Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk Superalloy.

J. Telesmana, P. Kantzosb, T.P. Gabb and L.J. Ghosnc

aNASA GRC - Cleveland, OH
bHoneywell International - Phoenix, Az
cOhio Aerospace Institute – Cleveland, OH

A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.
Effect of Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk Superalloy

J. Telesmana, P. Kantzosb, T.P. Gabbª and L.J. Ghosna

ªNASA Glenn Research Center – Cleveland, OH
ªHoneywell International – Phoenix, AZ

TMS 2010 Annual Conference
Seattle, WA
February 17, 2010
Motivation:
• Machining induced material surface damage is a cause of a large fraction of
turbine component failures and a cause of numerous aircraft accidents. High
strength P/M turbine components are highly stressed and are susceptible to
machining damage which can cause low cycle fatigue failures.

Approach:
• Team with an engine company to study the effect of production tooling on
surface integrity and its effect on low cycle fatigue.
• Extensive characterization and quantification of the effect of machining
conditions on surface/near surface material response. QUANTIFY DAMAGE.

• Measure surface roughness for each specimen tested.
• Measure induced residual stresses for each machining condition.
• Measure % cold work for each machining condition.
• Perform a detailed quantitative fractographic evaluation of each LCF failure.

• Configured LCF specimen machined using production tooling.
• Select one relevant test condition for LCF testing.
• Perform Multiple repeats of LCF tests for each machining condition.
• Use statistical modeling to determine and model the key machining and material
variables which control low cycle fatigue response.
Configured Broached LCF Specimen Extraction and Testing

- Material: NASA’s LSHR P/M alloy
- Fine Grain, Subsolvus Heat Treatment
- Test Temperature: 1200°F
- Max Stress: 140 ksi; R=0.05
- Frequency: 0.333 Hz for 24 hrs; 5 Hz
- 4 to 8 repeats per condition; additional tests in progress.

Broaching performed at Honeywell using production tooling.
- Broach blank representative of full thickness disk rim.
- LCF specimens extracted by wire EDM and ground to final dimensions.
- Each specimen represents different location along broach length.

Broaching variables evaluated:

1) **Tool Wear:** a) Sharp (newly re-sharpened) b) Dull (pre-designated number of broaching operations reached)

2) **Broaching Speed:** a) Slow; b) Medium c) Fast (Variation in speed >> actual practice)
• Residual stresses and cold work were measured for each of six broaching conditions as a function of distance from the tool entry at three parallel locations (30 measurements per blank).

• Based on surface measurements, two locations with the highest and lowest residual stresses were selected for depth profile measurements.

• Residual stress measured in the axial direction.
• 3D FEM elasto-plastic analysis performed of the contoured LCF specimen.
• Max loading direction stresses are below the surface.
• Due to notch plasticity substantial compressive stresses form on unloading.

\[K_t = 1.6 \text{ (elastic)} \]
Roughness Analysis of Broached Surface Finish

<table>
<thead>
<tr>
<th>Speed</th>
<th>Sharp</th>
<th></th>
<th>Dull</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ra</td>
<td>Rq</td>
<td>Rz</td>
<td>Ra</td>
</tr>
<tr>
<td>Slow</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.77</td>
</tr>
<tr>
<td>Medium</td>
<td>0.88</td>
<td>0.90</td>
<td>0.92</td>
<td>0.75</td>
</tr>
<tr>
<td>Fast</td>
<td>0.90</td>
<td>0.93</td>
<td>0.96</td>
<td>0.45</td>
</tr>
</tbody>
</table>

- Surface roughness analysis performed on each specimen.
- Sharp broach tooling produced a rougher surface finish than dull tooling.
- Increase in the dull tooling machining speed reduced roughness.

Normalized
• Some surface damage due to broaching visible for all conditions.
• Higher speeds appear to cause more extensive surface deformation.
• No white surface layer detected – over aggressive machining.
Surface Residual Stress Profiles as a Function of Distance From Slot Entry

• Residual stresses not uniform across the broach slot - highest at the tool entry point.
• Sharp tooling produced considerably higher residual stresses than dull tooling.
• For both sets of tooling, lowest broaching speed resulted in the lowest (most compressive) residual stresses.
• Dull tooling produced significantly larger range of residual stresses.
Residual depth profiles for the dull tool set are substantially more compressive than sharp tool set.

- Slower speeds typically resulted in lower (more compressive) near surface residual stresses.
- Compressive stresses depths up to 0.005 inch (dull tools).
• Overall, dull tooling produced higher amount of cold work which was relatively uniform across the slot thickness.
• Sharp tooling exhibited higher % C.W. on the surface which decreased with distance from entry.
Fatigue testing resulted in over 2 orders of magnitude spread in LCF lives.

The dull tooling resulted in \(~2X\) greater mean LCF lives and larger scatter than sharp tooling.
Sharp Tooling - Effect of Broaching Speed on LCF Life

- Low broaching speed had highest mean LCF life for the sharp tooling.
- This condition also exhibited the most compressive surface residual stresses for sharp tooling.
• Mean life of the dull tool set no more than ~2X variability.
• High speed broaching resulted in the lowest mean LCF lives.
• High speed broaching resulted in highest (less compressive) residual stresses.
• Lower variation in mean LCF life corresponds to smaller differences in residual stresses between various speeds in comparison to sharp tooling.
Parameterized Statistical Model Developed Relating Broaching Parameters to LCF Life and Scatter in Life

- Characteristic LCF life most strongly increased with decreasing speed, and also increased with increasing wear.
- Increase in wear strongly correlated to increase in scatter.

Preliminary statistical analysis – more robust analysis in progress
Multi-Variate Linear Regression Performed to Relate LCF Lives to Residual Stresses and Cold Work

Mean Ln Life = 13.3 - 0.0157×Residual Stress-ksi - 0.07×Cold Work-%

- Mean life significantly increased as surface residual stress became more compressive and cold work decreased.
- Change in residual stresses was the strongest predictor of LCF life.
• Internal initiations originated at subsurface inclusions (mostly alumina inclusions; few zirconia inclusions).
• Broaching grooves were sites for initiation and growth of majority (not all) of the surface initiated specimens.
• For both dull and sharp tool sets, surface initiation locations resulted generally in much shorter lives than internal initiations.
• Majority of the failures for both tool sets initiated from subsurface inclusions.
Summary

• Production tooling was used to evaluate the effect of broaching machining parameters on surface integrity and LCF behavior of the LSHR P/M disk alloy.

• Variation in broaching parameters and the corresponding changes in surface response produced up to two orders of magnitude spread in LCF lives.

• Increase in tool wear was found to increase the mean LCF life but it also increased the scatter in LCF lives. Decrease in the machining speed increased the mean LCF lives.

• Mean LCF life significantly increased as surface residual stresses became more compressive and cold work decreased. Changes in the residual stress distributions were found to be the most important predictor of fatigue lives.

• Statistical models were developed which captured the relationship between the broaching parameters, residual stress distributions, cold work and fatigue life.