
Parametric Testing of Launch Vehicle FDDR Models

Johann Schumann∗

SGT, Inc., NASA Ames, Moffett Field, CA, 94035, USA

Anupa Bajwa†

NASA Ames Research Center, Moffett Field, CA, 94035, USA

Peter Berg†

SGT, Inc., NASA ARC, Moffett Field, CA

Rajkumar Thirumalainambi

RIAEX Inc. Sunnyvale, CA, 94087

For the safe operation of a complex system like a (manned) launch vehicle, real-time
information about the state of the system and potential faults is extremely important.
The on-board FDDR (Failure Detection, Diagnostics, and Response) system is a software
system to detect and identify failures, provide real-time diagnostics, and to initiate fault
recovery and mitigation. The ERIS (Evaluation of Rocket Integrated Subsystems) failure
simulation is a unified Matlab/Simulink model of the Ares I Launch Vehicle with modular,
hierarchical subsystems and components. With this model, the nominal flight performance
characteristics can be studied. Additionally, failures can be injected to see their effects
on vehicle state and on vehicle behavior. A comprehensive test and analysis of such a
complicated model is virtually impossible. In this paper, we will describe, how parametric

testing (PT) can be used to support testing and analysis of the ERIS failure simulation. PT
uses a combination of Monte Carlo techniques with n-factor combinatorial exploration to
generate a small, yet comprehensive set of parameters for the test runs. For the analysis of
the high-dimensional simulation data, we are using multivariate clustering to automatically
find structure in this high-dimensional data space. Our tools can generate detailed HTML
reports that facilitate the analysis.

I. Introduction

M
anned launch vehicles are extremely complex systems, the life of the astronauts depend on the safe
and reliable operation of the entire vehicle. Therefore, real-time information about the state of the

system and potential faults is extremely important. The on-board FDDR (Failure Detection, Diagnostics,
and Response) system is a software system to detect and identify failures, provide real-time diagnostics, and
to initiate fault recovery and mitigation. In order to test the FDDR model and software, the ERIS failure
simulation model has been created for the Ares I launch vehicle. The ERIS model contains models for the
external vehicle dynamics and controls as well as internal vehicle dynamics and response, at various levels
of detail. Overall, the model has more than 900 physical and design parameters; more than 170 variables
are recorded during each simulation run. This ERIS failure simulation is a collaborative effort from a few
groups across NASA, providing their individual physical models, which are are integrated into one large
Matlab/Simulink model. With this model, the nominal flight characteristics can be studied and failures can
be injected.

A careful test of the ERIS model is important to ensure its quality for accreditation as a Critical Math
Model. However, a comprehensive test and analysis of such a model is virtually impossible because of its
size and complexity. The failures, which are injected for testing can occur at various times during the ascent
(e.g., during the burn of the First Stage or the Upper Stage) and they can occur in isolation (single failure)
or as multiple failures. Since the failures can affect the model behavior, these interdependencies create a

∗This work was in part funded by NASA OSMA’s SARP program.
†Program Funding through Ares Vehicle Integration Office

1 of 10

American Institute of Aeronautics and Astronautics



huge space which must be processed for testing and analysis. In order to demonstrate robustness of the ERIS
model, a sensitivity analysis over model parameters is necessary. This is in particular important since the
sub-models have been developed by different groups, at different levels of fidelity, where parameters values
can be the “engineer’s best guess”.

In this paper, we will describe, how parametric testing (PT) has been used to support testing and analysis
of the ERIS failure simulation. PT uses a combination of Monte Carlo techniques with n-factor combinatorial
exploration to generate a small, yet comprehensive, set of parameters for the test runs. N-factor exploration
assumes that any problem is caused by the interaction of at most n specific parameter values (usually n=2
or n=3). With that assumption, which has been observed in many software systems, the number of required
test runs can be reduced drastically to usually several hundreds to a few thousands. We will describe this
technology and discuss, how the ERIS model has been tested by variations of key parameters as well as
systematic variations of the injected failures.

