The NASA Fireball Network All-Sky Cameras

R.M. Suggs/NASA/MSFC/EV44

The construction of small, inexpensive all-sky cameras designed specifically for the NASA Fireball Network is described. The use of off-the-shelf electronics, optics, and plumbing materials results in a robust and easy to duplicate design. Engineering challenges such as weather-proofing and thermal control and their mitigation are described. Field-of-view and gain adjustments to assure uniformity across the network will also be detailed.
The NASA Fireball Network
All-Sky Cameras

Rob Suggs
NASA/MSFC/EV44/MEO
19 July 2011
Requirements

• Low-cost
• Weather-proof including dew resistance
• Same field of view and sensitivity as existing University of Western Ontario cameras in our network
Subsystems

• Housing – PVC plumbing and transparent dome based on UWO design
• Camera - Sony HAD EX-based CCD video
• Power – 12v “brick” and twilight sensor
• Thermal control – fan, heaters, thermostat
• Mount – mast or flat roof
• Cabling – integrated power and video
• Other system components
 – PC running Linux and ASGARD
 – GPS receiver (USB connection)
 – Uninterruptable Power Supply
Housing

• 4 Inch diameter PVC pipe
 – Two 4” Canadian (flanged) cleanout plugs – machined for top and bottom
 – 4” NPT to 4” PVC hub inner
 – 4” NPT to 4” PVC hub outer
 – 3” PVC x 1.5” inner hub, cemented to bottom
 – Three 3” PVC shims to center above in bottom

• Acrylic dome

• Dome to pipe adhesive – Henkel PL Polyurethane window and door sealant
 – Selected after extensive testing of several urethane, silicone, and polyurethane adhesives

• Any joints must be caulked

• O rings must be covered with aluminum tape to protect from UV

• Install dessicant packs just in case
Camera

- Watec 902H2 Ultimate – based on Sony HAD EXview CCD
- Rainbow L163VDC4P 1.6 – 3.4 mm f1.4 zoom fisheye lens
- Adjustments
 - Shutter speed 1/30 second (1/60 second fields)
 - Gamma = 0.45
 - Manual gain control set to match sensitivity of existing UWO camera
 - Autoiris setting full CW to disable autoiris function
 - Camera focal length adjusted to give field-of-view identical to UWO camera
Power System

- 12v 2 Amp off-the-shelf power brick
- Twilight sensor based on CdS photocell and 555 timer chip. Powers camera during darkness.
Thermal Control

• 12 v micro-fan forces air toward dome over two 15 ohm 10 watt resistors in series giving 4.8 watts of heating
• Normally closed thermostat opens to remove current to resistors at 85 degree F (30 C). This is above the maximum nighttime dewpoints in the southeastern U.S.
• Timer switch turns off all power to the camera between 6am and 6pm local time
• Active cooling would probably extend the lifetime of the cameras but this is very difficult
• Daytime temperatures inside dome can exceed 110 F (43 C)
 – Watec operating temperature limit is 104 F (40 C)
 – Watec non-operating temperature limit is 158 F (70 C)
Cabling

- Integrated video coax and power
- No connectors are exposed to the weather
 - Weather-proof compression feedthrough is at the bottom of the housing
- Cable length tests
 - 125 ft cable has 1.7 volt drop under full load
 - 50 ft cable has 0.8 volt drop under full load
 - Video quality looks the same in each case
Mount

- L bracket attaches case to standard antenna mast
- Roof mount has proved to be very flexible for any flat surface installation
Summary

• The design is robust and inexpensive

• Primary issues:
 – Thermal – daytime heating is severe and no active cooling is easily achievable
 – Weather-proofing – caulking of joints is essential. Dome adhesive is critical
 – Camera lifetime – hot pixels develop with time which complicates data analysis (especially “plates”) and limits useful lifetime of cameras
Acknowledgements

• This camera design is the result of Wesley Swift’s efforts. It simply wouldn’t exist without his creativity and hard work.
• Wes had many useful conversations and help from Zbigniew Krzeminski from the University of Western Ontario.