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The high-fidelity generalized method of cells composite micromechanics model is extended to include constituent-

scale progressive damage via a proposed damagemodel. The damagemodel assumes that all material nonlinearity is

due to damage in the form of reduced stiffness, and it uses six scalar damage variables (three for tension and three for

compression) to track the damage. Damage strains are introduced that account for interaction among the strain

components and that also allow the development of the damage evolution equations based on the constituentmaterial

uniaxial stress–strain response. Local final-failure criteria are also proposed based on mode-specific strain energy

release rates and total dissipated strain energy. The coupled micromechanics-damage model described herein is

applied to a unidirectional E-glass/epoxy composite and a proprietary polymer matrix composite. Results illustrate

the capability of the coupledmodel to capture the vastly different character of themonolithic (neat) resinmatrix and

the composite in response to far-field tension, compression, and shear loading.

Nomenclature

A, B = material parameters
bTii, b

C
ii = normal tensile and compressive weighting

factors
D, H, L = dimensions of repeating unit cell, m
DT
i , D

C
i = tensile and compressive damage variables

da = increment in crack length, m
d �aiM = mode-specific increment in effective crack

length, m
di = secondary damage variable

dŴi
M = mode-specific increment in released strain

energy density, Pa
d�, h�, l� = dimensions of each subcell, m

E1, E2, E3 = Young’s moduli, Pa

EDi = current (damaged) Young’s modulus, Pa

E0
1, E

0
2, E

0
3 = initial Young’s moduli, Pa

G = strain energy release rate, J=m2

GCM = mode-specific critical strain energy release
rate, J=m2

GiM = mode-specific strain energy release rate, J=m2

G23, G13, G12 = Shear moduli, Pa

GC = Benzeggagh–Kenane failure criterion mixed-
mode critical strain energy release rate, J=m2

G0
23, G

0
13, G

0
12 = initial shear moduli, Pa

ki = instantaneous slope of material uniaxial stress–
strain response, Pa

k0 = normalized instantaneous slope of material
uniaxial stress–strain response

li = material length, m
N�, N�, N� = number of subcells within repeating unit cell in

each Cartesian coordinate direction
Q", R", S" = shear damage initiation strains
Sij = compliance matrix terms, Pa�1

S0ij = initial compliance matrix terms, Pa�1

t = depth of cracked body, m
W = strain energy density released, Pa
Ws = total energy released, J
WC
s = critical compressive strain energy, J

XT" , X
C
" , Y

T
" ,

YC" , Z
T
" , Z

C
"

= tensile and compressive normal damage
initiation strains

XT , XC = axial tensile and compressive strengths, Pa
x1, x2, x3 = global Cartesian coordinates, m
y1, y2, y3 = local Cartesian coordinates, m

�y���1 , �y���2 , �y���3 = subcell local Cartesian coordinates, m
� = power-law failure criterion exponent
(���) = subcell indices
�ij = engineering shear strain components
�T = temperature deviation from reference, �C
"ij = normal strain components

"D1 , "
D
2 , "

D
3 = damage strains

� = Benzeggagh–Kenane failure criterion exponent
�12, �21, �13,
�31, �23, �32

= Poisson’s ratios

�012, �
0
21, �

0
13,

�031, �
0
23, �

0
23

= initial Poisson’s ratios

�ij, �ij = normal and shear stress components, Pa

�Di = damage stress, Pa

I. Introduction

T HE importance of capturing the progressive nature of failure in
polymermatrix composites was highlighted by theWorld-Wide

Failure Exercise (WWFE) [1]. While many ply-level failure criteria
performed reasonably well when damage initiation was followed
closely by final failure, in situations where significant nonlinearity
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occurred before final failure, most standard criteria were insufficient.
Methods that capture this nonlinearity have shown much better
agreement with experimental data from theWWFE (cf., Bogetti et al.
[2] and Nelson et al. [3]).

In the present paper, the high-fidelity generalized method of cells
(HFGMC) micromechanics model [4,5] is extended via an elastic
progressive damage model to predict progressive failure of polymer
matrix composites. This work was motivated by previous efforts [6]
that indicated that HFGMC’s damage modeling capabilities were
insufficient. The damage model employed previously within
HFGMC relied on typical failure criteria (e.g., maximum stress,
maximum strain, Tsai–Hill, and Tsai–Wu) to predict local failure
within the subvolumes (subcells) within the HFGMC composite,
repeating unit cell (RUC) based on the local (constituent level)
stress–strain state. Then, upon failure, all of the subvolume’s stiffness
components were instantaneously reduced to a very low value. The
damage progression was thus modeled as a series of these instanta-
neous subvolume failures before final failure of the composite or
laminate. This previouswork [6] revealed twomajor shortcomings of
the approach:

1) The damage evolution (essentially a step function) was not
sufficient to capture the progressive nature of the failure, particularly
in shear dominated cases.

2) The single damage parameter that affected all stiffness
components equally (i.e., lack of multiaxiality) was insufficient to
capture the vastly different behavior observed in tension, compres-
sion, and shear.

To overcome these deficiencies, a damage model is proposed
herein that accounts for the multiaxiality and progressive nature of
damage within the constituent materials as simply as possible. It is
thus assumed that all nonlinearity exhibited by the composite is due
to damage, resulting in stiffness reduction, within the constituent
materials. To account for differences in the response in tension,
compression, and shear, three scalar damage variables and three
damage strains are tracked in tension and three in compression. The
effects of the damage variables on the material shear stiffness
components can be controlled by additionalmaterial parameters. The
damage strains are related to the orientation of the damage on the
constituent scale and, assuming that these damage strains correctly
capture the interaction effects among the strain components, it is
possible to determine the evolution equations for the damage
variables based on uniaxial stress–strain curves for the constituent
materials.

One way for a subvolume (subcell) within the composite to reach
final failure in a given direction is for the damage to evolve until the
subvolume stiffness in a given direction is close to zero. However, it
is desirable to enable subcells to fail suddenly after a certain amount
of damage has accumulated. As such, final tensile and shear failure
criteria are introduced based on the mode-specific strain energy
release rates, which can be calculated due to the directionality of the
damage in the proposed model. For compression, a total dissipated
strain energy criterion is considered.