Even a limited number of test runs creates a vast amount of data, as hundreds of model variables are
recorded over time. We are using multivariate clustering algorithms (which have been generated with the
AutoBayes11 tool) to automatically find structure in this high-dimensional data set and to locate and estimate
safety margins. Our tool set, which has been implemented in Matlab also generates detailed HTML reports,
which documents the results of testing and analysis and allows the model designer to interactively navigate
the data. Our testing and analysis environment is highly flexible and can be adapted easily toward other
Simulink models1 as well as other simulation environments (e.g., Trick2) or software algorithms.3

Of course, our tool is not the only testing environment suitable for the analysis of large Simulink models.
Mathworks’ System-Testa is a tool to automatically test a Simulink model. However, it only provides random
Monte Carlo testing or full combinatorial exploration, which, in most cases would result in a prohibitively
large number of test cases. The tool generates elaborate testing reports, but does not perform any advanced
statistical analysis on the test results. Other tools, like Symbolic PathFinder,4 T-VECb, or MathWorks’
Design verifierc can automatically generate a minimal set of test cases that completely covers all elements
of the model. However, these tools are not tailored toward parametric variations or robustness analysis, and
they usually do not scale to large models.

The rest of this paper is structured as follows: in the next section, we describe the basic structure of
the ERIS Simulink model and it characteristics. Section III the discusses the analysis requirements that
we address by parametric testing, which is presented in detail in Section IV. Section V discusses, how the
results of the simulation runs are presented in autogenerated HTML reports, how multivariate clustering is
used to find structure in this usually huge data set and a statistical approach toward error propagation and
parameter sensitivity analysis. Finally Section VI discusses future work and concludes.

II. ERIS Failure Models and Simulation

II.A. The Ares I Rocket

Figure 1. The Ares I rocket and its elements

NASA’s Ares I is an in-line, two-stage rocket topped by the
Orion Crew Exploration Vehicle (CEV) and its Launch Abort
System. In addition to its primary mission to carry astronauts
to Earth orbit, Ares I could also deliver supplies to the In-
ternational Space Station (ISS), or could “park” payloads in
orbit for future retrieval. During ascent, the First Stage boosts
the vehicle towards low Earth orbit. About two minutes after
launch, the spent booster separates, and the Upper Stage En-
gine ignites to power the vehicle into a circular orbit. It can
be structured into the categories: The First Stage is a single,
five-segment reusable Solid Rocket Booster (SRB) similar to
the Space Shuttle’s solid rocket motor. The Upper Stage uses
a J-2X engine which generates thrust by combusting its cryo-
genic liquid propellants – oxygen and hydrogen. Ares Elements
are shown in Figure 1.

ahttp://www.mathworks.com
bhttp://www.t-vec.com
chttp://www.mathworks.com

2 of 10

American Institute of Aeronautics and Astronautics

http://www.mathworks.com
http://www.t-vec.com
http://www.mathworks.com


II.B. The ERIS Failure Simulation

The ERIS Failure Simulation is a unified, modular, hierarchical representation of the Ares I Launch Vehicle,
using quantitative equations. The physical models of various subsystems are integrated using the Mat-
lab/Simulink environment for an integrated ERIS model. With this model, the nominal flight performance
characteristics can be studied. Additionally, failures can be injected to see their effects on vehicle state and
on vehicle behavior. In this model, failures are injected to simulate the overall behavior of virtual model
of Ares I. These failures do not include vehicle structural failures and catastrophic events (e.g., break-up).
ERIS Failure Simulation outputs time-stamped vehicle state variables to create scenario data sets, for spe-
cific injected failures. As a baseline simulation, nominal flight characteristics are established for the ERIS
model. ERIS, which stands for Evaluation of Rocket Integrated Subsystems, is an integrated model of all
major subsystems such as Avionics, Ground and Control, RCS, TVC, MPS, and J2-X, at various levels of
detail (Figure 2). The ERIS model, developed in Matlab/Simulink, is hierarchical in nature. It started as a
generic launch vehicle model and then Ares-specific details to the subsystems were added.

