
NASA Tech Briefs, November 2005 13

Software

AutoChem
AutoChem is a suite of Fortran 90 com-

puter programs for the modeling of ki-
netic reaction systems. AutoChem per-
forms automatic code generation,
symbolic differentiation, analysis, and doc-
umentation. It produces a documented
stand-alone system for the modeling and
assimilation of atmospheric chemistry.
Given databases of chemical reactions and
a list of constituents defined by the user,
AutoChem automatically does the follow-
ing:
1. Selects the subset of reactions that in-

volve a user-defined list of constituents
and automatically prepares a document
listing the reactions;

2. Constructs the ordinary differential
equations (ODEs) that describe the
reactions as functions of time and
prepares a document containing the
ODEs;

3. Symbolically differentiates the time
derivatives to obtain the Jacobian
and prepares a document containing
the Jacobian;

4. Symbolically differentiates the Jacobian
to obtain the Hessian and prepares a
document containing the Hessian; and

5. Writes all the required Fortran 90
code and datafiles for a stand-alone
chemical modeling and assimilation
system (implementation of steps 1
through 5).
Typically, the time taken for steps 1

through 5 is about 3 seconds. The mod-
eling system includes diagnostic compo-
nents that automatically analyze each
ODE at run time, the relative impor-
tance of each term, time scales, and
other attributes of the model.

This program was written by David John
Lary of Goddard Space Flight Center.
Further information is contained in a TSP
(see page 1). GSC-14862-1

Virtual Machine Language
Virtual Machine Language (VML) is a

mission-independent, reusable software
system for programming for spacecraft
operations. Features of VML include a
rich set of data types, named functions,
parameters, IF and WHILE control struc-
tures, polymorphism, and on-the-fly cre-
ation of spacecraft commands from cal-
culated values. Spacecraft functions can
be abstracted into named blocks that re-

side in files aboard the spacecraft. These
named blocks accept parameters and ex-
ecute in a repeatable fashion. The sizes of
uplink products are minimized by the
ability to call blocks that implement most
of the command steps. This block ap-
proach also enables some autonomous
operations aboard the spacecraft, such as
aerobraking, telemetry conditional moni-
toring, and anomaly response, without
developing autonomous flight software.
Operators on the ground write blocks
and command sequences in a concise,
high-level, human-readable program-
ming language (also called “VML”). A
compiler translates the human-readable
blocks and command sequences into bi-
nary files (the operations products). The
flight portion of VML interprets the up-
linked binary files. The ground subsystem
of VML also includes an interactive se-
quence-execution tool hosted on work-
stations, which runs sequences at several
thousand times real-time speed, affords
debugging, and generates reports. This
tool enables iterative development of
blocks and sequences within times of the
order of seconds.

This program was written by Christopher
Grasso, Dennis Page, and Taifun O’Reilly
with support from Ralph Fteichert, Patricia
Lock, Imin Lin, Keith Naviaux, and John
Sisino of Caltech for NASA’s Jet Propulsion
Laboratory. Further information is con-
tained in a TSP (see page 1).

This software is available for commercial li-
censing. Please contact Karina Edmonds of the
California Institute of Technology at (818)
393-2827. Refer to NPO-40365.

Two-Dimensional Ffowcs
Williams/Hawkings
Equation Solver

FWH2D is a Fortran 90 computer pro-
gram that solves a two-dimensional (2D)
version of the equation, derived by J. E.
Ffowcs Williams and D. L. Hawkings, for
sound generated by turbulent flow.
FWH2D was developed especially for esti-
mating noise generated by airflows
around such approximately 2D airframe
components as slats. The user provides
input data on fluctuations of pressure,
density, and velocity on some surface.
These data are combined with informa-
tion about the geometry of the surface to
calculate histories of thickness and load-
ing terms. These histories are fast-

Fourier-transformed into the frequency
domain. For each frequency of interest
and each observer position specified by
the user, kernel functions are integrated
over the surface by use of the trapezoidal
rule to calculate a pressure signal. The re-
sulting frequency-domain signals are in-
verse-fast-Fourier-transformed back into
the time domain. The output of the code
consists of the time- and frequency-do-
main representations of the pressure sig-
nals at the observer positions. Because of
its approximate nature, FWH2D overpre-
dicts the noise from a finite-length (3D)
component. The advantage of FWH2D is
that it requires a fraction of the computa-
tion time of a 3D Ffowcs Williams/Hawk-
ings solver.

This program was written by David P.
Lockard of Langley Research Center. Fur-
ther information is contained in a TSP (see
page 1).
LAR-16338-1

Full Multigrid Flow Solver
FMG3D (full multigrid 3 dimensions) is

a pilot computer program that solves
equations of fluid flow using a finite differ-
ence representation on a structured grid.
Infrastructure exists for three dimensions
but the current implementation treats only
two dimensions. Written in Fortran 90,
FMG3D takes advantage of the recursive-
subroutine feature, dynamic memory allo-
cation, and structured-programming con-
structs of that language. FMG3D supports
multi-block grids with three types of block-
to-block interfaces: periodic, C-zero, and
C-infinity. For all three types, grid points
must match at interfaces. For periodic and
C-infinity types, derivatives of grid metrics
must be continuous at interfaces. The
available equation sets are as follows: scalar
elliptic equations, scalar convection equa-
tions, and the pressure-Poisson formula-
tion of the Navier-Stokes equations for an
incompressible fluid. All the equation sets
are implemented with nonzero forcing
functions to enable the use of user-speci-
fied solutions to assist in verification and
validation. The equations are solved with a
full multigrid scheme using a full approxi-
mation scheme to converge the solution
on each succeeding grid level. Restriction
to the next coarser mesh uses direct injec-
tion for variables and full weighting for
residual quantities; prolongation of the
coarse grid correction from the coarse