The proposed damage model uses the continuum damage
approach first introduced by Kachanov [7,8], in which continuous
damage variables are introduced to quantify the stiffness reduction of
a material. The theoretical background of this approach, and
specifically, the elastic damage approach, is discussed in detail by
Lemaitre and Chaboche [9], Krajcinovic [10], Voyiadjis and Kattan
[11], and Talreja [12,13]. One particular anisotropic elastic
continuum damage model that has received a good deal of attention
in recent years and is similar in some ways to that proposed herein is
that of Matzenmiller et al. [14]. This model has been incorporated
within LS-DYNA [15,16] as a progressive damage constitutive
model for shell elements. The shell element progressive damage
model available in ABAQUS [17] also uses an approach similar to
Matzenmiller et al. [14], although the shear damage variable and
damage evolution equations are different.

Like the model of Matzenmiller et al. [14], the proposed damage
model considers anisotropic elastic damage using a number of scalar
damage parameters. Both models also track tensile and compressive
damage separately. The model of Matzenmiller et al. [14] was

intended to simulate the response of an anisotropic composite ply,
and thus considers plane stress conditions. The model proposed
herein is intended for application to the constituents within a
composite material, and thus considers a three-dimensional state of
stress and strain. The damage initiation criteria employed by
Matzenmiller et al. [14] are based on the Hashin [18] stress-based
failure criteria, while the proposed model uses three-dimensional
strain-based Hashin-like damage initiation criteria. Matzenmiller
et al. [14] also include an independent in-plane shear damage
parameter, while themodel described herein relates the shear damage
parameters to the normal damage parameters. Finally, the damage
evolution equations and final-failure criteria of the two models are
distinct. It is also noted that, like the model of Matzenmiller et al.
[14], the proposed damage model could be readily implemented
within finite-element models, including ABAQUS [17] and LS-
DYNA [15], through their user material subroutines (although not
done at this time). The present modular implementation of the model
has been incorporated within NASA’s Micromechanics Analysis
Code with Generalized Method of Cells (MAC/GMC) [19].

After the micromechanics theory and the proposed damage model
are described, the coupled micromechanics-damage approach is
applied to simulate a unidirectional E-glass/epoxy composite, for
which the constituents are characterized based on ply-level data from
the literature [1]. The model’s ability to capture vastly different
damage behavior in tension, compression, and shear is highlighted as
monolithic and composite nonlinear stress–strain curves, and
damage initiation and final-failure envelopes are presented.

II. Micromechanics Model

The HFGMC micromechanics model has been adopted to model
the composite-level behavior in this paper. The HFGMC model is
based on a homogenization technique for composites with periodic
microstructure, as shown in Fig. 1a, in terms of the global coordinates
�x1; x2; x3�. The parallelepiped RUC (Fig. 1b) definedwith respect to
the local coordinates �y1; y2; y3� of such a composite is divided into
N�,N�, andN� subcells in the y1, y2, and y3 directions, respectively.
Each subcell is labeled by the indices (���) with �� 1; . . . ; N�,
�� 1; . . . ; N�, and � � 1; . . . ; N� and may contain a distinct
homogeneousmaterial. The dimensions of the subcell are denoted by
d�, h�, and l� , respectively. A brief outline of the HFGMCmethod is
provided next. The reader is referred to Aboudi [4] for the full
theoretical development in the case of linear electromagnetother-
moelastic materials and Aboudi et al. [20,21] for the two-
dimensional case of continuous fibers including inelasticity of the
phases.

1) A quadratic displacement field is assumed for each subcell in

terms of the local subcell coordinates ( �y���1 , �y���2 , and �y���3 in Fig. 1) and
21 unknown coefficients.

2) Equilibrium conditions, periodic boundary conditions, and
interfacial continuity conditions of displacements and tractions
between subcells are imposed in the average (integral) sense.

3) The result is a system of linear algebraic equations, which is
solved for the 21 unknown coefficients per subcell in terms of the
constituent material properties, microstructural dimensions, and
thermal and inelastic terms.

4) Knowledge of these coefficients enables establishment of a
localization relation that relates the average strain in each subcell to
the externally applied average strain [5], along with thermal and
inelastic terms.

4) The local thermoinelastic constitutive equations are used in
conjunction with the average stress relations to arrive at the effective
thermoinelastic constitutive equations for the heterogeneous
material.

As stated, the original version of HFGMC requires solution of a
system of 21N�N�N� algebraic equations. However, just like the
reformulation of generalized method of cells micromechanics model
that has been presented by Pindera and Bednarcyk [22], it is possible
in the case of perfect bonding between the phases to now use the
continuity of displacements across the interfaces between the phases
and significantly reduce the number of equations that have to be
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solved. This reformulation of HFGMC has been presented byBansal
and Pindera [23] in the special case of continuous fibers (i.e., the two-
dimensional, doubly periodic case) and elastic phases, with the more
general case presented by Arnold et al. [24] The unknowns in this
reformulation are given by the average displacements at the surfaces
of the subcells, which can be related to the original HFGMC
unknown coefficients. However, by formulating the HFGMC theory
in terms of the subcell surface average displacements, the size of the
system of algebraic equations that must be solved becomes

9N�N�N� � 3�N�N� � N�N� � N�N��

rather than 21N�N�N� , with an obvious significant savings.
The ramifications of these savings are discussed in detail by Arnold
et al. [24].

More recently, Haj-Ali and Aboudi [25] formulated the HFGMC
model in a new form that facilitates its computational efficiency. To
this end, the explicit matrix form of the HFGMC model was
presented, which allowed an immediate and convenient computer
implementation of the model. It was shown that a dramatic reduction
of the computational effort can be achieved by performing a conden-
sation procedure that, for the doubly periodic HFGMC, reduces the
dimension of the condensed system of equation to 6N�N� � 6N�N� ,
just like the reformulation discussed previously.

III. Progressive Damage Model

A progressive damage model is sought to function within the
HFGMC micromechanics model at the level of the fiber/matrix
constituents. The two significant advances beyond the damage

models previously employed within HFGMC (cf., Moncada et al.
[6]) are 1) multiaxiality, such that the response in normal tension,
normal compression, and shear may be independent, and 2) progres-
sion, such that the damage can occur gradually rather than
instantaneously. It is also desirable to accomplish these goals as
simply as possible and while requiring as few model parameters as
possible. As such, an irreversible elastic damage model is proposed
that attributes all material nonlinearity to a reduction in material
stiffness properties.

