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This work presents a novel approach to the functionalization of graphite nanoparticles. The technique
provides a mechanism for covalent bonding between the filler and matrix, with minimal disruption to
the sp2 hybridization of the pristine graphene sheet. Functionalization proceeded by covalently bonding
an epoxy monomer to the surface of expanded graphite, via a coupling agent, such that the epoxy con-
centration was measured as approximately 4 wt.%. The impact of dispersing this material into an epoxy
resin was evaluated with respect to the mechanical properties and electrical conductivity of the graphite–
epoxy nanocomposite. At a loading as low as 0.5 wt.%, the electrical conductivity was increased by five
orders of magnitude relative to the base resin. The material yield strength was increased by 30% and
Young’s modulus by 50%. These results were realized without compromise to the resin toughness.

� 2010 Published by Elsevier Ltd.
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E1. Introduction

As advanced materials applications dictate increasingly rigor-
ous composite performance, innovative technologies capable of
providing properties beyond those of traditional polymer matrix
composites are becoming necessary. Recently, multi-functional
composites providing structural integrity, as well as imparting
additional capabilities have been widely investigated [1,2].
Nanomaterials in particular have been called upon to provide such
performance.

Nanoparticulate fillers enable property enhancement as a result
of the large interface available to the matrix [3,4] This interfacial
area is only beneficial however, if matrix and particle contact is
optimized. Several techniques to modify nanoparticle surfaces
have been identified, and vary, based on the particulate chemistry.
For example, layered silicate clays are typically made compatible
with a matrix by exchange of the naturally occurring inorganic cat-
ion within the silicate with a positively charged organic compound
[5]. Carbon nanotubes have been modified by oxidation of the tube
[6–8], by covalently bonding an organic functionality to the tube
[9–11], or by non-covalent methods [12,13]. Graphite nanoflakes
are often functionalized through processes beginning with oxida-
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tion of the graphene plane [14–16], or by a coating and compound-
ing method developed by the Drzal group [17]. In most cases,
chemical modification results in material property trade-offs; for
example, functionalization may improve dispersion, however,
functionalization of carbon particles can compromise conductivity
[18–20].

Graphene platelets, in their pristine form, are characterized by a
low surface energy, and are therefore poorly wetted by most poly-
mer matrices. Consequently, dispersion is often poor, leading to re-
duced mechanical properties of the composite. However, the
aromatic nature of the un-oxidized graphene planes offer greatly
enhanced transport properties, such as thermal and electrical con-
ductivity. Such potential is reached when the graphene sheets are
dispersed into individual platelets, which again is difficult in a sit-
uation where wetting is poor. Therefore, oxidation and functional-
ization is necessary to improve dispersion, however this occurs
with the risk of reducing conductivity. There have been recent pub-
lications which address tailoring nanocomposite properties using
graphene sheets oxidized to various extents to mitigate the
trade-off between mechanical and transport properties [21,22].
The functionalization technique described in this work does not
begin with oxidation. Rather, an epoxy monomer was covalently
bonded to the graphite surface through a coupling agent. This
provided a means to create a strong filler matrix interface without
significant impact to the conductivity.
nctionalized graphite nanoparticles and the physical properties of epoxy
h.2010.02.023
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2. Experimental

2.1. Materials

Epoxy resin, Epon 826, was generously supplied by Resolution
Performance Products. Araldite DY3601, an aliphatic epoxy resin,
and Jeffamine D230 curing agent were supplied by Huntsman
Chemicals. TG-679 is a Graftech product which was chemically
modified by Adherent Technologies, and the epoxy modified ver-
sion of this graphite will be referred to as ATI graphite [23,24]. Un-
treated expanded graphite from Superior Graphite was used for
comparison, and will be referred to as EG.
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2.2. ATI preparation

Expanded graphite, TG-679, (10.0 g) was combined with ATI-
9307 coupling agent (0.01 g) in 50 mL of 2-butanone (MEK). The
mixture was allowed to stir for 20 min to ensure homogeneity.
The solvent was then removed by rotary evaporation. The treated
graphite was combined with EPON 828 (0.10 g) in 50 mL CH2Cl2.
The mixture was allowed to stir for 20 min, and the solvent was re-
moved by rotary evaporation. The graphite was then placed under
vacuum at 50 �C to remove residual solvent. To activate the cou-
pling agent, the graphite was heated in a vented oven at 210 �C
for 20 min. Once cool, the graphite was placed in an amber vial
and purged with argon. The particle dimensions of this material
were on the order of 50 lm in the lateral dimensions whereas
the lateral dimensions of expanded graphites (EG) have a typical
range of 300–900 lm (UCAR Grafguard 160–50A). The quantity
of epoxy coverage was characterized by TGA to equal approxi-
mately 4 wt.%.

