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Introduction:  Asuka 881394 is a unique achon-

drite with a granulitic texture, very calcic  ~An98 pla-
gioclase, and pigeonite that has not inverted to ortho-
pyroxene [1]. First thought to be a eucrite, recent O-
isotopic studies show it has a closer affinity to angrites 
[2]. Initial isotopic studies provided evidence for now 
extinct 26Al, 53Mn, and 146Sm [3,4,5]. A recent study 
[6] confirmed an early chronology with an absolute 
207Pb-206Pb age of 4566.5±0.2 Ma, a new measurement 
of the Al-Mg formation interval as 3.7±0.1 Ma since 
26Al/27Al = ~4.63 x 10-5 for the E60 CAI, and a Mn-Cr 
formation interval of -6.0±0.2 Ma relative to 
LEW86010 (“LEW”). Absolute ages relative to age 
anchors presented by [6] were 4563.4±0.2 Ma by Al-
Mg and 4564.6±0.5 Ma by Mn-Cr. These ages are in 
good, but not perfect, agreement with the 207Pb-206Pb 
age. Perhaps the most direct comparison of the early 
chronology of A881394 as determined by various 
workers is provided by reported 26Al/27Al values of 
1.18±0.14, 1.28±0.07, and 2.1±0.4 x 10-6 [4,6,5]. Ana-
lyses of mineral separates by TIMS [4] and MC-ICP-
MS [6] agree well, but the higher value obtained by in 
situ SIMS analysis [5] is significant in light of the 
slight inconsistency between absolute ages inferred 
from the short-lived chronometers and the 207Pb-206Pb 
age. We examine the possibility that inconsistencies in 
the earliest fine-scale chronology of Asuka 881394 
may be related to isotopic “disturbances” observed in 
39Ar-40Ar, 87Rb-87Sr, and 147Sm-143Nd  chronometers. 

Age Summary: Fig. 1 is a recently compiled sum-
mary of isotopic age data for Asuka 881394 [7]. 

Ar-Ar Age:  The 39Ar-40Ar age spectrum for a pla-

gioclase separate is shown in Fig. 2.  The first few ex-
tractions releasing 0-11% of the 39Ar gave higher K/Ca 
and 36Ar/37Ar ratios and much lower apparent ages 
(~3.0-4.0 Ga), all suggestive of terrestrial weathering, 
and are ignored here.  Extractions releasing 11-100% 
of the 39Ar gave a nearly constant K/Ca of ~0.00034.  
The nearly constant 36Ar/38Ar ratio of 0.67 for these 
extractions indicates pure cosmogenic 36Ar and 38Ar.  
The apparent Ar-Ar ages for these individual extrac-
tions range between 4.50 Ga and 4.64 Ga, and average 
4576 Ma.  The data seem to define two quasi age pla-
teaus.  The average age for six extractions releasing 11-
49% of the 39Ar is 4526±21 Ma, and the average age 
for nine extractions releasing 57-100% of the 39Ar is 
4617 ± 22 Ma (both 1σ).  These two ages bracket the 
4.56 Ga formation age of A881394 indicated by the 
dashed horizontal line in Fig. 2.   

The younger Ar-Ar ages of ~4.53 Ga are about the 
same as the oldest Ar-Ar ages measured for some other 
meteorite types.  Those ages >4.55 Ga observed for the 
last ~45% of the 39Ar release seem impossibly old. 
However, 39Ar for most extractions required a correc-
tion of ~55% for 39Ar produced in the reactor from 
42Ca, which dominates the age uncertainties in Fig. 2.  
This  correction factor can vary somewhat [9], and if 
the A881394 correction was too large, the Ar-Ar age 
would artificially increase. 

The stair-step shape of the Ar-Ar age spectrum 
suggests a partial degassing event slightly lowered the 
ages for those extractions releasing 11-49% of the 39Ar.  
40Ar may have been redistributed within the sample 
without significant loss.  Alternatively, the higher tem-
perature extractions may contain some 40Ar acquired 
during crystallization.   