The elastic continuum damage model tracks the damage in a
material element through six scalar damage variables: DT

i and DC
i ,

i� 1, 2, 3. Each damage variable is associated with damage oriented
normal to the Cartesian coordinate direction indicated by the
subscript, and separate damage variables track tensile T and
compressive C damage. While these damage variables may be
written in vector form, the model is not a vector damage model but
rather a multiscalar approach, as the damage parameters do not
necessarily adhere to first-order tensorial mathematics.

It is assumed that the damage variables modify the engineering
material properties rather than the stresses or strains, and those in the
undamaged state, DT

i �DC
i � 0, while the completely damaged

(final failure) state corresponds to DT
i � 1 or DC

i � 1. The
dependence of the engineering material properties on the damage
variables is taken as

E1 � d1E0
1; E2 � d2E0

2; E3 � d3E0
3;

�12 � d1�012; �21 � d2�021;
�13 � d1�013; �31 � d3�031;
�23 � d2�023; �32 � d3�023 (1)

where,

di �
�
1 � bTiiDT

i �ii > 0

1 � bCiiDC
i �ii < 0

(2)

�ii, i� 1, 2, 3 are the normal stress components (no summation),E0
1,

E0
2, and E

0
3 are the initial material Young’s moduli, �012, �

0
21, �

0
13, �

0
31,

�023, and �
0
32 are the initial material Poisson ratios, and the corre-

sponding quantities without the 0 superscript are the current
(damaged) material properties. The bTii and b

C
ii terms (no summation)

are constants that control the dependence of the damaged moduli on
the appropriate damage variables and thus enable scaling of this
dependence between tension and compression. The default value of
these b terms is one, and the minimum allowable value of di is zero,
but in practice, a small positiveminimumvalue ofdi (such as 0.0001)
is employed to promote stability of model simulations. Note that,
because the Young’s moduli are affected independently by the
damage variables, a constituent material that is initially isotropic
becomes orthotropic upon damage initiation.

It is assumed that the shear moduli dependence on the damage
variables is given by a linear combination of the appropriate two
damage variables:

G23 � �1 � b42D�2 � b43D�3�G0
23;

G13 � �1 � b51D�1 � b53D�3�G0
13;

G12 � �1 � b61D�1 � b62D�2�G0
12 (3)

where

D�i �
�
DT
i �ii > 0

DC
i �ii < 0

(4)

and G0
23, G

0
13, and G

0
12 are the initial material shear moduli. The b

terms again enable scaling of the damage variable dependence of the
material properties, and the shear related b terms in Eq. (3) have
default values of 0.5. The factors that modify the initial shear moduli
in Eq. (3) (e.g., 1 � b42D�2 � b43D�3), have a minimum allowable
value of zero, but in practice, a small positive minimum value (such
as 0.0001) is employed to promote stability.

Fig. 1 HFGMC model: a) a multiphase composite with triply periodic
microstructures, b) the RUC, defined in the �y1; y2; y3� coordinate

system, is discretized into N� � N� � N� subcells, and c) the monolithic

subcell is defined in the local coordinate system ��y���1 ; �y
���
2 ; �y

���
3 �.
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It is noted that the dependence of the damaged Poisson ratios on
the damagevariables [Eq. (1)] preserves the symmetry of thematerial
compliance matrix. For example, denoting the compliance matrix
components by Sij:

S12 ��
�21
E2

� S21 ��
�12
E1

(5)

Substituting for the material properties using Eq. (1),

� d2�
0
21

d2E
0
2

�� d1�
0
12

d1E
0
1

� S012 � S021 (6)

and, as shown, since the initial compliance matrix is symmetric, it is
clear that the damaged compliance matrix will remain symmetric as
well. In addition, Sij � S0ij, i ≠ j, so the damage only affects the

diagonal terms of the compliance matrix. Finally, this form of
damage for the Poisson ratios is mechanistically correct. That is, if
one considers a typical Poisson mechanical test where, for example,
�11 ≠ 0, and all other stress components are equal to zero, we have
by definition

�12 ��
"22
"11

(7)

where "ij are the strain components. Thus, considering the case of
damage only in the x1 direction (d1 ! 0), one would expect a small
"22 and a large "11, leading to a small �12. According to Eqs. (1) and
(2), it is clear that the preceding case corresponds to a low value of d1
and, thus, a small �12. Now, considering a constrained mechanical
test where, for example, �11 ≠ 0 is applied, "22 � 0 is constrained,
and �22 ≠ 0 with all other stress components equal to zero, we have

S21�11 � S22�22 � "22 � 0 (8)

Thus, substituting using Eqs. (1) and (5),

�22 ��
S21
S22

�11 �
E2�12
E1

�11 �
d2E

0
2d1�

0
12

d1E
0
1

�11 � d2
E0
2�

0
12

E0
1

�11 (9)

Therefore, in the case of damage in the x2 direction (d2 ! 0), we see
that thematerial loses the ability to accumulate normal stress in the x2
direction, regardless of the damage in the x1 direction.

A. Damage Initiation

The damage initiation criterion is taken as a three-dimensional
extended version of the strain-based Hashin [18] criterion. The
following damage strains are defined,

"D1 �

�������������������������������������������������������������
"11
X"

�
2

�
�
�13
R"

�
2

�
�
�12
S"

�
2

;

s

"D2 �

�������������������������������������������������������������
"22
Y"

�
2

�
�
�23
Q"

�
2

�
�
�12
S"

�
2

;

s

"D3 �

�����������������������������������������������������������
"33
Z"

�
2

�
�
�23
Q"

�
2

�
�
�13
R"

�
2

s
(10)

where

X" �
�
XT" �11 > 0

XC" �11 < 0
; Y" �

�
YT" �22 > 0

YC" �22 < 0
;

Z" �
�
ZT" �33 > 0

ZC" �33 < 0
(11)

"ii, i� 1, 2, 3, are the normal stress components (no summation), �23,
�13, and �12 are the engineering shear strains, XT" and XC" are the
tensile and compressive damage initiation strains in the x1-
coordinate direction, YT" and YC" are the tensile and compressive
damage initiation strains in the x2-coordinate direction, Z

T
" and ZC"

are the tensile and compressive damage initiation strains in the
x3-coordinate direction, andQ", R", and S" are the damage initiation
engineering shear strains associated with �23, �13, and �12,
respectively. Thus, according to Eq. (10), damage will initiate when
"D1 , "

D
2 , or "

D
3 exceed one.