The TGA characterization of ATI nanoparticles proceeded by col-
lecting an initial TGA curve of the ATI particles. The TGA curve of
as-received ATI graphite showed a weight loss of approximately
4%, before the material rapidly degraded above 600 �C. That weight
loss was attributed to the epoxy functionality covalently coupled
to the graphite. This was confirmed through reaction of methylene
dianiline (MDA) to the epoxy functionalized graphite. The ATI
nanoparticles (0.5 g) were dispersed in distilled water (85 mL) at
room temperature, under nitrogen flow. MDA (1.5 g, 7.6 mmol)
was dissolved in 25 mL ethanol. The MDA/ethanol solution was
added drop-wise to the aqueous suspension under vigorous stir-
ring. The mixture stirred for 24 h. The modified graphite was dried,
washed repeatedly with warm ethanol, and dried in a vacuum
oven overnight at 90 �C. These materials were characterized by
TGA to calculate the amount of MDA that had been grafted to each
material.

Following this reaction, the TGA curve showed �8% weight loss
between 240 �C and 600 �C, before rapid degradation, again above
600 �C. This result indicated that MDA is present in 4% by weight of
the sample, or 0.22 mmol MDA per 1 g of ATI graphite.
194

195

196

197

198

199

200

201

202

203
U
N

2.3. Nanocomposite preparation

Resin plaques of Epon 826 and DY3601 epoxy blends were pre-
pared in 70:30 equivalent epoxy ratios with graphite content of
0.5 wt.% and 1.0 wt.%. Epon 826 (18.4 g), DY3601 (7.875 g), and
the calculated amount of graphite were mixed at room tempera-
ture for 4 h. The curing agent, D230 (7.5 g), was added to the mix-
ture and poured into a 10.2 cm by 10.2 cm mold. The resin was
degassed at 40 �C for 3 h then cured at 75 �C and 125 �C for 2 h
each. The preparation of nanocomposites prepared with excess
amine curing agent followed the above procedure, using 7.9 g
D230 curing agent, 5% excess amine, or 8.25 g D230, 10% excess
amine.
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2.4. Characterization

X-ray diffraction (XRD) patterns were obtained using a Philips
XRG 3100 X-ray diffractometer with Ni-filtered Cu Ka radiation.
The XRD data was recorded in the range of 2h = 2–32�.

Transmission electron microscopy (TEM) specimens were pre-
pared by microtoming nanocomposite samples, 20–70 nm thick,
and floating the sections onto Cu grids. Micrographs were obtained
with a Philips CM 200, using an acceleration voltage of 200 kV. The
TEM images shown throughout this work are representative of the
dispersion observed throughout several sections, taken from vari-
ous regions, of each nanocomposite sample.

Electrical conductivity measurements were made by cutting
samples of approximately 3.5 cm by 0.7 cm from larger preparative
composites. Silver paint was used to apply electrical contacts to the
ends of the sample, covering top, bottom, sides, and end. The thick-
ness, width, and length dimensions of the composite were mea-
sured using a digital micrometer. The length used for calculations
was the gauge length between the electrodes. The samples were
mounted using spring clips into a Keithley Model 8002 Restest
High Resistance Test Box to minimize stray currents. A constant
voltage of 100.0 V dc was applied across the sample and current
was measured using a Keithley Model 617 Electrometer.