F
ir

st
 S

ta
ge

Gravity
Atmosphere

Environment

IMU

Avionics

UpperStage

Avionics

FirstStage

UpperStage

FirstStage

Manager
Mission

STAGE
UPPER

Sensors

USE

STAGE

FIRST

Sensors

TVC

TVC

time

vectoring

measurment

time

thrust propellant

U
pp

er
 S

ta
ge

Figure 2. Major ERIS subsystems for first and upper stage

It can be structured into the categories: (a)
the external vehicle dynamics and controls (with 6
subsystems) and (b) the internal vehicle dynamics
and response, which is comprised of 10 subsystems.
Apart from these blocks, multiple pieces of avion-
ics systems along with special controls are added to
the integrated system. More specifically, the model
accounts for Ares I geometry (in Constellation co-
ordinate systems), subsystem and component func-
tions as equations, aerodynamic properties, flight
dynamics, mass properties, Earth’s atmosphere, and
gravity. Most subsystems, end effectors and sen-
sors (real measurements, as well as computed val-
ues) are modeled. ERIS provides an easy way to
inject faults, component failures, command failures,
and sensor noise to study their effects on integrated
vehicle performance. It can simulate failure modes
such as loss of vehicle and/or loss of mission due
to major emergency conditions. The model gener-
ates time-stamped sensor readings on Ares I for a
nominal flight, and for off-nominal cases, spanning
the ascent phase of the mission timeline. The ERIS
Failure Simulation is a very large Simulink model (containing approximately 16 top-level blocks, more than
900 inputs, parameters, and gains, and more than 170 outputs) but it easily runs on a single-processor
desktop.

It produces repeatable results and is being tested in multiple ways: through parametric testing (as
discussed in this paper), with test case generation tools, and with integrated integrated vehicle model com-
parisons with outputs of other models such as MAVERIC from MSFC. ERIS failure analysis adopts the
approach of parametric testing in finite input-output parameter spaces along with constants and gains of
the model.

III. Analysis Requirements

The ERIS Failure Simulation is a critical part of the Ares 1 on-board software development. Therefore,
it must be tested thoroughly for accreditation. As discussed above, the system must not only be exercised
using different failure scenarios, but also a variation of important model parameters (out of the more than
900 parameters) must be used for robustness analysis. In this paper, an injected failure is always attached
to a Simulink signal, has a time of occurrence (seconds into ascent), and an indication if this is a First Stage
or Upper Stage failure. Obviously, an exhaustive exploration is prohibitively expensive. Thus, we aimed to
perform the following set of experiments

1. systematic excitation of First Stage failures and variations of failure times (single-failure mode),

3 of 10

American Institute of Aeronautics and Astronautics



2. systematic excitation of Upper Stage failures and variations of failure times (single-failure mode),

3. simultaneous injection of one First Stage failure and one Upper Stage failure at various times (system-
atic excitation), and

4. parametric analysis of important continuous performance parameters, like efficiency of fuel pumps or
amount of loaded propellants in the baseline configuration (no failures) and in the failure case

The test objective is to select a reasonable subset of variables, and their ranges, which can generate
sufficiently distinct trajectories for Ares I to define an expected envelope of trajectories. Thus improbable,
or extremely unlikely, scenarios are not considered such as the ”no fuel loaded” case.

Because of the size of the model and rapid succession of model versions, we have developed a testing
harness, which can execute all runs automatically, and which only requires minimum changes to the model.
The definition of which parameters and variables are to be used for each experiments can be easily done by
the user using an Excel spreadsheet. After the execution of all runs, data analysis is performed and the tool
generates several HTML reports, which will be presented in more detail below. These reports present the
data run-by-run, or variable-by-variable. Failure information and correlations between recorded variables
are also presented in HTML reports. The main goal of these reports is to enable the analyst and modeler to
easily navigate the test results and obtain comparisons between the nominal and failure cases.

IV. Parametric Testing

IV.A. The Testing Process

The overall testing consists of several steps, which have to be prepared and carried out. Figure 3 gives
a sketch of this process. Based upon the desired test goals (testing for failure cases, parametric analysis,
or a combination thereof), appropriate sets of test cases are generated. These are provided to the ERIS
simulation model and executed. Our test harness can automatically instrument the Simulink model so that
only minimal user interactions are required. All simulation runs need to be monitored to catch potential
problems in the simulator. Finally, the recorded data from the simulation runs are analyzed and HTML
reports are generated.

IV.B. Generation of Test Cases

Analysis
Report

Generation

Clustering

Figure 3. Process Flow Chart for Parametric Analysis

As the full combinatorial exploration of all possible
values of input and model parameter reaches infeasi-
ble numbers, we experimented with a combination of
combinatorial exploration of selected failure modes
and failure time, n-factor combinatorial exploration,
and Monte Carlo random generation. As input for
the testcase generation an Excel spreadsheet pro-
vides the following information:

1. For each model parameter to be varied, the
nominal, minimal, and maximal value is given.
The tool then generates test cases with val-
ues within the range. The domain specialist
should provide appropriate values for the min-
imal and maximal values.