B. Damage Evolution

The fundamental tenet of the proposed irreversible elastic damage
model is that the damage evolution is controlled by the damage
strains, as defined in Eq. (10). That is, while the damage evolution
controlled by these damage strains can be fit to reproduce uniaxial
material behavior, it is an assumption of the proposed theory that the
generalization to multiaxiality can be represented by the three
damage strains defined in Eq. (10). This is, in manyways, analogous
to the role of the second stress invariant in von Mises plasticity
theory, which defines the multiaxial initiation (yield) condition and
controls the evolution (flow).

Assuming that the loading imposed on the damaging material is
done incrementally, as indicated by the dots in Fig. 2, it is possible to
determine the damage variable increments from the damage strain
components and damage strain increments given the instantaneous
slope, ki, of the material’s uniaxial stress–strain response curve.
Thus, the uniaxial material stress–strain response curve can be used
to characterize the damage evolution through the damage initiation
strain and the instantaneous slope. In the uniaxial normal loading
case with loading in the xi direction, the damage strain reduces to
"Di � "ii=X", and a corresponding damage stress, �Di , which is
linearly related to the damage strain by the damaged modulus, EDi ,
can be identified. Figure 2 graphically shows the relationship for the
case normal uniaxial loading.

Because the loading is uniaxial, the modulus at any loading
increment point is related to the initial modulusE0

i by the appropriate
damage variable Di:

EDi � �1 �Di�E0
i (12)

The incremental change in the modulus can then be determined as

dEDi ��dDiE
0
i (13)

and the damage variable increment is then given by

dDi ��
dEDi
E0
i

(14)

The damage stress is defined via a linear relationshipwith the damage
strain that, for the uniaxial loading, is given by

�Di � EDi "Di (15)

D
iE

0
iE

D
iε D D

i idε ε+

D
iσ kidamage 

initiation 

D
iσ

D
iε

iε
X D

i Xε

1

0
iE

Fig. 2 An incremental elastic damage stress vs damage strain curve.

Note that X � X", Y", or Z".
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Note that, even in the uniaxial case, Poisson effects will give rise to
damage strains in the remaining two normal directions according to
Eq. (10). However, thesewill bemuch smaller than the damage strain
in the applied loading direction and typically will not exceed one
(which would indicate damage initiation in these directions) before
final failure in the applied loading direction.

FromEq. (15), the incremental change in damage stress is given by

d�Di � EDi d"Di � "Di dEDi (16)

The instantaneous slope of the damage stress vs damage strain curve,
which is equivalent to the instantaneous slope of the uniaxial stress–
strain curve, ki, is given by

d�Di
d"Di
� EDi � "Di

dEDi
d"Di
� ki (17)

Isolating the incremental change in the damaged modulus gives

dEDi � �ki � EDi �
d"Di
"Di

(18)

and substituting Eq. (18) into Eq. (14) yields

dDi �
�
EDi � ki
E0
i

�
d"Di
"Di

(19)

Substituting Eq. (12) into Eq. (19) and letting k0i � ki=E0
i provides

the equation for the damage variable evolution:

dDi � �1 �Di � k0i�
d"Di
"Di

(20)

Thus, given the fact that the damage initiates when Di � 0, along
with the knowledge of the shape (i.e., instantaneous slope) of the
postinitiation uniaxial stress–strain curve, the incremental damage
evolution can be determined from Eq. (20). A uniaxial shear stress–
strain curve could also be used and, if both normal and shear curves
are available, they can be used to estimate the value of the b terms in
Eqs. (2) and (3). Otherwise, the default values may be assumed.

C. Unloading, Reloading, and Load Reversals

It is assumed that, upon unloading, the material immediately
ceases to damage. That is, the damage strain state must be on a
damage surface in order for further damage to occur. As such, the
maximum previous value of each damage strain must be tracked and
further damage only permitted when the previous maximum is
exceeded. Because the model is elastic, unloading will always occur
linearly to the zero stress–strain state. It is assumed that entirely
different damage mechanisms are at work in tension and in compres-
sion. For instance, tensile damage might be due to microcracking,

while in compression, it might be due to a microbuckling
mechanism. This implies that both tensile and compressive damage
strains must be tracked independently, with each causing the
evolution of its corresponding tensile or compressive damage
increment, according to Eq. (20). The previous maximum of the
damage strains in both tension and compressionmust also be tracked.
The result of these assumptions is that tensile damage will not affect
compressive damage, and vice versa. Thus, if the material is
subjected to a load reversal, the applicable damage variable will
switch instantaneously, as will the apparent stiffness of the material
(assuming damage has initiated). For example, if the material is first
damaged in tension, unloaded, and then subjected to compression,
the apparent stiffness will change instantaneously to the initial
stiffness when the material goes into compression.

The behavior described previously is illustrated in Fig. 3a. The
material is first loaded in normal tension. The behavior is linear until
damage initiates at a strain of 0.0125. The postdamage slope is
negative, and the stress decreases in step 2 as the strain increases. In
step 3, thematerial is unloaded, and the response is linear to the origin
with a reduced (damaged) stiffness. Upon crossing the origin, the
material is placed in compression in step 4 and, since the material is
as yet undamaged in compression, the material returns to its original
stiffness. Compressive damage initiates at a strain of �0:0287, and
the compressive postdamage slope in step 5 is positive. The material
is unloaded in compression in step 6, and the response is again to the
origin along a path with a reduced (damaged) stiffness. Upon
reentering the tensile regime in step 7, the material retraces its
previous tensile unloading path, as the material has already been
damaged in tension. Further damage does not occur until the previ-
ously attained maximum strain has been reached, at which point, in
step 8, the material continues to damage. Clearly, vastly different
nonlinear material tensile and compressive behavior can be accom-
modated by the proposed damage model.