Tensile tests were run according to ASTM D638. Three dog bone
specimens of each material were tested. The tests were performed
on MTS 800 instrument at a displacement rate of 1.40 cm per min-
ute, using a 2200 N load cell. Optical measurements using digital
image correlation, as opposed to strain gages, were made using
ARAMIS software. In image correlation, a random speckle pattern
is painted onto the specimen. Cameras then track the displace-
ments of the speckled dots, and displacement fields and strains
are calculated by specialized computer algorithms. Once cali-
brated, the software can measure specimens under loading and
output strain and displacement results through automated meth-
ods without user intervention being required [25].

X-ray photoelectron spectroscopy samples were analyzed on a
VG Mk II ESCALAB, using Mg Ka X-rays at 300 W. The system con-
sisted of a turbo pumped prep chamber (base pressure 10�9 torr), a
fast load entry lock; and a main chamber which maintained a base
pressure of 1 � 10�10 torr using a diffusion pump with a cold trap.
The spectra were taken with the surface plane normal to the ana-
lyzer axis (90� take off angle) using an aperture of 1 mm � 1 mm.
Survey scans were initially taken to identify all components, fol-
lowed by higher resolution individual region scans using a pass en-
ergy of 20 eV. The spectrometer was calibrated to yield the
standard values of 75.13 eV for Cu3p and 932.66 eV for Cu2p3/2.
Atomic concentrations were then calculated based on the individ-
ual regions.

Viscosity measurements were performed by mixing graphite
with the epoxy matrix at room temperature for times ranging from
15 min to 2 h. Viscosity data was collected by submerging the tip
of a hand held Brookfield Synchro-lectric Viscometer into the resin
and graphite mixture, and reading the measured viscosity. The vis-
cosity is a measure of resistance to rotation of the viscometer tip.
3. Results and discussion

3.1. Characterization and dispersion of ATI graphite

ATI epoxy functionalized graphite was prepared using an ex-
panded graphite precursor. The preparation of expanded graphite
typically proceeds by acid intercalation of natural flake graphite,
followed by rapid heating in an oven which has been preheated
to approximately 1100 �C. At such temperatures, the acid quickly
volatilizes and forces the graphite layers apart as it evaporates
nctionalized graphite nanoparticles and the physical properties of epoxy
h.2010.02.023
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Fig. 1. Schematic of graphite expansion and functionalization process.

Table 1
Chemical characterization of graphite particles.

Sample Density
(g/cm3)

XPS
(%
oxygen)

FTIR

EG 2.25 1 3600 cm�1 (OH-stretch)
1700 cm�1 (C@O stretch)

ATI-epoxy
functionalized

1.7 9 3300 cm�1 (weak, OH-
stretch)
2900, 2800 cm�1 (C–H
stretch)
1700 cm�1 (C@O stretch)
1100 cm�1 (C–O/C–O–C
stretch)
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from within the graphite structure. The expansion process how-
ever does not expand each individual layer, but rather aggregates
composed of several graphene planes are stacked in an expanded
graphite ‘‘worm” [22].

The functionalization technique described in this work chemi-
cally modified only the outermost sheets of the stacked aggregates.
As such, the material was functionalized to an extent, but several
graphene planes remained in their pristine form. A schematic of
this process is illustrated in Fig. 1, and the presence of such aggre-
gates was confirmed using XRD as an intense diffraction peak at
2h = 26.7�, corresponding to the d002 spacing of natural flake
graphite.

The presence of the epoxy coating was confirmed by several
techniques, as described in Table 1.

The density of the ATI epoxy functionalized graphite decreased,
relative to the starting material, which indicated a change in the
physical characteristics of the modified graphite. This was attrib-
uted to a reduction in particle size relative to the pristine expanded
graphite. The increase in oxygen content, as measured by XPS and
the appearance of IR bands corresponding to epoxy functionalities
U
N

Fig. 2. SEM images of expanded graphite: (a) b

Please cite this article in press as: Miller SG et al. Characterization of epoxy fu
matrix nanocomposites. Compos Sci Technol (2010), doi:10.1016/j.compscitec
E
D

P
R

O
O

F

provide further confirmation of successful graphite modification.
The SEM images in Fig. 2 shows the graphene surface before and
after reaction with epoxy. The image in Fig. 2a is representative
of the sharp crystalline surface of the graphite plane and the image
in Fig. 2b shows that surface covered by the amorphous epoxy
functionalization.

