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Abstract— Typical adaptive controllers are restricted to using
a specific update law to generate parameter estimates. This
paper investigates the possibility of using any exponential
parameter estimator with an adaptive controller such that the
system tracks a desired trajectory. The goal is to provide
flexibility in choosing any update law suitable for a given
application. The development relies on a previously developed
concept of controller/update law modularity in the adaptive
control literature, and the use of a converse Lyapunov-like
theorem. Stability analysis is presented to derive gain conditions
under which this is possible, and inferences are made about the
tracking error performance. The development is based on a
class of Euler-Lagrange systems that are used to model various
engineering systems including space robots and manipulators.

I. INTRODUCTION

Control laws with adaptive feedforward terms have been
widely used to compensate for the linear-in-the-parameter
(LP) uncertainty in nonlinear systems. The update law or
a parameter estimator is an integral part of an adaptive
controller that generates parameter estimates used by the
adaptive controller. The convergence properties of the es-
timator directly impact the tracking error performance, even
though asymptotic tracking may still be possible without
the estimates converging to their true values. Lyapunov-
based techniques are commonly used to design and analyze
an adaptive control law and its corresponding parameter
update law, where the controller and the update law are
designed in conjunction with one another such that the update
law cancels certain cross terms in the stability analysis to
make the overall time-derivative of the Lyapunov function
negative. This restrains the design of the update law to
one specific form, which typically is a gradient update law.
Gradient update laws are notorious for exhibiting slower
parameter convergence [1]–[3], which could lead to a slower
transient performance of the tracking error in comparison
to other possible adaptive update laws (e.g., least-squares
or recursive least-squares update law [1], [3]–[5]). In order
to overcome this issue of slow convergence, several results
have been developed in the literature that aim to modify or
augment the typical tracking error-based gradient update law.
For example, composite adaptive update laws [1], [2], [6];
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prediction error (a predicted value of the difference between
the actual parameter and its estimate)-based update laws [7]–
[11]; and various least-squares update laws [3], [5], [12]. In
addition, several results have discussed the robustness and
exponential convergence properties of estimation schemes
[1], [4], [5], [13], [14]. However, the use of these update laws
is still contingent upon their ability to cancel cross terms in
the Lyapunov-based stability analysis. That is, only a specific
type of update law can be used with the adaptive controller.
This raises the question if we can have flexibility in choosing
a parameter update law best suited for a given application to
potentially achieve a better performance.

Intuitively, if a parameter estimator has an exponential
convergence, it could be combined with the adaptive con-
troller to achieve tracking. However, as mentioned earlier,
stability cannot be guaranteed unless it is designed to cancel
certain cross terms. The result in this paper is motivated by
the desire to investigate if a formal proof can be presented for
guaranteeing stability and tracking performance if any such
exponential parameter estimator is used with the adaptive
controller. In the existing literature, there are various results
on a class of modular adaptive controllers that provide
such controller/update law separation (cf. [7], [9]–[11]). One
approach is to use nonlinear damping [8], [15] to yield
a strong controller that is input-to-state stable (ISS) with
respect to the parameter estimation error. This enables the use
of any update law that yields bounded parameter estimates.
A brief survey of nonlinear damping-based modular adaptive
control results is provided in [7]. Another approach was
investigated in [16] by designing a robust control law using
the RISE (robust integral of the sign of the error [17])
feedback method, such that a generic form of an update law
in terms of tracking errors could be used.

In this paper, modularity in the update law (i.e., con-
troller/identifier separation), and tracking is achieved in
three steps. First, for a system which is linear in uncertain
constant parameters, an adaptive controller is developed and
augmented with a nonlinear damping term. This makes the
system ISS with respect to the estimation error. That is, for
a bounded parameter estimation error, the tracking error is
bounded. Second, a converse Lyapunov-like theorem is pre-
sented, and existence of a Lyapunov-like function is shown
for systems with trajectories that are exponentially decaying
to a small bound. Third, any parameter estimator that gives a
parameter estimation error exponentially decaying to a small
bound is used with the adaptive controller. Based on the
second step, the existence of a Lyapunov-like function for
such a parameter estimator is guaranteed. This combined



with the first step is used to prove a tracking result under
some sufficient gain conditions such that, if the parameter
estimation error is uniformly ultimately bounded (UUB),
then the tracking error is also UUB.