In contrast, example material shear behavior is shown in Fig. 3b.
Steps 1–3 are similar, but it is clear that in shear (as there is no
distinction between tension and compression) there is no change in
slope when traversing from positive to negative stress. Further,
additional damage in negative shear begins to accumulate when the
previous maximum positive shear strain (magnitude) is reached.
When reentering the tensile regime, there is again no change in slope,
and the previous maximum negative shear strain (magnitude) is
exceeded before additional damage can occur. Note that Figs. 3a and
3b are based on the epoxy resin material properties for which the
characterization is discussed in Sec. IV.

D. Final Failure

Final failure is considered to be the state at which the material can
no longer support one or more components of stress in tension,
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compression, or shear to any significant degree. At this point, the
effective stiffness of the material, rather than being determined
according to Eqs. (1) or (3), will be set to a very low value (i.e.,
0.0001 times its initial value). One way that the material can reach
final failure is by one of its damagevariables evolving to the point that
one of the stiffnesses reaches zero. It is desirable, however, to enable
the material to reach final failure suddenly before a stiffness is
evolving all the way to zero.

Separate final-failure criteria are proposed for tension and
compression. In tension, a strain energy release rate criterion is used.
For a body with a macroscopic crack, the strain energy release rateG
is the amount of energy released in advancing the crack by a distance
da normalized by the new crack area. It is typically written as

G� dWs

tda
(21)

where t is the depth of the cracked body (thus, tda is the new crack
area). In adapting the concept of strain energy release rate to
continuum damage mechanics, we work with the strain energy
density releasedW rather than the total energy releasedWs Thus, we
use the relation

dWs � VdW (22)

where V is the volume of the material that is being damaged, and the
increment in released strain energy density is shown graphically in
Fig. 4. By assuming a piecewise linear response, as in Fig. 4, the
released strain energy density can be calculated as

dW � 1
2
f��"� d"� � "�� � d��g (23)

It is possible to separate the strain energy release rates associated
with each tensile damage mode, where again an analogy with a
macroscopically cracked body is used. The three modes of loading
for such amacroscopic crack are denoted as I, II, and III, and they are
associated with opening, in-plane shear, and out-of-plane shear,
respectively [26]. Figure 5 illustrates the three modes of loading as
they apply to tensile damage in the xi direction, which would be
associated with the damage variable DT

i , where i, j, k� 1, 2, 3, and
i ≠ j ≠ k. In this scenario, mode I damage is caused by �ii (no

summation),mode II damage is caused by �ij, andmode III damage is
caused by �ik (see Table 1). The corresponding mode-specific strain
energy density increments are then given by the increments in
released energy density, as shown in Fig. 5, associated with the
�ii � "ii, �ij � �ij, and �ik � �ik response curves.

Because, as indicated in Table 1, each shear stress component is
associated with a loadingmode for damage in two directions (i.e., �12
is associated with mode II loading for damage in the x1 direction as
well as mode III loading for damage in the x2 direction), it is
necessary to partition the shear strain energy density increments
appropriately. Toward this end, denoting the stress and strain in
vector form,

� � 	 �11 �22 �33 �23 �13 �12 
T ;
"� 	 "11 "22 "33 �23 �13 �12 
T (24)

and denoting the components of the stress and strainvectors as�n and
"n, respectively, with n� 1; . . . ; 6, the strain energy density release
rate associated with each response curve can be denoted as dWn. The
following partitions can be made according to damage direction in
order to arrive at mode-specific strain energy density release rates:

dŴ1
I � dW1; dŴ1

II �
dD1

dD1 � dD2

dW6;

dŴ1
III �

dD1

dD1 � dD3

dW5; dŴ2
I � dW2;

dŴ2
II �

dD2

dD2 � dD3

dW4; dŴ2
III �

dD2

dD1 � dD2

dW6;

dŴ3
I � dW3; dŴ3

II �
dD3

dD1 � dD3

dW5;

dŴ3
III �

dD3

dD2 � dD3

dW4 (25)

where dŴi
M is the mode-specific increment in released strain energy

density for damage in the xi direction andM is the mode (I, II, or III).
The mode-specific strain energy release rates associated with

damage in the xi direction can be found using Eqs. (21), (22), and
(25) and are given by

GiM �
dŴi

M

lkd �a
i
M

V � dŴi
M

lkd �a
i
M

liljlk �
dŴi

M

d �aiM
lilj (26)

where, as shown in Fig. 5, the lengths of the material in the three
directions are denoted by li, lj, and lk, and d �a

i
M is a mode-specific

increment in effective crack length, which can be calculated by
scaling the length of the material in the damage direction by the
increment in stiffness reduction due to the damage variable
increment. That is,

d �a1I � l2bT11dD1; d �a1II � l2b61dD1; d �a1III � l2b51dD1;

d �a2I � l3bT22dD2; d �a2II � l3b62dD2; d �a2III � l3b42dD2;

d �a3I � l1bT33dD3; d �a3II � l1b43dD3; d �a3III � l1b53dD3 (27)

Substituting Eq. (27) into Eq. (26) yields

Fig. 4 Graphical representation of the released strain energy density

increment.

Fig. 5 Three loading modes that affect damage in the xi direction.

Table 1 Association between loading modes and stress

components for damage associated with the

coordinate direction, xi

Coordinate direction Stress component associated
with loading mode

i (damage orientation) j k I II III

1 2 3 �11 �12 �13
2 3 1 �22 �23 �12
3 1 2 �33 �13 �23
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G1
I �

l1
bT11

dŴ1
I

dD1

; G1
II �

l1
b61

dŴ1
II

dD1

; G1
III �

l1
b51

dŴ1
III

dD1

;

G2
I �

l2
bT22

dŴ2
I

dD2

; G2
II �

l2
b42

dŴ2
II

dD2

; G2
III �

l2
b62

dŴ2
III

dD2

;

G3
I �

l3
bT33

dŴ3
I

dD3

; G3
II �

l3
b53

dŴ3
II

dD3

; G3
III �

l3
b43

dŴ3
III

dD3

(28)

which enables the calculation of the instantaneous mode-specific
strain energy release rate for each damage direction (indicated by the
superscript).