The extent of epoxy coverage was determined by TGA as
approximately 4 wt.%. At this level of functionalization, a signifi-
cant benefit to the graphite dispersion was observed within an
epoxy matrix. TEM images presented in Fig. 3 illustrates the differ-
ence by which ATI functionalized graphite and expanded graphite
were dispersed. The image in Fig. 3a is representative of the disper-
sion of expanded graphite within the epoxy matrix, where the
black lines are the graphene plane edge. The image shows several
graphene aggregates clustered in one region of the image. This
unfunctionalized material was generally difficult to disperse by
the methods used in this work and the result was aggregates of
graphene sheets and clusters of those aggregates. Functionalization
of the expanded graphite resulted in a considerably improved level
of dispersion. Fig. 3b is a representative TEM image of ATI graphite/
epoxy. In this case, the sheet edges are visible throughout most of
the image. While some aggregation remains, the image shows a
significant portion of the graphite dispersed into separate sheets.
Additionally, overlap of the separate layers is visible in Fig. 3b.
The layer overlap contributes to the low graphite loading required
to measure electrical conductivity in this material. The nanocom-
posite conductivity will be discussed in greater detail later in this
paper.

The improvement in dispersion was due, in part, to the func-
tionalization present on some ATI graphite layers. However, it
may also have been a result of the decreased ATI graphite particle
size. The particle size of the ATI material was reported by the man-
ufacturer as 50 lm, vs. initial starting size of hundreds of microns
for the EG material.

The viscosity of each nanocomposite was measured during
graphite dispersion to understand the influence that reduced par-
ticle size and functionalization may have had on the dispersion
process. The data is plotted in Fig. 4. The results demonstrate a sig-
nificant increase in melt viscosity on mixing the unfunctionalized
EG particles. Dispersion of the ATI functionalized particles also in-
creased viscosity, relative to the unfilled resin, however the extent
of that increase was 50% less than that of the EG, despite the great-
er volume of ATI graphite present in the matrix.

The dispersion mechanism of ATI graphite was of interest as the
material was only partially functionalized. Therefore, while the
outermost sheets of an aggregate may be relatively easily sepa-
rated; there remain aggregates of unmodified, closely spaced
graphene sheets. The reason for the decline in the viscosity on mix-
ing the EG at 1.0 wt.% is unclear at this time and requires additional
analysis.
efore and (b) after epoxy functionalization.

nctionalized graphite nanoparticles and the physical properties of epoxy
h.2010.02.023
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Fig. 4. Melt viscosity of epoxy/graphite during dispersion.
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EDispersion was tracked by XRD as a function of mixing time. The
XRD patterns of 1.0 wt.% ATI at increasing mixing times are shown
in Fig. 5. The height of the diffraction peak cannot be used to quan-
tify the number of aggregated graphene sheets as intensity is rela-
tive and varies from sample to sample. However, the presence of
the diffraction peak does indicate that a number of graphene layers
remain intact until mixing exceeds 15 min. The diffraction peak is
absent for mixing times between 30 min and 2 h, as indicated as
the flat lines in the plot. The XRD patterns suggested graphene exfo-
liation, or an undetectable degree of aggregation, beyond 15 min of
mixing for both 1.0 and 0.5 wt.% percent ATI.

The dispersion times correspond well to the observed increase
in viscosity. Within the first 15 min of mixing the resin and graph-
ite, the viscosity doubled in the 0.5 wt.% material (from 1600 cP to
3000 cP), and increased by a factor of 4 in the 1.0 wt.% material
U
N
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Fig. 5. XRD patterns of 0.5 wt.% ATI in epoxy at increased mixing times.
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(from 1600 cP to 7100 cP). An increase in viscosity would be ex-
pected as the graphene is dispersing and more graphene surface
area is available for interaction with the matrix. Beyond 15 min,
the viscosity continued to increase, as graphite separation contin-
ued, however the rate of viscosity increase slows at longer mixing
times. This suggests that the majority of the layers are separated
and in contact with the epoxy, as confirmed by the XRD pattern.
E
D3.2. Electrical conductivity and mechanical properties