2. For each possible failure mode, selected from
the auto-generated spread-sheet, the following
information must be provided by the domain
expert: can the failure mode be selected at
all? if yes, at which points in time (simulation
time) will the failure be injected (e.g., at t=0
or t=110s or t=150s)? The user must furthermore specify if the failure mode belongs to First Stage
or Upper Stage, and must select if a single failure is activated or a combination of 2 failures is used.

4 of 10

American Institute of Aeronautics and Astronautics



In our experiments, we generated a full combinatorial exploration for the failure modes, as the number
of possibilities for the single failure and the 2-failures were reasonably limited. For the model parameters
(and optionally the failure modes as well), the tool can switch between Monte-Carlo and n-factor.

The Monte Carlo (MC) testcase generation treats each input variable as a statistical variable with a
given probability density function (in our case Gaussian or uniform), from which values for the test cases are
randomly drawn. Although MC test cases can be generated very easily, there is no guarantee whatsoever
regarding uniqueness and coverage of the input space, resulting again in the need to generate a huge number
of test cases.

In real systems, most failures are caused by a specific, single value of one input variable or parameter. The
case that a fault is triggered by a specific combination of two variables is much less likely. Even more unlikely
is the case that 3 input variables must have specific values in order to trigger the failure; the involvement of
4 or more variables can be, for most purposes, ignored. This observation5–7 has been used to develop the
n-factor combinatorial testcase generation. Here, the generated cases completely cover all combinations of
variables up to n.

The literature describes a number of efficient algorithms8 including the IPO algorithm.9 For our exper-
iments, we used a tool developed at JPL,1 which extends the IPO algorithm. Table 1 shows the number
of test cases generated for different settings. For each continuous variable (e.g., tank pressure), the entire
variable range is subdivided into k equidistant bins. If a bin is selected, a random number from this bin is
drawn and comprises the actual parameter value. For our experiments, we considered three sets of variables:
a small set of 5 continuous parameters, a set of 12 parameters, and a combination of these 12 parameters with
8 discrete failure mode variables. Table 1 lists the different combinations. For the continuous variables, we
chose 5 or 10 bins; the discrete variables had different numbers of values each (last row). A full combinatorial
exploration (comb) generates a very large numbers of test cases, compared to n-factor. The table lists the
number for various values of n and the run time to generate those (on an intel MacBook Pro). Run times
were limited to 10 minutes.

No Vars No Bins comb 1-fact 2-fact 3-fact 4-fact

5 5 3 · 103 10 68 [<1s] 360 [<1s] 1,534 [2s]

12 5 244 · 106 10 99 [<1s] 690 [2s] 4,355 [85s]

5 10 100 · 103 20 255 [<1s] 2,768 [2s] 24,338 [100s]

12 10 1 · 1012 20 361 [2s] 5,317 [66s] –

20 var 87 · 1018 34 556 [2s] 9,640 [610s] –

Table 1. Number of test cases generated with full exploration (comb) and n-factor (n = 1, 2, 3, 4) exploration.

IV.C. Running the Tool

As described above, the entire configuration for the tool is stored in an Excel speed sheet. A default spread
sheet with all possible variables can be conveniently generated directly from the Simulink model using our
tool set. From this input, the tool automatically generates all required test cases. The Simulink model is
then automatically instrumented such that it uses the specific input values. When each test case is executed,
selected model variables are stored as time series data (arrays with time stamps). These data form the basis
for subsequent data analysis. For efficiency purposes, all simulations were executed using Simulink’s “rapid
acceleration mode”, where the model is first compiled into C and then run as a separate executable. For
each iteration, the Simulink model runs for a pre-defined simulation time spanning the burn phase for First
Stage, separation, and the main burn for Upper Stage.

As discussed earlier, the ERIS model is a continuous model. Exercising it with parameters, which deviate
(on purpose) substantially from nominal values can cause a non-termination of the Simulink model. In most
cases, such parameter settings cause oscillations, which require an extremely small step size. Unfortunately,
Simulink does not provide any functionality to abort a simulation after a certain amount of CPU time. An
additional Simulink subsystem, which polls the CPU time in regular intervals and stops the simulation after
the limit has been reached did not work for our purposes, because in several cases, the simulation did not
terminate in the inner loop. To avoid such problems, an external Unix process was started, which monitored

5 of 10

American Institute of Aeronautics and Astronautics



the simulation process and killed it after it reached a CPU time limit. Only with this kind of external
safe-guards it has been possible to automatically run thousands of test cases reliably.

