funding
 - National Aeronautics and Space Administration (NASA)
 - Vision and Astrophysics Strategic mission concept studies
 - Technology development
 - Gordon and Betty Moore Foundation

- Principal members of the Gen-X optics team
 - Smithsonian Astrophysical Observatory (SAO)
 - NASA Marshall Space Flight Center (MSFC)
 - NASA Goddard Space Flight Center (GSFC)
 - Pennsylvania State University (PSU)
 - Northrop-Grumman [Industrial collaborator]
Normalized modeled and measured influence functions

Single piezo cell energized

FE modeled

Measured
• Investigate feasibility of one time, on-ground only figure correction
 • Examine magnitude of gravity release for a candidate mirror design
 (2 m diameter, 20 m focal length, 200 mm long mirror segments, 12
 point mirror support)
 • Look at amplitude of error and ability to correct gravity release using
 1 cm sized piezo cells

• RMS slope error
 before – 0.105 arc sec
 after – 0.010 arc sec