The strain energy release rates from Eq. (28) can then be used in
final-failure criteria by comparing them to the material critical strain
energy release rates. For example, one can use the maximum-strain
energy release rate criterionm in which final failure occurs when any
of the following are satisfied:

GiM �GCM (29)

where GCM is the mode-specific critical strain energy release rate.
Alternatively, the power-law criterion is given by�

GiI
GCI

�
�

�
�
GiII
GCII

�
�

�
�
GiIII
GCIII

�
�

� 1 (30)

where � is a material parameter. Finally, the Benzeggagh–Kenane
(B–K) [27] criterion can be employed, which is applicable onlywhen
GCII �GCIII . The B–K criterion can be expressed as

GiI �GiII �GiIII �GC (31)

with

GC �GCI � �GCII � GCI �
�

GiII �GiIII
GiI �GiII �GiIII

�
�

(32)

where � is a material parameter.
In compression, the failuremechanism is assumed not to be related

to cracking, and thus a strain energy release rate based final-failure
criterion is not applicable. Instead, a criterion based on the total
dissipated energy associated with a damage direction is employed.
This criterion can be expressed as

�Ŵi
I � Ŵi

II � Ŵi
III�V �WC

s (33)

where WC
s is a critical strain energy and Ŵi

M is the mode-specific
strain energy release rate, which can be determined by integrating the
mode-specific strain energy release rate increments.

IV. Results and Discussion

To demonstrate the capabilities of the HFGMC micromechanics
model, including the proposed progressive damage model, a
commonly modeled composite system has been chosen. This is the
E-glass/MY750/HY917/DY063 epoxy resin composite that was
included in the WWFE [1]. As is often the case, while nominal
constituent (fiber/matrix) elastic and strength properties were
provided in the WWFE, nonlinear stress–strain curves of the
constituents, as are desirable for nonlinear micromechanics model
input, were not provided. As such, the constituent properties were
obtained based on correlation with composite ply-level nonlinear
data provided in the WWFE for the E-glass/epoxy composite (i.e.,
the constituent properties were backed out).

All of the results presented consider a 7 � 7 subcell RUC with a
fiber volume fraction of 0.6, as shown in Fig. 6. While HFGMC is
mesh-dependent, this HFGMC unit cell discretization was shown to
yield a converged global nonlinear deformation response for a SiC/Ti
composite by Bednarcyk et al. [28] Note that the doubly periodic
RUC shown is infinitely long in the x1 direction and, thus, represents
a special case of the triply periodic version of HFGMC described
previously. It should also be noted that, for nonlinear analysis,
HFGMC tracks the local fields within each subcell at a number of

integration points. Three integration points were used for this
purpose in both the x2 and x3 directions, for a total of nine integration
points per subcell. Obviously, damage will initiate and evolve
differently at each of these nine points per subcell; thus, an average of
the damage at these nine points was used to determine the subcell
damaged elastic properties.

The simulations reported next were executed on a standard dual-
core Windows workstation. The execution times for generating the
stress–strain response of the neat epoxy was a fraction of a second
(�0:1 s), whereas, the stress–strain curves for the composite (using
the 7 � 7 unit cell) required approximately 3 s of execution time.
Generation of the composite failure envelopes was accomplished by
repeatedly simulating the stress–strain response along radial paths
with a given angular increment in the given biaxial stress space under
stress control. That is, to generate a simulated failure envelope in
�11 � �22 stress space, a simulation was first run by monotonically
increasing �11 with all other stress components equal to zero until
final failure was predicted. Then, a biaxial stress–strain simulation
(monotonically increasing both �11 and �22 simultaneously) was run,
where tan�1��22=�11� � 5� (for example) until final failure. This
process continued until the entire envelope was generated through
the complete 360� in the stress space. Because the failure envelope
generation is automated within the HFGMC code, these composite
failure envelope simulations typically require only several minutes
(�4 min) of execution time.

Figures 7a–7c show the correlation of the micromechanics model
with the composite ply-level experimental data, provided by Hinton
et al. [1], used to determine the constituent properties. The
progressive damage model assumes that all material nonlinearity is
due to stiffness reduction rather than inelastic deformation.
Unloading behavior of the composite, were it available, could be
examined to assess the validity of this assumption. The determined
constituent data are summarized in Tables 2 and 3. While the resin
matrix is subject to the proposed progressive damagemodel, thefiber
is treated as isotropic and linear elastic until failure. A maximum
stress criterion is used for the fiber, based only on tensile and
compressive longitudinal stresses. Once the fiber fails, all of its
elastic stiffness properties are instantaneously reduced to a very low
value (i.e., D�i are set to 0.9999, see Eqs. (1–4)). It is noted that the
fiber strengths determined via correlation inTable 2 are slightly lower
than the nominal values of 2150 and 1450MPa given byHinton et al.
[1] Further, in the model longitudinal composite tensile response,
shown in Fig. 7a, it is noted that some nonlinearity due to matrix
damage is present before failure.

As stated, the matrix is assumed to be subject to the proposed
progressive damage model. An exponential form was assumed for
the instantaneousmodified slope [see Eq. (20)] of thematrixmaterial
stress–strain curve after damage initiation:

k0i � Ae�"
D
i
=B (34)

where the constants A and B are permitted to take on different values
in tension T and compression C. As indicated in Table 3, these
constants were determined via correlation with the ply-level
nonlinear composite response curves provided by Hinton et al. [1]
For final failure of a subcell in tension, the maximum-strain energy

Fig. 6 7 � 7 RUC used to represent the composite material.
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Fig. 7 Model correlation with experiment for a) the longitudinal tensile and compressive response, b) transverse tensile and compressive response, and

c) the longitudinal shear response of E-glass/epoxy.