Typical adaptive control designs yield asymptotic tracking
without any tracking performance guarantees. In contrast,
the current result proves only UUB tracking, but guarantees
performance bounds on the tracking error while allowing the
use of a broad class of exponential estimators. Moreover, if
the parameter estimator has an exponential convergence to
zero, the tracking errors also converge to zero exponentially.
Compared to the previous results on controller/update law
modularity, the current result can be considered as an alterna-
tive choice by the control design engineers. The result in this
paper achieves modularity in the controller/update law using
ISS arguments similar to [7]–[11] by including a nonlinear
damping term in the torque control input. However, in [7]–
[11], in order to prove tracking, additional assumptions about
the update law itself had to be made. For example, it needed
to be driven by a prediction error, which must be square
integrable; the update law must be bounded, etc. This in
turn required extra terms in the control law. Moreover, the
estimator must also ensure that the estimate of the inertia
matrix be positive definite. In most cases, this required the
use of projection algorithms, thus leading to an increased
complexity, and even though asymptotic tracking was proved,
no bounds on the tracking error transient could be derived.
In contrast, the result in this paper only assumes that the
parameter identification scheme gives an estimation error that
exponentially decreases to a small bound, and no additional
assumptions are required.

Since the objective is to design an adaptive control law
that utilizes parameter estimates generated by any estimator
with exponential convergence, design of a specific estimator
is not considered in this work. It should be noted that the
construction of any such practical estimator may require
additional inputs, such as bounds on measurement noise,
bound on estimation error, etc. [1], [4], [5], [13], [14].

II. DYNAMIC MODEL AND PROPERTIES

The class of nonlinear dynamic systems considered in
this paper can be described by the following Euler-Lagrange
formulation, which can be used to model a large class of
engineering systems such as space robots and manipulators
[18], [19]:

M(q)q̈ + Vm(q, q̇)q̇ +G(q) + F (q̇) = τ(t). (1)

In (1), M(q) ∈ Rn×n denotes the inertia matrix, Vm(q, q̇) ∈
Rn×n denotes the centripetal-Coriolis matrix, G(q) ∈ Rn
denotes the gravity vector, F (q̇) ∈ Rn denotes friction,
τ(t) ∈ Rn represents the torque input control vector, and
q(t), q̇(t), q̈(t) ∈ Rn denote the generalized position, veloc-
ity, and acceleration vectors, respectively. The subsequent
development is based on the assumption that q(t) and q̇(t)
are measurable and that M(q), Vm(q, q̇), G(q), and F (q̇) are
unknown. Throughout the paper |·| denotes the absolute value
of the scalar argument, ‖·‖ denotes the standard Euclidean

norm for a vector or the induced norm for a matrix. The
following properties will be exploited in the subsequent
development.
Property 1: The inertia matrix M(q) is symmetric, posi-
tive definite. Therefore, it satisfies the following inequality
∀q(t), ξ(t) ∈ Rn [18], [19]:

m1 ‖ξ‖2 ≤ ξTM(q)ξ ≤ m2 ‖ξ‖2 (2)

where m1, m2 ∈ R are known positive constants.
Property 2: The time derivative of inertia matrix Ṁ(q) and
the centripetal-Corilois matrix Vm(q, q̇) satisfy the following
skew-symmetry property ∀q(t), q̇(t), ξ(t) ∈ Rn [18], [19]:

ξT
(
1

2
Ṁ(q)− Vm(q, q̇)

)
ξ = 0. (3)

III. CONTROL OBJECTIVE AND DEVELOPMENT

The objective is to design an adaptive controller with
the flexibility of using any parameter estimator that has an
exponential parameter convergence to a small error bound,
such that the system tracks a desired time-varying trajectory
qd(t) despite uncertainties in the dynamic model. To quantify
this objective, a position tracking error, denoted by e1(t) ∈
Rn, is defined as

e1 , qd − q. (4)