The interest of this paper was to evaluate trade-offs in mechan-
ical and transport properties that may result from functionaliza-
tion, taking into account the variation in dispersion between the
unfunctionalized EG and ATI epoxy functionalized graphite. Both
the mechanical properties and the conductivity were evaluated
on samples where ATI graphite was added to a stoichiometric ratio
of epoxy and curing agent. However, the presence of epoxy func-
tionalities on the graphite holds the potential to disrupt matrix
stoichometry, impacting material properties. Therefore, nanocom-
posite materials were also evaluated with either 5% or 10% excess
amine curing agent. This introduced reactive functionalities that
could bond between the filler and matrix.
318

319

320
3.2.1. Electrical conductivity
The conductivity of the nanocomposites increased with increas-

ing graphite concentration, as listed in Table 2. The resistivity of
the non-conductive pristine epoxy, was on the order of
5 � 1010 ohm-cm. ATI dispersion increased the conductivity by
up to five orders of magnitude at 1.0 wt.% loading (0.67 vol.%).
On the other hand, the unfunctionalized, but poorly dispersed EG
required a 3 wt.% loading before percolation was reached. The
low loading of ATI functionalized graphite required to improve
conductivity by five orders of magnitude is comparable to, or an
improvement of, the conductivity of many reported graphite–poly-
mer composites [26–28]. With respect to graphite nanocompos-
Table 2
Electrical resistivity (R) data for epoxy containing EG or ATI graphite.

Graphite R (ohm cm)
0.5 wt.%

R (ohm cm)
1.0 wt.%

R (ohm cm)
3.0 wt.%

EG 3.0E+10
(non-conductive)

1.0E+10
(non-conductive)

3.0E+8

ATI 1.3E+7 8.8E+5
ATI (5% excess amine) 4.6E+6 1.4E+5
ATI (10% excess amine) 2.2E+6 9.1E+5

nctionalized graphite nanoparticles and the physical properties of epoxy
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Fig. 6. Stress–strain curves of the neat epoxy, 0.5 wt.% EG, 0.5 wt.% ATI (0 excess
amine), and 1.0 wt.% ATI (0 excess amine).
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C
ites, the authors only found a lower percolation reported by Drzal,
where a polymer coating and compounding technique was also
used to disperse the graphite [17].

While poor dispersion will negatively impact conductivity by
requiring high loading to reach percolation, extensive oxidation
or functionalization may also lead to a non-conductive material
[29,30]. The partial functionalization present on ATI graphite re-
sulted in a level of dispersion and functionalization that was
acceptable to reach percolation at a low loading. The exceptional
improvement in electrical conductivity may be attributed to the
presence of un-oxidized graphene layers within the material, as
well as the layer overlap that was observed by TEM.

The addition of excess amine to this material did not impact the
electrical conductivity of the material. The purpose of adding the
excess amine was to improve upon the strength of the interface,
therefore any influence would be expected in the mechanical
properties.

3.2.2. Mechanical properties
Representative stress–strain curves for the neat resin and nano-

composites are plotted in Fig. 6. The curves for the nanocomposites
U
N

C
O

R
R

ETable 3
Stress–strain data.

Material 0.5 wt.% ATI graphite

E (GPa) ry (MPa) efailure (%) Toughness

ATI functionalized graphite
Neat resin 0.78 ± 0.04 17.7 ± 0.4 45 ± 8 875 ± 62
0% Excess amine 1.01 ± 0.06 21.2 ± 1.5 51 ± 4 896 ± 69
5% Excess amine 0.88 ± 0.01 20.3 ± 0.5 62 ± 3 1000 ± 34
10% Excess amine 0.69 ± 0.06 17.9 ± 0.2 67 ± 4 1151 ± 34

Expanded graphite
0.5 wt.% 1.19 ± 0.02 19.7 ± 1.4 20 ± 3 4 ± 0.4
1.0 wt.% 1.49 ± 0.03 23.8 ± 0.8 3 ± 0 0.5 ± 0.3
3.0 wt.% 1.83 ± 0.01 18.3 ± 0.1 2 ± 0 0.3 ± 0.1

Fig. 7. SEM images of the surface of failed tensile specimens contain
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all show a reduced ductility, however, the increase in yield
strength is sufficient to produce an overall tougher material; as
toughness was calculated by the area under the stress–strain
curve. The full dataset for the tensile tests is outlined in Table 3.