Sm-Nd Age: The younger Ar-Ar plateau age (Fig. 
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Figure 2. Ar-Ar age spectrum for A881394 plagioclase. 39K 
decay constant and branching ratio from [10]. 

Figure 1. Summary of isotopic ages for Asuka 881394. 
“Absolute” ages for the short-lived chronometers are cal-
culated relative to 4558 Ma for angrite LEW 86010. For 
146Sm-142Nd,  “new”  t1/2 =  0.68 x 108 yr [13]. 
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2) agrees within mutual error limits with the Sm-Nd 
age (Fig. 3). However, the Sm-Nd data show minor 
disturbances. Fig. 3 shows data obtained both in 2001 
[3] and 2010 [7]. The Sm-Nd age obtained from these 
data is 4516±37 Ma (2 ) when data for handpicked 
tridymite and two leachates are omitted from the isoch-
ron (open symbols). A bulk sample (WR) and pyroxene 
separate analysed in 2001 plot below data for corres-
ponding samples analysed in 2010. An isochron for 
only 2010 data gives a slightly older calculated age of 
4532±57 Ma. Initial Nd, HEDR = 0.4±0.4 as calculated 
for either data set, and agrees within error limits with 
values of this parameter measured in the JSC lab for 
HED meteorites. 

Rb-Sr Age: Fig. 4 shows Rb-Sr data obtained for 
Asuka 881394 in the 2001 and 2010 investigations. 
These data also show a probable isotopic disturbance. 
In this case, the most pronounced disturbance is for 
“Px1” a pyroxene-enriched sample with a density 
>3.32 g/cm3 obtained as a heavy liquid separate. This 
sample and its leach residue align with handpicked 
tridymite from the 2001 investigation along an appar-
ent 3.9±0.1 Ga isochron. Because the measured 
87Sr/86Sr  ratio for the residue Px1(r) is in agreement 
with that measured in the first investigation for hand-
picked Px, there is a strong suggestion that at ~3.9 Ga 
ago Rb was “sweated out” of pyroxene grain surfaces 
and migrated into late-stage tridymite, itself likely to 
have formed during granoblastic metamorphism of the 
rock. Plausibly this effect was minimal for the larger 
and purer handpicked pyroxene grains. Heating expe-
riments for a eucrite showed that initial melting oc-
curred along grain boundaries [12]. 

Discussion: The isotopic record in A881394 must 
be interpreted in the context of its granoblastic texture. 
The good concordance of the Al-Mg and Mn-Cr forma-
tion intervals suggests that the granoblastic texture 
formed before those isotopic systems closed. Later 
disturbance of the Sm-Nd and Rb-Sr systems appears 

to be limited to minor phases including tridymite and 
possibly Ca phosphate and ilmenite as well [12]. The 
Nd- and Sr-isotopic systems appear to have remained 
closed in the major mineral plagioclase. Thus, initial 
87Sr/86Sr  = 0.698989±14 is indistinguishable from that 
for eucrites or angrites, whereas initial Nd agrees with  
values measured for HED meteorites. These observa-
tions are consistent with the primordial Pb isotopic 
composition (CDT) in plagioclase reported by [6]. The 
observations suggest that the (most radiogenic+CDT) 
regression [6] yielding an age of 4566.05±0.45 Ma 
should be preferred to one for which modern terrestrial 
Pb is included in the regression. However, the K-Ar 
system suggests that plagioclase was not closed to Ar-
migration, and in situ SIMS analyses showed variations 
in 26Mg that were not well correlated with Al/Mg ra-
tios in plagioclase [5]. Thus, caution in using Asuka 
881394 data to evaluate the initial homogeneity of the 
distribution of short-lived nuclides in the early solar 
nebula is indicated. 
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Figure 3. Sm-Nd data for Asuka 881394. Age calcu-
lated assuming  (147Sm)  =  0.00654 Ga-1[11]. 
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assuming  (87Rb) =  0.01402 Ga-1 [11]. 


