MODELS OF THE EYE: RELEVANCE TO MICROGRAVITY INDUCED VISUAL IMPAIRMENT AND INTRACRANIAL PRESSURE

62nd International Astronautical Congress
Human Space Endeavours Virtual Forum: The Next 50 Years
Richard Chen¹,
Lauren Best², Kyle Mason³ and Lealem Mulugeta⁴

1. Dept. of Materials Science and Engineering, The Johns Hopkins University,
 Baltimore, MD
2. Dept. of Chemical and Biomolecular Engineering, University of Akron, Akron
 OH; Space Processes and Experiments Division, NASA Glenn Research Center, Cleveland, OH
3. Dept. of Bioengineering, University of Toledo, Toledo, OH
4. Universities Space Research Association, Division of Space Life Sciences, Houston, TX
IMPORTANCE OF MODELS IN STUDYING THE EYE

- Allows for a deeper understanding of the eye
 - How Intraocular Pressure (IOP) and mechanical property changes affect stress/strain in the eye
- Allow for possible prediction of outcomes in astronauts based on eye health
HOW DO THE MODELS FIT IN?

- Iterative Computation Simulations (Pre or during experiment or flight)
- Ground Analog Experiments
- Flight Experiments
- Verification and Validation
- Model refinement
- Crew Health and Performance Risk Mitigation

GAPS TO BE ADDRESSED

- **Gap (VIIP2)** Does exposure to microgravity cause changes in visual acuity, intraocular pressure and/or intracranial pressure? Are the effects related to mission duration?

- **Gap (VIIP4)** Are changes in visual acuity related to changes in chronic choroidal engorgement, elevated intraocular pressure and/or intracranial pressure?
 THREE PAPERS

- Finite element modeling of the human sclera: Influence on optic nerve head biomechanics and connections with glaucoma
- The optic nerve head as a biomechanical structure: initial finite element modeling
- Factors Influencing Optic Nerve Head Biomechanics
Finite Element Modeling of the Human Sclera

- Individual specific corneoscleral shell parameters paired with idealized ONH
 - P1 – 2.4-4.6
 - P2 – 1.6-3.2
 - P3 – -3.8 - -7.3

- Sensitivity analysis conducted using idealized scleral and ONH
The Optic Nerve Head as a Biomechanical Structure: Initial Finite Element Modeling

- Thirteen digital 3D geometries representing idealized human eyes were studied.
- Models were varied in scleral wall thickness, scleral canal shape, and inner radius.
- Measured stress at 15 mm Hg IOP.
FACTORS INFLUENCING OPTIC NERVE HEAD BIOMECHANICS

- Detailed sensitivity analysis of ONH to various input factors
- Measured outcomes via different output factors
METHOD OF COMPARISON BETWEEN INPUT FACTORS

- Absolute response - the range of outcomes by varying only one input factor of a particular outcome
- Total response - the sum of the absolute responses for one particular outcome
- Relative response - absolute response of one factor divided by the total response
- Total influence – sum of relative responses of single input over all outcomes
SUMMARY OF TOTAL INFLUENCES

[Graph showing various factors and their influences on outcome measures such as peak strain, mean strain, peak stress, mean stress, and geometry. Different factors are color-coded, with select factors highlighted in red:
- Scleral canal thickness
- Canal radius
- Ret poisson ratio
- Modulus sclera]
Relative Distances b/t structures in the eye
- “Anatomic Relationship between Lamina Cribrosa, Intraocular Space, and Cerebrospinal fluid Space” – Jonas et al.

Mechanical Properties of the human eye
“Finite Element Modeling of Optic Nerve Head Biomechanics” – Sigal et al.
TABLE 1. Input Factors and Their Baseline Values and Ranges Used in the Sensitivity Analysis (see Figure 1 for Factor Definitions)