The tensile data for expanded graphite nanocomposites is in-
cluded for comparison. Young’s modulus, yield stress and strain
to failure were obtained from the stress–strain plots, and tough-
ness was calculated as the area under the stress–strain curve.

Significant increases in the nanocomposite strength and
Young’s modulus were observed on addition of 0.5 wt.% ATI func-
tionalized graphite, to a stoichiometric ratio of epoxy components.
The enhanced mechanical performance was attributed to the dis-
persion of the graphite nanoparticles into either individual sheets,
or small aggregates of graphene sheets. Further benefits to strength
and toughness were realized on increasing graphite loading to
1 wt.%. In this case, strength and Young’s modulus were increased
by 30% and 50%, respectively, relative to the base resin. At both the
0.5 wt.% and 1.0 wt.% loading, the trade-off in ductility and mate-
rial toughness was small to negligible. It should be noted that sim-
ilar levels of mechanical performance were not attained with EG
nanocomposites. In this case, strength and Young’s modulus was
increased but ductility and toughness were considerably reduced.
The reinforcement in this material was poorly dispersed and lacked
surface functionality to allow load transfer from the matrix to the
filler. Evidence of the graphite aggregation and poor interface in
these materials was observed in the failed tensile specimens by
SEM. A representative image is shown in Fig. 7. A SEM image of
the surface of a failed tensile bar containing ATI graphite is shown
for comparison. In that image, there is not evidence of large voids
resulting from interfacial failure. The images suggest a greater de-
gree of interfacial bonding in the ATI filled materials.

The marginal improvements to material properties of the sam-
ples containing excess amine may be due to the low degree of
epoxy functionalization on the graphite. As the epoxy coverage
consisted of only 4 wt.% epoxy, the added amine was unnecessary.
As a result, there may have been excess amine plasticizing the sys-
tem, which would account for the significant increase in nanocom-
1.0 wt.% ATI graphite

(MPa) E (GPa) ry (MPa) efailure (%) Toughness (MPa)

0.78 ± 0.04 17.7 ± 0.4 45 ± 8 875 ± 62
1.17 ± 0.01 23.1 ± 1.0 39 ± 1 779 ± 21
0.76 ± 0.07 17.5 ± 0.4 60 ± 4 1055 ± 48
0.81 ± 0.06 18.5 ± 0.5 63 ± 1 876 ± 14

ing 0.5 wt.% EG (left), and 0.5 wt.% ATI, 0% excess amine (right).
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Table 4
Glass transition temperatures of epoxy-ATI functionalized graphite nanocomposites.

ATI, 0% excess
amine

Tg (�C) ATI, 5% excess
amine

Tg (�C) ATI, 10% excess
amine

Tg (�C)

0% graphite 34 0% graphite 34 0% graphite 34
0.5 wt.% 35 0.5 wt.% 32 0.5 wt.% 29
1.0 wt.% amine 33 1.0 wt.% amine 29 1.0 wt.% 29
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posite toughness and ductility that was noted for these systems. A
decrease in Tg within the nanocomposite containing excess amine
was also observed, Table 4, suggesting the presence of unreacted
low molecular weight material. Additional curing agent would
have provided a means to ensure that the system was crosslinked;
however, the additional curing agent was not necessary as sug-
gested by the unimproved mechanical properties and the reduced
glass transition temperature.
442
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4. Conclusions

The unique feature of the ATI epoxy functionalized graphite
which functionalized a portion of expanded graphite layers, pro-
vided improved particulate dispersion and material properties.
The nanoparticle was well dispersed after only 15 min of stirring
with the epoxy resin, and dispersion did not increase epoxy viscos-
ity to the same extent as the unfunctionalized material, which ben-
efits the processability of this material. The result of the partial
functionalization was a five order of magnitude increase in electri-
cal conductivity and a 30% and 50% improvement in strength and
stiffness, respectively. A corresponding reduction in material
toughness was not observed.
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