V. Data Analysis and Results

For each run, all values for selected model variables are stored as arrays with time. Although most
experiments yield large data sets, we chose to keep all raw data in order to be as flexible as possible for
the subsequent data analysis phase. This is in contrast to many other testing harnesses, where a specific
“pass/fail” property has to be provided up-front and any change of the property requires a time-consuming
re-execution of the test cases (as in e.g., Mathworks’ System-Test). Using these simulation data, our tool
set provides several visualization and analysis modes, which can be triggered by Matlab commands or which
can be accessed through a simple graphical user interface.

V.A. Generation of Reports

For each experiment, the tool automatically generates two standardized HTML reports. Because this tool is
being used repeatedly with different versions of the models, all relevant information about the model and the
experiment set-up must be provided in one single document. We chose HTML, because it does not require
a special viewer, is easy to generate, and provides all necessary methods for simple navigation. The current
version of the tool, however, does not provide any traceability of the experiment and its results to elements
of the Simulink model or requirements documents.

Figure 4. Autogenerated HTML report (excerpts)

Figures 4 and 5 show selected screen shots from the report, which presents the data run-by-run. The first
figure displays the top level portion of this report. A standardized (modeled in close accordance with relevant
NASA standards) header contains all important information about the model and the experiment and lists,
which parameters have been varied and which failure variables have been set. Then, a tabular overview of
all runs is presented, together with a summary information about each run. Of particular interest here is
the information if the simulation terminated early or ran through the entire specified simulation time. Each
entry is hyperlinked into pages, which show all details of each individual runs (Figure 4(right) is an example).
Here, thumb nail plots for each recorded variable and a comparison with the nominal run (in blue) give a
quick overview on what happened during the simulation. Clicking on a thumb nail opens up a full-size plot
in a separate window (Figure 5). This specific figure shows the acceleration related to Flight computer 1
(FC1). The pages for the individual runs also contain a list of error messages that occurred during the run
as well as the actual setting for each variable in tabular format (not shown).

A simple graphical user interface, depicted in Figure 6 allows the user to visualize individual simulation
variables for a selection of simulation runs, in our case, relative values of the roll-rates are shown.

6 of 10

American Institute of Aeronautics and Astronautics



Figure 5. Plot of individual variable shown with comparison
to nominal scenario (blue).

Figure 6. User Interface for Indi-
vidual Parameter Analysis

A second HTML report produces plots for each recorded model vari-
able (“variable-by-variable report”). Here, the traces for all runs are su-
perimposed. Figure 7 shows a plot where the acceleration is shown over
time. Different parameter settings usually cause minor variations with
respect to the nominal case. A big deviation from the nominal behavior is
caused by the effects of an injected failure that becomes active at around
the index of 200. The top group of curves shows that a substantial spread
in acceleration can be a result of this failure. The parameter settings of
the simulation run depicted in blue curve caused a big negative acceler-
ation around separation, indicating a potential problem. The horizontal
red line shows the default value, which is to be reached after separation
of the stages. The purpose of this variable-by-variable report is to give
the analyst a quick overview on how the parameter variations in the ex-
periment influenced the development of the recorded variables. Drastic
changes indicate that this model variable is sensitive with respect to the
experimental settings and invites further investigation. Variables that do
not change over the experiment (or only change very little) can be ignored
for further data analysis or can indicate a problem with the model.

Figure 7. An example plot from the variable-by-variable report

Finally, a failure correlation report
provides basic information on how pa-
rameter settings influence the outcome
of each simulation run. This report
produces scatter plots over each of the
changed input parameters. Each run pro-
duces a single dot in each of the plots.
These dots are colored according to the
result of the simulation runs. In our ex-
ample (Figure 8), dots are colored ac-
cording to the abortion time of the simu-
lation run. Blue dots correspond to suc-
cessful simulations, magenta dots mark
simulations, which failed mission goals,
and red dots mark early simulation ter-
mination. This plot shows some obvious
observations, for example that without
a sufficient fuel load or highly inefficient
pumps, the launch cannot be successful.
This type of visualization can also pro-
vide more information, in particular if the analysis is combined additional statistical data analysis, which

7 of 10

American Institute of Aeronautics and Astronautics



we will discuss in the next section. There, the coloring of the data points is determined by more advanced
analyses.