Table 2 Properties of Silenka E-glass fiber

Property Symbol Units Source Value

Elastic modulus E GPa Hinton et al. [1] tabular value 74
Poisson’s ratio � —— Hinton et al. [1] tabular value 0.2
Longitudinal tensile strength XT MPa Correlation (Fig. 7a) 2110
Longitudinal compressive strength XC MPa Correlation (Fig. 7a) 1290

Table 3 Properties of MY750/HY917/DY063 epoxy

Property Symbol Units Source Value

Elastic modulus E GPa Correlation (Fig. 7b) 3.7
Poisson’s ratio � —— Hinton et al. [1] tabular value 0.35
Tensile damage initiation strain XT" —— Correlation (Fig. 7b) 0.0125
Compressive damage initiation strain XC" —— Correlation (Fig. 7b) 0.0287
Engineering shear damage initiation strain S" —— Correlation (Fig. 7c) 0.0443
Postdamage slope parameter, Eq. (34) AT —— Correlation (Fig. 7c) 0.7
Postdamage slope parameter, Eq. (34) AC —— Correlation (Fig. 7b) 2.0
Postdamage slope parameter, Eq. (34) BT —— Correlation (Fig. 7c) 0.82
Postdamage slope parameter, Eq. (34) BC —— Correlation (Fig. 7b) 0.96
Tensile scaling parameter, Eq. (2) bTii —— Correlation (Figs. 7b and 7c) 1.32
Compressive scaling parameter, Eq. (2) bCii —— Correlation (Figs. 7b and 7c) 1.32
Shear scaling parameters, Eq. (3) b4i, b5i, b6i —— Default value 0.5
Mode I critical strain energy release rate GCI J=m2 Correlation (Fig. 7b) 800
Modes II and III critical strain energy release rates GCII��GCIII� J=m2 Correlation (Fig. 7c) 2400
Critical compressive strain energy WC

s J Correlation (Fig. 7b) 1:86 � 10�6

Material length li m Correlation (Figs. 7b and 7c) 9 � 10�5
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release rate criterion [Eq. (29)] was used. It should also be noted, in
Table 3, that the elastic modulus value employed for the matrix is
higher than the 3.35 GPa nominal value provided by Hinton et al. [1]
Further, the tensile and compressive scaling parameters �bTii; bCii�
were chosen to scale the effect of normal damage with respect to
shear damage. The default shear scaling parameters �b4i; b5i; b6i�
were employed. These parameters provide the damage model with
the capability to behave differently in shear vs normal deformation,
despite the fact that identical A andB parameters control the damage
evolution in both cases. Hence, one can correlate the normal response
using default scaling parameters and then choose the shear scaling
parameters to enable capture of the shear response, or vice versa (as
done here). As the damage model is presented herein, the scaling
parameters can also be assigned different values per stiffness
component, but this would result in anisotropic progressive damage
behavior of an initially undamaged material and is thus not desirable
in the present application to the neat resin matrix. Finally [from
Eqs. (28) and (33)] it is clear that the critical strain energy release
rates and the critical compressive strain energy are scaled by the
material lengths. Therefore, these parameters are not independent
and, by choosing a different material length, different values of the
critical strain energy release rates and critical compressive strain
energywould result from the correlationwith the ply-level composite
data.

Figure 8 shows the monolithic resin matrix behavior that results
from the parameters given in Table 3. Most noteworthy is the
extremely brittle behavior in tension compared with the ductile-
appearing behavior in compression and shear. This brittle behavior is
a direct result of the brittle transverse tensile composite behavior
observed in Fig. 7b that was used to characterize the matrix tensile
damage/failure response. Obviously, it would not be possible to
capture these vast differences in the character of the damage/failure
behavior among tension, compression, and shear via a simple failure
criterion that treats the epoxy as linear to failure, as shown in [6].
Similarly, a nonlinearmodel similar to plasticity, which characterizes
nonlinearity through a single scalar measure (i.e., von Mises stress),
would miss the brittle character in tension if it were to capture the
more ductile-appearing character in compression and shear. Thus, in
the context of micromechanics, the need for a damagemodel that can
handle material nonlinearity and also separate the damage modes is
clear, as is offered by the present model.

Figures 9–11 provide themodel damage initiation andfinal-failure
envelopes for the monolithic (neat) epoxy resin, given the material
properties in Table 3. The distance between the two envelopes in each
figure indicates the degree to which the predicted failure is
progressive vs sudden. For instance, in Fig. 9, it is clear that, in the
tension–tension regime (quadrant I), the failure is very brittle, with
virtually no progression of damage between initiation and final
failure. In the compression–compression regime (quadrant III),
however, there is a great deal of progression before final failure.

Figure 10 provides the normal-shear failure envelopes for the case
in which the normal and shear components are interactive. That is,
examining Eq. (10), it is clear that the "11 and "12 strain components
are interactive, in that they both contribute to the damage strain "D1 .
This interaction between the 11-normal and 12-shear behavior is
manifested as the elliptical character of the surfaces in Fig. 10.
Figure 11, on the other hand, provides the normal-shear envelopes for
the case in which the components do not interact. Again examining
Eq. (10), it is clear that "11 contributes only to damage strain "D1 , while
"23 contributes to "

D
2 and "D3 ; thus, these components do not interact.

The result is the more rectangular character of the surfaces in Fig. 11.
Thus, thematerial, whichwas initially isotropic, is highly anisotropic
in terms of its multiaxial damage progression and failure response. It
is noted that the damage surfaces in Fig. 11 do display some
interaction effects because the surfaces are generated in stress space,
so application of�11 with�22 � 0 results in nonzero "22 and "33 due to
Poisson effects.

Another important feature of the implementation of the proposed
progressive damage model is illustrated in Fig. 10. When the normal
stress component transitions from tensile to compressive (quadrant I
to quadrant II transition), there is no jump in the final-failure
envelope as one might expect (as the compressive damage
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parameters in Table 3 become active). Rather, the transition is
gradual. This feature was incorporated by basing the transition in
properties on the degree to which the damage strain component is
shear dominated. That is, when a damage strain is completely shear
dominated (i.e., on the y axis of Fig. 10), the tensile parameters are
used. If the stress state is compressive, the parameters are inter-
polated between the tensile and compressive values until the damage
strain is no longer dominated by shear, at which point they become
the compressive values.

Figures 12–14 showmodel composite damage initiation and final-
failure envelopes. The experimental data are taken fromHinton et al.
[1] The experimental data on the axes are the data used to characterize
the damage model for the matrix material. The lack of agreement in
quadrant IV indicates that a different final-failure criterion, such as
the power-law or B–K criteria, should be employed. The interaction
of strain energy release rates provided by these criteria may improve
the agreement. In Fig. 14, the noncharacterization experimental data
are actually for a 0.60 volume fraction E-glass/LY556/HT907/
DY063 epoxy composite [1], for which the properties are similar to
the E-glass/MY750/HY917/DY063 epoxy composite, for which the
materials employed in the simulation were characterized. As shown,
the agreement is quite good, most notably in the ability of the model
to capture the observed strengthening in quadrant II.