In addition, to facilitate the subsequent analysis, a filtered
tracking error [18], e2(t) ∈ Rn, is defined as

e2 , ė1 + α1e1 (5)

where α1 ∈ R denotes a positive constant. Differentiating
(5) with respect to time, and premultiplying the resulting
expression with M (q) yields

M (q) ė2 =M (q) q̈d −M (q) q̈ +M (q)α1ė1. (6)

Using (1), (4), (5) in (6), we get

M (q) ė2 = Y θ − τ(t)− Vm(q, q̇)e2 (7)

where the following property is used:
Property 3: A part of the dynamics in (1) can be linearly
parameterized as [18], [20]

Y θ = M (q) q̈d + Vm(q, q̇) (q̇d + α1e1) +G(q)

+F (q̇) +M (q)α1ė1 (8)

where θ ∈ Rp contains the constant unknown system param-
eters (e.g., component masses, moments of inertia, damping
and friction coefficients, etc.), and Y (q, q̇, q̇d, q̈d) ∈ Rn×p is
a regression matrix that contains known nonlinear functions
of the known generalized coordinates q(t), q̇(t) and desired
trajectories.

Based on the open-loop error system in (7), the torque
control input is designed as

τ(t) = Y θ̂ (t) + k1e2 (t) + kn ‖Y ‖2 e2 (t) (9)

where k1, kn ∈ R are positive constants, θ̂ (t) ∈ Rp is
an adaptive estimate of θ. Nonlinear damping terms, similar
to kn ‖Y ‖2 e2 (t) in the control input, have been previously



used in results such as [8], [10]. Substituting (9) in to (7),
we get the following closed-loop error system:

M (q) ė2 = Y θ̃ − k1e2 − kn ‖Y ‖2 e2 − Vm(q, q̇)e2 (10)

where θ̃ (t) ∈ Rp is the parameter estimation error defined
as

θ̃ (t) = θ − θ̂ (t) .

IV. INPUT-TO-STATE STABILITY

In this section, we show the ISS property of the system
with respect to the parameter estimation error θ̃ (t). This
allows controller/update law modularity, and thus, any update
law that generates bounded parameter estimates can be used
with the adaptive controller. We now have the theorem:
Theorem 1: The closed-loop error system in (10) is input-
to-state stable with respect to θ̃ (t), i.e., if

∥∥∥θ̃ (t)∥∥∥ ∈ L∞,
then ‖e1 (t)‖ ∈ L∞.
Proof: Define a Lyapunov function candidate

Viss =
1

2
eT2M (q) e2. (11)

Using (2), Viss (t) can be lower and upper bounded as

1

2
m1 ‖e2‖2 ≤ Viss ≤

1

2
m2 ‖e2‖2 . (12)

Taking the time derivative of (11), and substituting from (10),
we get

V̇iss = eT2 [Y θ̃ − k1e2 − kn ‖Y ‖
2
e2 − Vm(q, q̇)e2] (13)

+
1

2
eT2 Ṁ (q) e2.

Using the skew-symmetry property (3), the expression in (13)
can be upper bounded as

V̇iss ≤ −k1 ‖e2‖2 + ‖e2‖ ‖Y ‖
∥∥∥θ̃∥∥∥− kn ‖e2‖2 ‖Y ‖2 .

Completing the squares for the last two terms

V̇iss ≤ −k1 ‖e2‖2−kn
(
‖Y ‖ ‖e2‖ −

1

2kn

∥∥∥θ̃∥∥∥)2

+
1

4kn

∥∥∥θ̃∥∥∥2
therefore,

V̇iss ≤ −k1 ‖e2‖2 +
1

4kn

∥∥∥θ̃∥∥∥2 . (14)

Using (12) in (14), the upper bound on V̇iss (t) can be
expressed as

V̇iss ≤ −2λissViss +
1

4kn

∥∥∥θ̃∥∥∥2 (15)

where

λiss =
k1
m2

.