V.B. Clustering Analysis

Figure 8. Failure scatter plots over a subset of varied parameters. (red
= simulation failure, blue = mission success, magenta = mission objec-
tives failed)

The result of the simulation runs with in-
jected failures and parametric variations
result a very large, high-dimensional set
of traces over time. Except for the anal-
ysis of individual runs or checking for a
specific property, manual analysis is in-
feasible. In our work, we use multivari-

ate clustering , a machine learning tech-
nique to automatically detect structure
in a large, high-dimensional data set. All
simulation runs are sorted into a number
of individual groups according to their
relative similarity. Then, this informa-
tion can be used to guide visualization
and further analysis.

In a first step, we reduce the size
and complexity of the data set by man-
ually selecting a set of features. A fea-
ture compresses one variable trace into
a single scalar value for each simulation
run. Typical examples include “maxi-
mal value” (e.g., maximal roll accelera-
tion during ascent), “value-at-end” (e.g., left-over propellant), or “sum”, which provides an approximation
of the integral, e.g., to measure the overall amount of exercised control. Other features yield discrete values,
e.g., “unstable”, “fault”, or “separation occurred”. These features can be generic or specific to the ERIS
model. We have developed a simple graphical user interface (Figure 9), which allows the analyst to easily
select features and customize the clustering analysis. This graphical user interface allows the user to select
variables of interest (top left of Figure 9) and features as well as statistical properties for each selected
variable (pop-up window on the lower right corner). After extraction of the data, clustering can be started;
control parameters for clustering and other analysis methods (currently not used) and plots about the qual-
ity of the clustering are parts of the interface. Finally, HTML reports can be generated directly from this
graphical user interface.

Figure 9. AutoBayes Clustering User Interface

8 of 10

American Institute of Aeronautics and Astronautics



For the actual clustering, we use C code that has been generated by the AutoBayes tool. AutoBayes10,11

(developed at NASA Ames) is an automatic system that generates customized data analysis algorithms
from high-level statistical specifications. The selected features in general have different statistical properties
and probability density functions (PDF). Some features are normal (Gaussian) distributed, whereas others
require specific PDFs (e.g., for angular values). Thus, the use of library functions (which usually only handle
normal distributions) is not possible. Since each data analysis job requires a different customized algorithm,
the AutoBayes tool is ideally suited for this task.

Figure 10. Clustering Result

Once the data have been clustered into a user-selectable number of groups (usually 3 to 8), another
HTML report is generated. This report is similarly structured to the ones discussed above. For pairs of
features that have a strong correlation with each other, correlation plots are generated where each data point
is colored according to which group it belongs. An example is shown in Figure 10. Both panels show the
correlation between a varied input parameter (pump efficiency, loaded propellant) and the selected feature
of a recorded simulation variable (deviation from nominal case in yaw rate and total mass, respectively).
Each dot corresponds to a single simulation run. Here, the dark blue class depicts nominal or close to
nominal behavior; brown dots show substantial deviation in the yaw rate. Yellow and light blue classes do
not show a deviation in this variable, but the light blue runs obviously only occur with large amounts of
loaded propellant, as indicated on the right panel. The right panel also reveals that the deviation in the yaw
rate is obviously independent of the amount of loaded propellant over large ranges, because there is no clear
separation of the brown and dark blue points in this plot.

V.C. Parametric Estimation

A detailed analysis of the uncertainties involved in the ERIS model and parameters is essential to understand
interactions within the integrated model. We have been studying these issues using parametric testing
described above. The sensitivity and error propagation of the simulated data set has strong similarities
with design of experiments. Sensitivity analysis looks at the effect of varying the inputs and parameters of
a mathematical model on the output of the model itself. Global and local sensitivity analysis uses a least
square approach with respect to the data set and model as well by varying input and model parameters.
This error analysis can be helpful to understand the behavior of the model and the parameter interactions
in the model.

Our parametric estimation analysis of variables during the ascent phase of the mission is specifically
focused on temperature, pressure, and propellant. The error analysis provides results regarding variable
sensitivity and impact on the model output. For this experiment, 200 noisy vectors were used as input data
for the model. The nominal model output is considered as the baseline and a sum of square errors between
nominal and simulated data is calculated. These numbers and cumulative distribution function of the error
provides insight into parameter sensitivity. Optimization techniques like smoothing or regularization can
be applied to these results, so that the envelope of simulated outputs can be estimated. The steps for this
analysis are shown in Figure 11(left). The right panel of this figure shows results of 200 runs, 83 of the
runs were above the average of sum of square error. The plot shows the pitch over time with a three sigma

9 of 10

American Institute of Aeronautics and Astronautics



Figure 11. Steps for calculation of parameter sensitivity and pitch rate with a 3σ envelope (right).

envelope that can be considered as a safe range to estimate and propagate the error. Results of this analysis
allow engineers and designers to re-evaluate model structure and input parameter ranges.