<table>
<thead>
<tr>
<th>Name</th>
<th>Coded Name</th>
<th>Units</th>
<th>Baseline</th>
<th>Low</th>
<th>High</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal radius of eye shell</td>
<td>EyeRadius</td>
<td>mm</td>
<td>12.0</td>
<td>9.6</td>
<td>14.4</td>
<td>9-13</td>
</tr>
<tr>
<td>Scleral thickness at canal</td>
<td>ScThickAtCanal</td>
<td>mm</td>
<td>0.4</td>
<td>0.32</td>
<td>0.48</td>
<td>13-16</td>
</tr>
<tr>
<td>Laminar thickness at axis</td>
<td>LCThickAxis</td>
<td>mm</td>
<td>0.3</td>
<td>0.24</td>
<td>0.36</td>
<td>13,16-18</td>
</tr>
<tr>
<td>Retinal thickness</td>
<td>RetThickShell</td>
<td>mm</td>
<td>0.2</td>
<td>0.16</td>
<td>0.24</td>
<td>19,20</td>
</tr>
<tr>
<td>Scleral shell thickness</td>
<td>ScThickShell</td>
<td>mm</td>
<td>0.8</td>
<td>0.64</td>
<td>0.96</td>
<td>11,14,15</td>
</tr>
<tr>
<td>LC anterior surface radius</td>
<td>LCRadius</td>
<td>mm</td>
<td>0.95</td>
<td>0.76</td>
<td>1.14</td>
<td>10,12,13,16,18,21-24</td>
</tr>
<tr>
<td>Pla mater thickness</td>
<td>PlaThick</td>
<td>mm</td>
<td>0.06</td>
<td>0.048</td>
<td>0.072</td>
<td>13</td>
</tr>
<tr>
<td>Laminar curvature</td>
<td>LaminarCurvature</td>
<td>mm</td>
<td>0.2</td>
<td>0</td>
<td>0.2</td>
<td>*</td>
</tr>
<tr>
<td>Cup-to-disc ratio/shape of the cup</td>
<td>Cup2DiscRatio</td>
<td></td>
<td>0.25</td>
<td>0.1</td>
<td>0.5</td>
<td>19,21</td>
</tr>
<tr>
<td>Canal wall angle to the horizontal</td>
<td>AngleSCCanal</td>
<td>deg</td>
<td>60</td>
<td>48</td>
<td>72</td>
<td>*</td>
</tr>
<tr>
<td>Optic nerve angle</td>
<td>AngleON</td>
<td>deg</td>
<td>80</td>
<td>64</td>
<td>96</td>
<td>*</td>
</tr>
<tr>
<td>Sclera thinning/peripapillary scleral tapering</td>
<td>ScThinFactor</td>
<td></td>
<td>0.5</td>
<td>0</td>
<td>1.0</td>
<td>11,15</td>
</tr>
<tr>
<td>Peripapillary rim height</td>
<td>RimHeight</td>
<td>mm</td>
<td>0.3</td>
<td>0.24</td>
<td>0.36</td>
<td>19,21,25</td>
</tr>
<tr>
<td>Cup depth</td>
<td>CupDepth</td>
<td>mm</td>
<td>0.33</td>
<td>0.26</td>
<td>0.4</td>
<td>19,21</td>
</tr>
<tr>
<td>Input factors defining the load on ONH tissues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intraocular pressure</td>
<td>IOP</td>
<td>mm Hg</td>
<td>25</td>
<td>20</td>
<td>30</td>
<td>26,27</td>
</tr>
<tr>
<td>Input factors defining the biomechanical properties of relevant optic tissues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poisson ratio of retina</td>
<td>RetPoisson</td>
<td></td>
<td>0.49</td>
<td>0.4</td>
<td>0.49</td>
<td>28-30</td>
</tr>
<tr>
<td>Pla mater Young's modulus</td>
<td>PlaModulus</td>
<td>MPA</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>31-33</td>
</tr>
<tr>
<td>Lamina cribrosa Young's modulus</td>
<td>LCModulus</td>
<td>MPA</td>
<td>0.3</td>
<td>0.1</td>
<td>0.9</td>
<td>6.3-36</td>
</tr>
<tr>
<td>Sclera Young's modulus</td>
<td>ScModulus</td>
<td>MPA</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>29,37-44.54</td>
</tr>
<tr>
<td>Retina Young's modulus</td>
<td>RetModulus</td>
<td>MPA</td>
<td>0.05</td>
<td>0.01</td>
<td>0.09</td>
<td>45-50</td>
</tr>
<tr>
<td>Optic nerve Young's modulus</td>
<td>ONModulus</td>
<td>MPA</td>
<td>0.03</td>
<td>0.01</td>
<td>0.09</td>
<td>Same as for retina</td>
</tr>
</tbody>
</table>

Ranges were estimated from our own measurements (*), or from a combination of our measurements and the sources listed (see the Methods section for details). In many cases, the sources did not directly measure the quantity of interest. In such situations, we computed the quantity of interest from the data that were reported.

Mechanical Properties of the human eye

“Factors Influencing Optic Nerve Head Biomechanics– Sigal et al.
ASSUMPTIONS AND CONSIDERATIONS

- Several simplifications
 - Geometries
 - Linear materials properties
 - Ignores some important aspects of structure, such as the non-homogeneity nature of the various tissues

- Future work needed
 - Obtain non-linear materials properties
 - Account for non-homogeneity in structures
 - Make shapes of the eye more realistic
CONNECTION WITH THE BRAIN AND ICP

- CSF acts on optic nerve of eye
 + Compress nerve and vasculature
 + Push against lamina cribrosa
- Effects on ON not understood
- Pressure against LC causes deformation and can disrupt trans-laminar pressure
- Possibility of segregation of CSF due to increased ICP
RECOMMENDATIONS

- For design of the model
 - Begin with the current linear materials properties currently in literature \(\rightarrow\) good starting point
 - Use an idealized geometry
 - Integrate eye model with brain/CSF as single model or through inputs/outputs

- Once a simplified model is created
 - Account for realistic structure of the eye \(\rightarrow\) Jonas et al.
 - Find or measure non-linear viscoelastic properties
PRELIMINARY VIIP INTEGRATED MODEL

- Based on 7-compartment model proposed by Sorek et al.
- Accounts for interactions between vascular and cerebral fluid systems
ACKNOWLEDGEMENTS

- Lealem Mulugeta – NASA/NSBRI Internship Mentor
- Dr. Ron McNeel – NSBRI Program Manager
- Glenn Research Center Collaborators
 - Dr. Jerry G. Myers
 - Lauren M. Best
 - Kyle Mason