After solving the differential inequality in (15), we get

Viss (t) ≤ Viss (0) e(−2λisst) +
1

8λisskn
sup

0≤τ≤t

∥∥∥θ̃ (τ)∥∥∥2 .
(16)

Hence, from (12) and (16)

‖e2 (t)‖2 ≤ m2

m1
‖e2 (0)‖2 e(−2λisst) (17)

+
1

4m1λisskn
sup

0≤τ≤t

∥∥∥θ̃ (τ)∥∥∥2 .
Using the fact that a2 ≤ b2+ c2 ⇒ a ≤ b+ c for all positive
scalars a, b, c, (17) can be expressed as

‖e2 (t)‖ ≤
√
m2

m1
‖e2 (0)‖ e(−λisst) (18)

+
1

2
√
m1λisskn

sup
0≤τ≤t

∥∥∥θ̃ (τ)∥∥∥ .
The bound in (18) indicates input-to-state stability (ISS)
(cf. Def 4.7, pp. 175 [21]). That is, if sup0≤τ≤t

∥∥∥θ̃ (τ)∥∥∥ is
bounded, then ‖e2 (t)‖ is bounded, and therefore, from (5),
the tracking error ‖e1 (t)‖ is bounded. �

Any update law that guarantees a bounded
∥∥∥θ̃∥∥∥ can be

used. Further, if
∥∥∥θ̃ (t)∥∥∥ is UUB, then subsequently it will

be shown (Theorem 3) that the tracking error is UUB. First
we prove the following converse Lyapunov-like theorem.

V. CONVERSE LYAPUNOV-LIKE THEOREM

The following can be proved directly by extending the
result in Theorem 4.14 of [21].
Theorem 2: Consider a nonlinear system

ẋ (t) = f (t, x) (19)

where f : [0,∞) ×D → Rn is continuously differentiable,
D = {x ∈ Rn | ‖x‖ < r} for some r, and the Jacobian
matrix [∂f/∂x] is uniformly bounded on D. Let x = 0 be
an equilibrium point for the system in (19). Let k, λ, ε,
and r0 be positive constants with r0 < r/k. Let D0 = {x ∈
Rn | ‖x‖ < r0}. Assume that ∀ x (t0) ∈ D0, ∀ t ≥ t0 ≥ 0,
the trajectories of the system in (19) satisfy

‖x (t)‖ ≤ k ‖x (t0)‖ e−λ(t−t0) + ε.

Then, there exists a function V : [0,∞) × D0 → R that
satisfies the inequalities

c1 ‖x‖2 ≤ V (t, x) ≤ c2 ‖x‖2 + c3 ‖x‖+ c4

∂V

∂t
+
∂V

∂x
f (t, x) ≤ −c5 ‖x‖2 + c6 ‖x‖+ c7

for some positive constants c1, c2, . . . , c7. Moreover, if r =
∞ and the origin is globally uniformly ultimately bounded,
then V (t, x) is defined and satisfies the aforementioned in-
equalities on Rn. Furthermore, if the system is autonomous,
V can be chosen independent of t.
Proof: Let φ (τ ; t, x) denote the solution of the system start-
ing at (t, x); i.e., φ (t; t, x) = x. For all x ∈ D0, φ (τ ; t, x) ∈
D for all τ ≥ t. Let

V (t, x) =

∫ t+δ

t

φT (τ ; t, x)φ (τ ; t, x) dτ (20)



where δ is a positive constant to be chosen. Due to expo-
nentially decaying bound on the trajectories, we have

V (t, x) =

∫ t+δ

t

‖φ (τ ; t, x)‖2 dτ

≤
∫ t+δ

t

(k2 ‖φ (t; t, x)‖2 e−2λ(τ−t)

+2εk ‖φ (t; t, x)‖ e−λ(τ−t) + ε2)dτ

Using the fact φ (t; t, x) = x,

V (t, x) ≤ k2

2λ

(
1− e−2λδ

)
‖x‖2+2εk

λ

(
1− e−λδ

)
‖x‖+ε2δ.