As a final example, the progressive damage model has been
characterized based on the in situ matrix shear response measured
and presented by Ng et al. [29] The specific type of fiber and
composition of the polymer matrix were not disclosed by these
authors for proprietary reasons. Using a novel technique, Ng et al.
[29] have determined the average nonlinear in-plane shear behavior
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of the composite at the ply level, as well as that of the matrix. Using
the four matrix stress–strain curves given by these authors, the
correlation of the progressive damage model with the measured data
is presented in Fig. 15. The correspondingmaterial parameters for the
polymer matrix are given in Table 4, along with the fiber material
properties provided by Ng et al. [29]. It is evident from Fig. 15 that
the simple exponential form of the instantaneous slope given in
Eq. (34) captures the general character of the matrix nonlinear shear
response reasonably well, but it is unable to precisely capture the
early stiffness decrease of the matrix as well as the saturation
behavior close to failure. A different functional form for the
instantaneous stiffness could provide more precise correlation in this
regard. Note that the failure point for the model was chosen as the
average ultimate shear strength of the four measured shear curves
(80.4 MPa). This point corresponded to a mode II/III strain energy
release rate of 1240 J=m2. Note also that it was assumed for both the
matrix and the composite that the only contribution to failure was
matrix shear damage and failure; thus, some model data that were
given in the previous examples are not needed in the present
simulations.

A comparison of the predicted composite in-plane shear response
with the data provided byNg et al. [29] is given in Fig. 16. As before,
the HFGMC RUC shown in Fig. 6 was used, with nine integration
points per subcell. As was the case for the correlated matrix shear
response (Fig. 15), the model does a reasonably good job of
predicting the composite response. The slight overprediction of the
measured curves near damage initiation and the inability to capture
well the saturation behavior is also similar to what was observed in
the model characterization for the matrix. The failure prediction for
the composite was taken as the point at which the average matrix
strain energy release rate reached 1240 J=m2. This approach was

used because the critical strain energy release rate was determined
from the matrix shear response curves given by Ng et al. [29], which
provide the average in situ matrix behavior. If the failure prediction
was based on failure of the first subcell, it would have occurred at a
very low stress-and-strain value (�12 � 65:3 MPa, �12 � 0:021),
along the same model curve shown in Fig. 16. The average matrix
strain energy release rate approach overpredicted both the ultimate
shear strength and shear strain to failure of the composite. However,
this may be due to the fact that the matrix and composite saturation
behavior have not been well captured by the exponential form for the
instantaneous slope used in the simulations. Aspects of the
techniques employed by Ng et al. [29] to determine the matrix shear
response could contribute to some of the discrepancy as well.

V. Conclusions

The HFGMC micromechanics model has been extended to
include progressive damage at the constituent (subcell) level. The
proposed coupled micromechanics-damage model seeks to include
multiaxiality, such that the character of the constituent behavior can
be vastly different in tension, compression, and shear in as simple a
way as possible. It appears that enabling this distinct behavior based
on type of loading is beneficial to predicting the damage and failure
behavior of polymer matrix composites. The proposed damage
model attributes all material nonlinearity to stiffness reduction and is
thus less applicable to materials that exhibit plastic deformation. The
model’s true applicability to a given material can be assessed by
examining the material’s unloading response to determine the
proportion of the nonlinear deformation that is permanent. The
damage model introduces six damage parameters (three for tension
and three for compression) and associated damage strains based on
oriented continuum damage within the constituent materials.
Assuming that the damage strains adequately capture the multiaxial
nature of the damage, evolution equations for the damage parameters
can be established based on the postdamage initiation shape of the
constituent stress–strain response. Final failure of a constituent
subcell has also been addressed by calculating mode-specific strain
energy release rates in tension and a total dissipated strain energy in
compression. The coupled HFGMC-damage model has been
characterized for an E-glass/epoxy composite based on data in the
literature that exhibit brittle behavior in transverse tension but
ductile-appearing (i.e., nonlinear) behavior in transverse compres-
sion and longitudinal shear. It was shown that the HFGMC-damage
model can capture this behavior, and neat resin and composite-level
stress–strain curves, damage initiation envelopes, and final-failure
envelopes were presented for this material system. A final example
was given in which the HFGMC-damage model was applied to
predict the shear response of a composite for which the matrix shear
response was available in the literature. Future investigation of the
presented model will focus on extension to multiscale analysis of
resin matrix composite laminates and structures, the latter of which
will necessitate linkage of the couple micromechanics-damage
model with a finite-element solver.

Table 4 Properties of the composite constituents considered by Ng et al. [29]

Property Symbol Units Source Value

Fiber axial elastic modulus E11 GPa Ng et al. [29] tabular value 310
Fiber transverse elastic modulus E22 GPa Ng et al. [29] tabular value 20.5
Fiber major Poisson’s Ratio �12 —— Ng et al. [29] tabular value 0.28
Fiber minor Poisson’s Ratio �23 —— Ng et al. [29] tabular value 0.35
Fiber axial shear modulus G12 GPa Ng et al. [29] tabular value 32.8
Matrix elastic modulus E GPa Ng et al. [29] 3.078
Matrix Poisson’s ratio � —— Ng et al. [29] 0.35
Matrix engineering shear damage initiation strain S" —— Correlation (Fig. 15) 0.02
Matrix postdamage slope parameter, Eq. (34) AT —— Correlation (Fig. 15) 1.1
Matrix postdamage slope parameter, Eq. (34) BT —— Correlation (Fig. 15) 3.3
Matrix shear scaling parameters, Eq. (3) b4i, b5i, b6i —— Default value 0.5
Matrix modes II and III critical strain energy
release rates

GCII��GCIII� J=m2 Correlation (Fig. 15) 1240

Matrix material length li m Correlation (Fig. 15) 9 � 10�5
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Fig. 16 Comparison of the predicted Vf � 68% polymer matrix

composite in-plane shear response with that measured by Ng et al. [29].
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