VI. Conclusions

In this paper, we have presented, how parametric testing can be applied to the ERIS failure simulation.
With a set of tools, which have been developed at NASA Ames we have been able to test the large ERIS
Simulink model on autogenerated sets of test cases, perform data analyses of the recorded simulation data,
and generate HTML reports. Because of the size and complexity of the model, our sophisticated way of
generating parameter variations and failure scenarios by using a combination of full exploration, n-factor
combinatorial, and Monte Carlo techniques proved invaluable to keep the number of test scenarios within a
manageable range without loosing coverage.

Manual analysis of the results of hundreds of simulation runs with more than 170 recorded variables is
impossible. With our tools, we can generate standardized HTML documents, which present the data in
various views and thus allow the analyst to easily browse and navigate the data. The high-dimensional data
set is automatically structured using feature selection and multivariate clustering. Future work will include
advanced data analysis using the NASA Ames margins tool. With this tool, safety margins and root cause
analyses in multiple variables can be performed.

References

1Schumann, J., Gundy-Burlet, K., Pasareanu, C., Menzies, T., and Barrett, T., “Software V&V Support by Parametric
Analysis of Large Software Simulation Systems,” Proc. IEEE Aerospace, IEEE Press, 2009.

2Gundy-Burlet, K., Schumann, J., Menzies, T., and Barrett, T., “Parametric Analysis of ANTARES Re-entry Guidance
Algorithms Using Advanced Test Generation and Data Analysis,” Proc. iSAIRAS 2008 (9th International Symposium on
Artifical Intelligence, Robotics and Automation in Space), 2008.

3Giannakopoulou, D., Bushnell, D., and Schumann, J., “Formal Testing for Separation Assurance,” accepted AMAI (special
issue Formal Methods in Aerospace), 2010.

4Pasareanu, C. S., Mehlitz, P. C., Bushnell, D. H., Gundy-Burlet, K., Lowry, M. R., Person, S., and Pape, M., “Combining
unit-level symbolic execution and system-level concrete execution for testing NASA software,” ISSTA, 2008, pp. 15–26.

5Cohen, D., Dalal, S., Parelius, J., and Patton, G., “The combinatorial design approach to automatic test generation,”
Software, IEEE , Vol. 13, No. 5, Sep 1996, pp. 83–88.

6Dunietz, I. S., Ehrlich, W. K., Szablak, B. D., Mallows, C. L., and Iannino, A., “Applying design of experiments to
software testing: experience report,” ICSE ’97: Proceedings of the 19th international conference on Software engineering,
1997, pp. 205–215.

7Wallace, D. R. and Kuhn, D. R., “Failure Modes in Medical Device Software: an Analysis of 15 Years of Recall Data,”
International Journal of Reliability, Quality and Safety Engineering, Vol. 8, No. 4, 2001.

8Grindal, M., Offutt J., and Andler, S., “Combination testing strategies: a survey,” Software Testing, Verification and
Reliability, Vol. 15, No. 3, 2005, pp. 167–199.

9Tai, K. and Lie, Y., “A Test Generation Strategy for Pairwise Testing,” IEEE Transactions on Software Engineering,
Vol. 28, No. 1, 2002, pp. 109–111.

10Fischer, B. and Schumann, J., “AutoBayes: A System for Generating Data Analysis Programs from Statistical Models,”
J. Functional Programming, Vol. 13, No. 3, May 2003, pp. 483–508.

11Schumann, J., Jafari, H., Pressburger, T., Denney, E., Buntine, W., and Fischer, B., “AutoBayes Program Synthesis
System Users Manual,” Tech. Rep. NASA/TM-2008-215366, NASA, 2008.

10 of 10

American Institute of Aeronautics and Astronautics


	Introduction
	ERIS Failure Models and Simulation
	The Ares I Rocket
	The ERIS Failure Simulation

	Analysis Requirements
	Parametric Testing
	The Testing Process
	Generation of Test Cases
	Running the Tool

	Data Analysis and Results
	Generation of Reports
	Clustering Analysis
	Parametric Estimation

	Conclusions