(21)
Since, the Jacobian matrix [∂f/∂x] is uniformly bounded on
D, let ∥∥∥∥∂f∂x (t, x)

∥∥∥∥ ≤ L, ∀ x ∈ D.

Then,
‖f (t, x)‖ ≤ L ‖x‖ (22)

and φ (τ ; t, x) satisfies the lower bound (see Appendix,
Lemma 1)

‖φ (τ ; t, x)‖2 ≥ ‖x‖2 e−2L(τ−t). (23)

Hence, using (23) in (20), V (t, x) satisfies the lower bound

V (t, x) ≥
∫ t+δ

t

e−2L(τ−t)dτ ‖x‖2 =
1

2L

(
1− e−2Lδ

)
‖x‖2 .
(24)

Thus, from (21) and (24), V (t, x) satisfies the first inequality
of the theorem with

c1 =
1

2L

(
1− e−2Lδ

)
, c2 =

k2

2λ

(
1− e−2λδ

)
(25)

c3 =
2εk

λ

(
1− e−λδ

)
, c4 = ε2δ.

To calculate the derivative of V (t, x) along the system
trajectories, the following sensitivity functions are defined

φt (τ ; t, x) =
∂

∂t
φ (τ ; t, x) ; φx (τ ; t, x) =

∂

∂x
φ (τ ; t, x) .

Then,
∂V

∂t
+
∂V

∂x
f (t, x) = φT (t+ δ; t, x)φ (t+ δ; t, x)

−φT (t; t, x)φ (t; t, x)

+

∫ t+δ

t

2φT (τ ; t, x)φt (τ ; t, x) dτ

+

∫ t+δ

t

2φT (τ ; t, x)φx (τ ; t, x) dτ

×f (t, x)
= φT (t+ δ; t, x)φ (t+ δ; t, x)

+

∫ t+δ

t

2φT (τ ; t, x) [φt (τ ; t, x)

+φx (τ ; t, x) f (t, x)]dτ − ‖x‖2 .

Using the fact that (see Appendix, Lemma 2)

φt (τ ; t, x) + φx (τ ; t, x) f (t, x) ≡ 0, ∀ τ ≥ t (26)

we get

∂V

∂t
+
∂V

∂x
f (t, x) = φT (t+ δ; t, x)φ (t+ δ; t, x)− ‖x‖2

≤ (k ‖x‖ e−λδ + ε)2 − ‖x‖2

≤ −
(
1− k2e−2λδ

)
‖x‖2

+2εke−λδ ‖x‖+ ε2.

Therefore, the second inequality of the theorem is satisfied
with

c5 = 1− k2e−2λδ, c6 = 2εke−λδ, c7 = ε2. (27)

�

VI. PARAMETER ESTIMATION AND TRACKING

Theorem 3: Suppose there exists a parameter estimator such
that the parameter estimation error θ̃ (t) satisfies∥∥∥θ̃ (t)∥∥∥ ≤ k ∥∥∥θ̃ (0)∥∥∥ e−λt + ε (28)

then, the control law (9) in conjunction with the parame-
ter estimator yields globally uniformly ultimately bounded
(GUUB) tracking stability for the system in (1) and all
closed-loop signals are bounded.
Proof: Theorem 2 implies that there exists a function
Vclf

(
t, θ̃
)

such that

c1

∥∥∥θ̃∥∥∥2 ≤ Vclf ≤ c2 ∥∥∥θ̃∥∥∥2 + c3

∥∥∥θ̃∥∥∥+ c4 (29)

and
V̇clf ≤ −c5

∥∥∥θ̃∥∥∥2 + c6

∥∥∥θ̃∥∥∥+ c7. (30)

Define
Vs = Viss + Vclf (31)

where Viss was defined in (11), which satisfies the following
lower and upper bounds:

Vs ≥
1

2
m1 ‖e2‖2 + c1

∥∥∥θ̃∥∥∥2 (32)

Vs ≤
1

2
m2 ‖e2‖2 + c2

∥∥∥θ̃∥∥∥2 + c3

∥∥∥θ̃∥∥∥+ c4. (33)

Taking the time derivative of (31), and using the results of
Theorems 1 and 2

V̇s ≤ −k1 ‖e2‖2+
1

4kn

∥∥∥θ̃∥∥∥2− c5 ∥∥∥θ̃∥∥∥2+ c6 ∥∥∥θ̃∥∥∥+ c7. (34)

Using the upper bound of (33) in (34)

V̇s ≤ −2λissVs −
(
c5 − 2λissc2 −

1

4kn

)∥∥∥θ̃∥∥∥2
+(2λissc3 + c6)

∥∥∥θ̃∥∥∥+ 2λissc4 + c7. (35)

Let γ1 = c5 − 2λissc2 − 1
4kn

; γ2 = 2λissc3 + c6; γ3 =
2λissc4 + c7, where γ1, γ2, γ3 are positive constants such
that the following sufficient conditions should be satisfied

kn >
1

4 (c5 − 2λissc2)
, λiss <

c5
2c2

. (36)



Completing the squares for the second and the third terms
in (35)

V̇s ≤ −2λissVs + γ (37)

where the positive constant γ is defined as

γ =
γ22
4γ1

+ γ3. (38)

After solving the differential inequality of (37), we get

Vs (t) ≤ Vs (0) e−2λisst +
γ

2λiss

(
1− e−2λisst

)
. (39)

From (32), we have

1

2
m1 ‖e2‖2 ≤

1

2
m1 ‖e2‖2 + c1

∥∥∥θ̃∥∥∥2 ≤ Vs.
Then, the following bound on the filtered tracking error e2 (t)
can be obtained:

‖e2 (t)‖2 ≤
2Vs (0)

m1
e−2λisst +

γ

m1λiss
. (40)

Therefore,

‖e2 (t)‖ ≤

√
2Vs (0)

m1
e−λisst +

√
γ

m1λiss
. (41)

Using (5), a similar bound for ‖e1 (t)‖ can be derived, and
hence, q (t) , q̇ (t) are bounded and the control torque (9) is
bounded. �
Remark 1: Substituting for c2 and c5 from (25) and (27) in
to the gain condition for λiss in (36), we have

λiss < λ

(
1− k2e−2λδ

)
k2 (1− e−2λδ)

. (42)

The expression on the RHS is of the order ofO (λ). Thus, the
condition in (42) indicates that the decay rate of the tracking
error is less than that of the estimator. In other words, the
parameter estimator should have a fast convergence in order
to ensure a good tracking performance. Similarly, from (40)
using (38), we have

γ

m1λiss
=

1

m1λiss

(
γ22
4γ1

+ γ3

)
=

1

m1λiss

(
(2λissc3 + c6)

2

4 (c5 − 2λissc2 − 1/4kn)

)
+

1

m1λiss
(2λissc4 + c7) .

Substituting c1, c2, . . . , c7 from (25) and (27),

γ

m1λiss
=

4ε2k2
(
2λiss

(
1− e−λδ

)
+ λe−λδ

)2
λ
(
λ− λk2e−2λδ − λissk2 (1− e−2λδ)− λ

4kn

)
× 1

m1λiss
+

ε2

m1λiss
(2λissδ + 1) (43)

which is of the order of O
(
ε2
)
, and therefore, from (41),

the ultimate bound on ‖e2 (t)‖ is O (ε).
Remark 2: If the estimation error θ̃ (t) in (28) exponentially
converges to zero (i.e., ε = 0), then from (43), the tracking
error also exponentially converges to a zero steady-state.

VII. SIMULATION STUDY

In order to validate the theoretical development, a com-
puter simulation was performed on a space robot system.
Control of space robots is important for various space appli-
cations such as material transport, cooperative autonomous
construction, maintenance of space stations and satellites,
etc. Specifically, we consider a space robot consisting of a
base (mass m0), and a two-DOF revolute manipulator with
equal link lengths l and point masses m1 and m2 at the end
of each link. Although the proposed method can control the
full system, for simplicity the proposed adaptive controller is
applied only for the motion control of the arm. It is assumed
that the attitude of the base can be effectively controlled by
other control methods. Neglecting the gravity term in (1), the
system dynamics can be derived in a manner similar to [22]
so that M = p1R1+p2R2+p3R3, where p1 = m0m1

mc
, p2 =

m1m2

mc
, p3 = m0m2

mc
, where mc = m0 +m1 +m2, and

R1 =

[
l2 0
0 0

]
, R2 =

[
l2 l2

l2 l2

]
R3 =

[
2 (1 + c2) l

2 (1 + c2) l
2

(1 + c2) l
2 l2

]
where c2 = cos (q2). Vm = p3R4, where

R4 =

[
−2l2s2q̇2 −l2s2q̇2
l2s2q̇1 0

]
, where s2 = sin (q2) .

A continuous friction model similar to [23] is used,
F = γ1R5 + γ2R6 + γ3q̇, where R5 = tanh(0.1q̇) −
tanh(0.2q̇), R6 = tanh(0.15q̇). It is assumed that the
link length l is known, while the masses m0, m1, m2

(equivalently, p1, p2, p3) and the friction coefficients
γ1, γ2, γ3 are unknown. Defining ζ1 = q̈d + α1ė1, ζ2 =
q̇d + α1e1, and comparing with (8), we have Y =[
R1ζ1 R2ζ2 (R3ζ1 +R4ζ2) R5 R6 q̇

]
and the un-

known parameter θ =
[
p1 p2 p3 γ1 γ2 γ3

]T
. An

arbitrary parameter estimator is constructed such that the
bound in (28) is satisfied. The parameter estimates are
initialized to half of their true values and the resulting
parameter estimation error is shown in Fig. 1. The adaptive
control law in (9) with the control gains chosen by trial and
error is employed to track a desired sinusoidal trajectory. The
position tracking error converges to a small bound (shown
in Fig. 2) as proved by the stability analysis.

Fig. 1. θ̃ (t) exponentially converges to a small bound.
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Fig. 2. Position tracking error.
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VIII. CONCLUSION AND FUTURE WORK

Using a converse Lyapunov-like theorem, sufficient gain
conditions were derived under which any exponential pa-
rameter estimator can be used with an adaptive controller to
achieve tracking with a performance bound on the tracking
error. The adaptive controller is augmented with a nonlinear
damping term which makes the closed-loop system input-to-
state stable enabling controller/update law separation. The
current development is based on Euler-Lagrange dynamic
systems. Future work will focus on extending the result to
more general systems with parametric uncertainty.
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IX. APPENDIX

Lemma 1: In (23), ‖φ (τ ; t, x)‖2 ≥ ‖x‖2 e−2L(τ−t).
Proof: From (19) and (22)∣∣∣∣ ddt [xT (t)x (t)

]∣∣∣∣ =
∣∣2xT (t) ẋ (t)

∣∣
=

∣∣2xT (t) f (t, x)
∣∣ ≤ 2L ‖x‖2 .

Therefore,

−2L ‖x‖2 ≤ d

dt

[
xT (t)x (t)

]
≤ 2L ‖x‖2 . (44)

Solving the differential inequality in (44) such that φ (τ ; t, x)
denotes the solution of the system starting at (t, x) (i.e.,
φ (t; t, x) = x)

‖x‖ e−L(τ−t) ≤ ‖φ (τ ; t, x)‖ ≤ ‖x‖ eL(τ−t).

Hence, (23) holds. �
Lemma 2: In (26), φt (τ ; t, x) + φx (τ ; t, x) f (t, x) ≡
0, ∀ τ ≥ t.
Proof: The solution φ (τ ; t, x) starting at (t, x) can be
expressed as

φ (τ ; t, x) = φ (t; t, x) +

∫ τ

t

f (s, φ (s)) ds

= x+

∫ τ

t

f (s, φ (s)) ds.

Therefore,

φt (τ ; t, x) =
∂x

∂t
− f (t, φ (t)) = −f (t, x) (45)

and
φx (τ ; t, x) =

∂x

∂x
= 1. (46)

From (45) and (46), it can be verified that (26) holds. �


