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ABSTRACT

Modern aircraft—both piloted fly-by-wire commercial air-
craft as well as UAVs—more and more depend on highly
complex safety critical software systems with many sensors
and computer-controlled actuators. Despite careful design
and V&V of the software, severe incidents have happened due
to malfunctioning software.
In this paper, we discuss the use of Bayesian networks (BNs)
to monitor the health of the on-board software and sensor sys-
tem, and to perform advanced on-board diagnostic reasoning.
We will focus on the approach to develop reliable and robust
health models for the combined software and sensor systems.

1. INTRODUCTION

Modern aircraft more and more depend on the reliable op-
eration of complex, yet highly safety-critical software sys-
tems. Fly-by-wire commercial aircraft and UAVs are fully
controlled by software. Failures in the software or a prob-
lematic software-hardware interaction can lead to disastrous
effects.
Although on-board diagnostic systems nowadays exist for
most aircraft (hardware) subsystems, they are mainly work-
ing independently from each other and are not capable of
reliably determining the root causes of failures, in particu-
lar when software failures are to blame. Clearly, a powerful
FDIR (Fault Detection, Isolation, Recovery) or ISHM (Inte-
grated System Health Management) system for software has
a great potential for ensuring safety and operational relia-
bility of aircraft and UAVs. This is particularly true, since
many software problems do not directly manifest themselves
but rather exhibit emergent behavior. For example, when the
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F-22 Raptors crossed the international date line, a software
problem in the GN&C system did not only shut down that
safety-critical component but also brought down communica-
tions, so the F-22’s had to be guided back to Hawaii using
visual flight rules1.
An on-board Software Health Management (SWHM) system
monitors the flight-critical software while it is in operation
and thus is able to detect faults as soon as they occur. In
particular, a SWHM system

• monitors the behavior of the software and interacting
hardware during system operation. Information about
operational status, signal quality, quality of computation,
reported errors, etc., is collected and processed on-board.
Since many software faults are caused by problematic
hardware/software interaction, status information about
software components must be collected and processed as
well.

• performs diagnostic reasoning in order to identify the
most likely root cause(s) for the fault(s). This diagnos-
tic capability is extremely important. In particular, for
UAVs, the available bandwidth for telemetry is severely
limited; a “dump” of the system state and analysis by the
ground crew in case of a problem is not possible.

For manned aircraft, an SWHM can reduce the pilot’s
workload substantially. With a traditional on-board diag-
nostic system, the pilot can get swamped by diagnostic
errors and warnings coming from many different subsys-
tems. During a recent incident (e.g., when one of the en-
gines exploded on a Qantas A380), the pilot has to sort
though literally hundreds of diagnostic messages in order
to find out what happened. In addition, several diagnostic
messages contradicted each other2.

1http://www.af.mil/news/story.asp?storyID=
123041567

2http://www.aerosocietychannel.com/aerospace
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In this paper, we describe our approach to use Bayesian net-
works as the modeling and reasoning paradigm for SWHM.
With a properly set-up Bayesian network, detection of faults
and reasoning about root causes can be performed in a princi-
pled way. Also, a proper probabilistic treatment of the diag-
nosis process, as we accomplish with our Bayesian approach
(Pearl, 1988; Darwiche, 2009), can not only merge informa-
tion from multiple sources but also provide a posterior dis-
tribution for the diagnosis and thus provide a metric for the
quality of this result. We note that this approach has been
very successful for electrical power system diagnosis (Ricks
& Mengshoel, 2009, 2010; Mengshoel et al., 2010).
It is obvious that a SWHM system that is supposed to operate
on-board the aircraft in an embedded environment must sat-
isfy important properties: The implementation of the SWHM
must have a small memory and computational footprint and
must be certifiable. In this paper, we briefly will discuss
issues for the verification and validation (V&V) of SWHM,
which is an important prerequisite for any certification. Our
approach using HM models, which have been compiled into
arithmetic circuits are amenable to V&V. Finally, the SWHM
should exhibit a low number of false positives and false nega-
tives. False alarms (false positives) can produce nuisance sig-
nals; missed adverse events (false negatives) can be a safety
hazard.
The reminder of the paper is structured as follows: Section 3.
introduces Bayesian networks and how they can be for gen-
eral diagnostics. In Section 3. demonstrate our approach to-
ward software health management with Bayesian networks
and discuss how Bayesian SWHM models can be constructed.
Section 4. illustrates our SHWM approach with a detailed ex-
ample. We briefly describe the demonstration architecture
and the example scenario, discuss the Bayesian health model
to diagnose such scenarios, and present some simulation re-
sults. Finally, in Section 5. we conclude and identify future
work.

2. BAYESIAN NETWORKS

Bayesian networks (BNs) represent multivariate probability
distributions and are used for reasoning and learning under
uncertainty (Pearl, 1988). They are often used to model sys-
tems of a (partly) probabilistic nature. Roughly speaking, ran-
dom variables are represented as nodes in a directed acyclic
graph (DAG), while conditional dependencies between vari-
ables are represented as graph edges (see Figure 1 for an ex-
ample). A key point is that a BN, whose graph structure often
reflects a domain’s causal structure, is a compact representa-
tion of a joint probability table if the DAG is relatively sparse.
In a discrete BN (as we are using for our SWHM), each ran-
dom variable (or node) has a finite number of states and is
parameterized by a conditional probability table (CPT).

-insight/2010/12/exclusive-qantas-qf32-flight-from
-the-cockpit/

During system operation, observations about the software and
system (e.g., monitoring signals and commands) are mapped
into states of nodes in the BN. Various probabilistic queries
can be formulated based on the assertion of these observa-
tions to yield predictions or diagnosis for the system. Com-
mon BN queries of interest in this context include computing
posterior probabilities and finding the most probable explana-
tion (MPE). For example, an observation about an abnormal
behavior of a software component could, by computing the
MPE using a BN model of the system, be used to identify one
or more components that are most likely in faulty states.
Different BN inference algorithms can be used to answer
the queries. These algorithms include join tree propaga-
tion (Lauritzen & Spiegelhalter, 1988; Jensen, Lauritzen,
& Olesen, 1990; Shenoy, 1989), conditioning (Darwiche,
2001), variable elimination (Li & D’Ambrosio, 1994; Zhang
& Poole, 1996), and arithmetic circuit evaluation (Darwiche,
2003; Chavira & Darwiche, 2007). In resource-bounded sys-
tems, including real-time avionics systems, there is a strong
need to align the resource consumption of diagnostic com-
putation with resource bounds (Musliner et al., 1995; Meng-
shoel, 2007) while also providing real-time performance. The
compilation approach—which includes join tree propagation
and arithmetic circuit evaluation—is attractive in resource-
bounded systems.

Figure 1. Simple Bayesian Network. CPT tables are shown
near each node.

Let us consider a very simple example of a Bayesian net-
work (Figure 1) as it could be used in diagnostics. Figure 1
shows the network and the CPT tables for each node. We
have a node H Bearing representing the health of a ball
bearing in a diesel engine, a sensor node Vibration rep-
resenting whether vibration is measured or not, and a node
Oil Pressure representing oil pressure. Clearly, the sen-
sor readings depend on the health status of the ball bearing,
and this is reflected by the directed edges. The degrees of
influence are reflected in the two CPTs depicted next to the
sensor nodes. For example, if there is vibration, this increases
the probability that p(H Bearing = worn). More formally,
to obtain the health of the ball bearing, we input the states of
the sensor nodes into the BN, and compute the posterior dis-
tribution (or belief) over H Bearing. The prior distribution
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of failure, as reflected in the CPT shown next to H Bearing,
is also taken into account in this calculation.
Using Darwiche’s work on compiling Bayesian Networks
into Arithmetic Circuits (Darwiche, 2009), the example net-
work above would reflect a joint probability distribution as
follows3. And for simplicity, let’s replace all CPT en-
tries with Θx (i.e., Θok ↔ H Bearing is ok, and Θ∼ok ↔
H Bearing is worn). Let λi indicate whether evidence of a
specific state is observed (i.e., λv = 1 means evidence of
v (vibration) is observed, and λv = 0 means no evidence
of v (no vibration) is observed). The probability distribution
p(H Bear, Vib, Oil) captured by the Bayesian network above
is shown in Table 1.

H Bear Vib Oil p(H Bear,Vib,Oil)
ok v op λokλvλopΘv|okΘokΘop|ok

ok v ∼op λokλvλ∼opΘv|okΘokΘ∼op|ok

ok ∼v ∼op λokλ∼vλ∼opΘ∼v|okΘokΘ∼op|ok

ok ∼v op λokλ∼vλopΘ∼v|okΘokΘop|ok

∼ok v op λ∼okλvλopΘv|∼okΘ∼okΘop|∼ok

∼ok ∼v op λ∼okλ∼vλopΘ∼v|∼okΘ∼okΘop|∼ok

∼ok v ∼op λ∼okλvλ∼opΘv|∼okΘ∼okΘ∼op|∼ok

∼ok ∼v ∼op λ∼okλ∼vλ∼opΘ∼v|∼okΘ∼okΘ∼op|∼ok

Table 1. Probability distribution for p(H Bear, Vib, Oil)

According to this joint probability distribution table, the first
row (λokλvλopΘv|okΘokΘop|ok) representing the probability
that the health of a ball bearing be okay (λok = 1), and that
vibrations and good oil pressure are observed (λv and λop =
1) would be 0.9% (given corresponding numerical CPT en-
tries): Θv|okΘokΘop|ok = 0.1 ∗ 0.99 ∗ 0.95 = 0.09405.
Indicating a very low degree of belief in such a state. On
the other hand the fourth row (λokλ∼vλopΘ∼v|okΘokΘop|ok)
representing the probability that the health of a ball bearing
be okay (λok = 1), and that no vibrations and good oil pres-
sure are observed (λ∼v and λop = 1) is much higher (84%) as
follows: Θ∼v|okΘokΘop|ok = 0.9 ∗ 0.99 ∗ 0.95 = 0.84645.
Each of this network’s individual posterior marginals is then
given by:

p(H Bear, V ib,Oil) =
∏
Θs|x

Θs|x
∏
λs

λs

where Θs|x indicates a state’s conditional probability and λs

indicates whether or not state s is observed.
Then summing all individual posterior marginals yields
a multi-linear function—at the core of arithmetic circuit
evaluation—referred to as the “network polynomial” f by

3In the following, we abbreviate for the bearing: worn = ∼ok, for the Oil
Pressure: OK = op, and LOW = ∼op, and vibration by v.

Darwiche:
f = λokλvλopΘv|okΘokΘop|ok+

λokλvλ∼opΘv|okΘokΘ∼op|ok+
λokλ∼vλ∼opΘ∼v|okΘokΘ∼op|ok+
λokλ∼vλopΘ∼v|okΘokΘop|ok+
λ∼okλvλopΘv|∼okΘ∼okΘop|∼ok+
λ∼okλ∼vλopΘ∼v|∼okΘ∼okΘop|∼ok+
λ∼okλvλ∼opΘv|∼okΘ∼okΘ∼op|∼ok+
λ∼okλ∼vλ∼opΘ∼v|∼okΘ∼okΘ∼op|∼ok

Or
f =

∑
E

∏
Θs|x

Θs|x
∏
λs

λs

where E indicates evidence of a network instantiation, Θs|x
indicates a state’s conditional probability within E, and λs

indicates whether or not state s is observed within E.
Queries are then performed on the circuit using relevant al-
gorithms. A bottom-up visitation of the circuit, from input
to output, evaluates the probability of a particular evidence
on the state of the network. And a top-down visitation of the
circuit, from output to input, differentiates the circuit output
for every input, and can also provide information about how
change in a specific node affects the whole network, which is
sensitivity analysis.

3. BAYESIAN NETWORKS FOR SOFTWARE HEALTH
MANAGEMENT

At a first glance, the SWHM does look very similar to a com-
mon integrated vehicle health management system (IVHM):
sensor signals are interpreted to detect and identity any faults,
which are being reported. Such FDIR systems are nowadays
commonplace in the aircraft and for other complex machin-
ery. It seems like it would be straight-forward to attach a soft-
ware to be monitored (host software) to such an FDIR. How-
ever, there are several principal differences between FDIR for
hardware subsystems and software health management. Most
prominently, many software faults do not develop gradually
over time (e.g., like an oil leak); rather they occur instanta-
neously. Whereas some of the software faults directly effect
the current software module (e.g., when a division-by-zero is
detected), there are situations where the effects of software
fault manifest themselves in an entirely different subsystem,
as discussed in the F-22 example above. Due to this rea-
son and the fact that many software problems occur due to
problematic SW/HW interaction, both software and hardware
must be monitored, in an integrated fashion.
Based upon requirements as laid out in Section 1., we are
using Bayesian networks to set up SWHM models. On a
top-level, data from software and hardware sensors are pre-
sented to the nodes of the Bayesian network, which in turn
performs its reasoning (i.e., updating the internal nodes health
and status nodes) and returns information about the health
of the software (or specific components thereof). The infor-
mation about the health of the software (or subcomponents)
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is extracted from the posterior distribution, specifically from
health nodes. In our modeling approach, we chose to use
Bayesian networks, which do not reason about temporal se-
quences (i.e., dynamic Bayesian networks) because of their
complexity. Therefore, all sensor data, which are usually
time series, must undergo a preprocessing step, where cer-
tain (scalar) features are extracted. These values are then dis-
cretized into symbolic states (e.g., “low”, “high”) or normal-
ized numeric values before presented to the Bayesian health
model.
In the following section, we first will discuss the structure
of our Bayesian health models before we discuss sources of
(software) sensor data and preprocessing.

3.1 Bayesian SWHM

3.1.1 Nodes

Our Bayesian SWHM models are set up using several kinds
of nodes. Please note that all nodes are discrete, i.e., each
node has a finite number of distinct states.

CMD node C the nodes comprise the “commanded input”
to the network. Signals sent to these nodes are handled
as ground truth and are used to indicate modes, actions,
or (known) states. For example, a node WRITE TO FS
notifies that an action, which eventually will write some
data into the file system, has been commanded. For our
reasoning it is assumed that this action is in fact hap-
pening4. The CMD nodes are root nodes (no incoming
edges). During the execution of the SWHM, these nodes
are always directly connected (clamped) to the appropri-
ate command signals.

SENSOR node S A sensor node is an input node similar to
the CMD node. However, the data fed into this node are
sensor data, i.e., measurements that have been obtained
from monitoring the software or the hardware. Thus,
this signal is not necessarily correct. It can be noisy or
wrong altogether. Therefore, sensor nodes are typically
connected with a health node, describing the health of a
signal node.

HEALTH node H The health nodes are nodes, which re-
flect the health status of a sensor or component. Its
posterior probabilities comprise the output of the health
model. A health node can be binary (OK, BAD), or can
have more states that reflect the health in more detail.
Health nodes are usually connected to sensor and status
nodes.

STATUS node U A status node reflects the (unobservable)
status of the software component or subsystem.

4If there is a reason that this command signal is not reliable, the command
node C is used in combination with a H node to impact state U as further
discussed below. Alternatively, one might consider using a sensor node in-
stead.

BEHAVIOR node B Behavior nodes connect sensor,
command, and status nodes and are used to recognize
certain behavioral patterns. The status of these nodes is
also unobservable, similar to the status nodes. However,
usually no health node is attached to the behavioral
nodes.

Sensor H p = for FS status
E OK full95 full

empty OK 0.9 0.05 0.01 0.01
OK OK 0.1 0.6 0.2 0.1
almost full OK 0 0.2 0.7 0.1
full OK 0 0 0 1
empty bad 0.9 0.1 0 0
OK bad 0.1 0.9 0 0
almost full bad 0.5 0.5 0 0
full bad 0.5 0.5 0 0

Table 2. Sensor node for Filesystem capacity with
attached health node H and status node FS status.

3.1.2 Arrows

The following informal way to think about edges in Bayesian
networks are useful for knowledge engineering purposes: An
edge (arrow) from node C to node E indicates that the state
of C has a (causal) influence on the state of E.
For example, if S is a software signal (e.g., within the aircraft
controller) that leads into an input port I of the controller. Let
us assume that we want S being 1 to cause C to be 1 as well.
Failure mechanisms are represented by introduced a health
node H . In our example, we would introduce a node H and
let it be a (second) parent of I . More generally, the types of
influences typically seen in the SWHM BNs are as follows:

{H,C} → U represents how state U may be commanded
through command C, which may not always work as in-
dicated. This is reflected by the health H of the com-
mand mechanism’s influence on the state.

{C} → U represents how state U may be changed through
command C; the health of the command mechanism is
not explicitly represented. Instead, imperfections in the
command mechanism can be represented in the CPT of
U .

{H,U} → S represents the influence of system status U
on a sensor S, which may also fail as reflected in H . Af-
ter all, we use a sensor to better understand what is hap-
pening in a system. The sensor might give noisy read-
ings; the level of noise is reflected in the CPT of S.

{H} → S represents a direct influence of system health H
on a sensor S, without modelling of state (as is done in
{H,U} → S pattern). An example of this approach is
given in Figure 1.
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{U} → S represents how system status U influences a sen-
sor S. Sensor noise and failure can both be rolled into the
CPT of S. Table 2 shows the CPT for such a case. Be-
cause the sensor node (for Filesystem capacity
has two parents (a status node FS status and a health
node (with states OK, bad)), the CPT table is 3-
dimensional. Table 2 flattens out this information: the
rows correspond to the states of the sensor node (1st
group for healthy sensor, 2nd group for bad sensor). The
columns refer to the states of the FS status node. In
this particular example, a bad file system sensor does not
recognize that the file system might become full.

3.2 Software Sensors

Information that is needed to reason about software health
must be extracted from the software itself and all compo-
nents, which interact with the software, i.e., hardware sen-
sors, actuators, the operating system, middle ware, and the
computer hardware. Different software sensors provide infor-
mation about the software on a different level of granularity
and abstraction. Table 3 gives an impression on the various
layers of information extraction.
Only if information is available on different levels, the
SWHM gets a reasonably complete picture of the current situ-
ation, which is an enabling factor for fault detection and iden-
tification. Information directly extracted from the software
(Table 3) provide very detailed and timely information. How-
ever, this information might not be sufficient to identify a fail-
ure. For example, the aircraft control task might be working
properly (i.e., no faults show up from the software sensors).
However, some other task might run havoc and consumes too
many resources (e.g., CPU time, inter process communica-
tion, etc.), which in turn can lead to failures related to the
control task. We therefore extract a multitude of different in-
formation about the software and its behavior as shown in
Table 3.

3.3 Preprocessing of Software and Hardware Sensor
Data

The main goal of preprocessing is to extract important infor-
mation from the (large amount of) sensor data. Most of the
preprocessing functions aim just toward data and dimensional
reduction, and to convert the actual software sensor values
into observed states of the health model. The latter is neces-
sary since all SWHM nodes have a discrete state. For exam-
ple, the sensor for the file system has the states empty, OK,
almost full, full. Preprocessing steps, which extract
temporal features from the data enable us to perform temporal
reasoning without having to use a dynamic Bayesian network
(DBN). This is a very prominent conceptual decision: by giv-
ing up the ability to do full temporal reasoning with Bayesian
networks (which are complex in design and execution), we
are able to use much simpler static health models and handle

Software
Errors flagged errors and exceptions
Memsize used memory
Quality signal quality
Reset Filter reset (Naviation)

Software Intent
FS write intent to write to FS
fork intent to create new process(es)
malloc intent to allocate memory
use msg intent to use message queues
use sem using semaphores
use recursion using recursion

Operating system
CPU CPU load
N proc number processes
M free available memory
D free percentage of free disk space
IPC amount of available IPC
Semaphores information about semaphores
realtime missed deadlines
N intr number of interrupts
L msgqueue length of message queues

Table 3. SWHM informations sources

all temporal aspects during preprocessing.
In particular, we use the following preprocessing components
(which also can be combined):

discretization A continuous value is discretized using a
number of monotonically increasing thresholds. For the
file system sensor, an example is shown in Table 4.

min/max/average The minimal or maximal value, or the
mean, is taken.

moving min/max/average A moving min/max/mean value
(with a selectable window size) is taken.

sum The sum (integral) of the sensor value is taken. For
example, the sum of “bytes-written-to-file-system” (per
time unit) approximates the amount of data in the file
system (assuming nothing is being deleted).

temporal Temporal states of sensor signals can be ex-
tracted, e.g., time difference between event A and event
B.

time-series analysis Advanced time series analysis can be
used as a preprocessing step for SWHM. For example,
Kalman filters can be used to correlate signals against a
model. Residual errors then can be used as sensor states
(e.g., close-to-model, small-deviation, large-deviation).
Fast Fourier transformation (FFT) can be used to detect
cyclic events, e.g., vibrations or oscillations.
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Percentage (df) Status
0 ≤ df < 5% empty

5 ≤ df < 80% OK
80 ≤ df < 99% almost full

99 ≤ df full

Table 4. Discretization with thresholds

4. DEMONSTRATION EXAMPLE

4.1 System architecture

For demonstration purposes, we have implemented a sim-
ple system architectures on a platform that reflects real-time
embedded execution typical of aircraft and satellite systems.
Trampoline5, an emulator for the OSEK6 real-time operat-
ing system (RTOS)—widely used within industry for embed-
ded control systems—is used as a platform rather than other
RTOS specifically established in the aerospace industry such
as Wind River’s VxWorks and GreenHills’ INTEGRITY be-
cause its capabilities and easy availability was sufficient for
the purpose of our experiments.
The basic system architecture (Figure 2) for running SWHM
experiments consists of the OSEK RTOS, which runs a num-
ber of tasks/processes at a fixed schedule. For this simple
SWHM demonstration system,(1) the simulation model of
the plant is integrated as one of the OSEK tasks, and (2)
hardware actuators/sensors are not modelled in detail, which
would have required drivers and interrupts routines. Despite
its simplicity, this architecture is sufficient to run a simple
simulation of the aircraft and the GN&C software in real-time
requirements (fixed time slots, fixed memory, inter-process
communication, shared resources).
The software health management executive including prepro-
cessing is executed as a separate OSEK task. It reads soft-
ware and sensor data, performs preprocessing and provides
the data as evidence to the sensor nodes of the (compiled)
Bayesian network. The reasoning process then yields the pos-
terior probabilities of the health nodes.

4.2 Example Scenario

An experimental scenario architecture to study file system re-
lated faults such as the Mars rover Spirit reboot cycle incident
(Adler, 2006) has been implemented on this basic platform. A
short time after landing, the Mars rover SPIRIT encountered
repeated reboots, because a fault during the booting process
caused a reboot again. According to reports (Adler, 2006) an
on-board file system for intermediate data storage cause the
problem. After this storage was filled up, the boot process
failed while trying to access that file system. The problem
could be detected on the ground and solved successfully.

5urlhttp://trampoline.rts-software.org/
6urlhttp://www.osek-vdx.org/

Figure 2. Demonstration System Architecture. The Bayesian
Network model is compiled (before deployment) into an
arithmetic circuit representing the knowledge base. The real-
time operating system schedules three tasks: the controller,
the plant, and the SWHM inference engine

In a more general setting, this scenario is dealing with bad
interaction due to scarce resources, and delays during access.
Even if no errors show up, a blocking write access to a file
system, which is almost full, or the delivery of a message
through a lengthy message queue can, in the worst case cause
severe problems and emerging behavior.
For the purpose of demonstration, a flawed software architec-
ture with a global message queue that buffers all controller
signals and logs them in the file system (blocking) before
sending them is designed (Figure 3). This message queue
is also used to transport image data from an on-board camera
(e.g., for UAV) to the radio transmitter. The relevant soft-
ware components of this simple architecture are: guidance,
controller, message queue, file system, and plant. On-board
camera and transmitter are shown but not used in the experi-
ments described in this paper.

Figure 3. Software Architecture for file system related fault
scenarios.

Here, we are running the following scenario: The file system
is set to almost full. Subsequent control messages, which are
being logged, might stay longer in the message queue, poten-
tially causing overflow of the message queue or dropping of
messages. However, a simple delay (i.e., a control message is

6
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not processed within its allotted time frame, but one or more
time-frames later can cause oscillation of the entire aircraft.
This oscillation, similar to PIO (pilot induced oscillation) can
lead to dangerous situations or even loss of the aircraft.
In this scenario, the software problem does not manifest itself
within the software system (e.g., in form of errors or excep-
tions). Rather, the overall behavior of the aircraft is affected
in a non-obvious way.
Other possible scenarios with this setup are:

• The pilot, or autopilot’s stick commands are delayed,
which again results in oscillations of the aircraft.

• Non-matching I/O signal transmit/read/processing rates
between control stick and actuators result in plant oscil-
lations whose root causes are to be disambiguated by the
SWHM task.

• An unexpectedly large feed from the on-board camera
(potentially combined with a temporary low transmission
bandwidth) can cause the message queue to overflow,
which results in delays/missed signals/dropped messages
with similar effects as discussed above.

• The controller and the science Camera compete for the
message queue, which could (when not implemented
correctly) cause message drops or even deadlocks.

With out SWHM, the observed problem (oscillation) should
be detected properly and traced back to the root cause(s).

4.3 The SWHM Model

A Bayesian SWHM model for this architecture is designed
(Figure 4) using the SamIam tool7. A modular Bayesian
network design approach is attempted by first designing
the SWHM model for the basic system including rele-
vant nodes such as—in the aircraft case—the pitch-up and
pitch-down command nodes. The pitch status nodes, the
fuel status node, and the software, pitch, and acceleration
health nodes. Other subnetworks are then added to this un-
derlying Bayesian network to obtain the complete SHWM
model for the specific architecture used for SWHM ex-
periments. The relevant nodes of the subnetwork mod-
ule added for SWHM experiment with file system related
faults causing oscillations of an aircraft or satellite are: the
Write File System command node; the Health File System
health node; the Status File System status node; the Sen-
sor File System sensor node; the Sensor File System Error
sensor node; the Status message Queue status node; the Sen-
sor queue length sensor node; the Sensor delta queue sensor
node; the Health message Queue health node; the delay sta-
tus node; and the Oscillation sensor node.
The Write File System command node indicates whether a
write to the file system is being executed. The health nodes

7http://reasoning.cs.ucla.edu/samiam

for the file system and the message queue reflect the probabil-
ities that they might malfunction. The status nodes for the file
system and the message queue reflect the their unobservable
states while their sensor nodes indicate sensor readings as to
their states.

Figure 4. Partial Bayesian network for file system related ar-
chitecture.

The only non-standard software sensor nodes in this SWHM
model are the delay node and the sensor for oscillations de-
tected by a Fast Fourier Transform. The delay node is an
unobservable status node whose degrees of belief in delayed
signals from the file system and the message queue given their
status factor into evaluation of posterior marginals to deter-
mine the root causes of plant oscillations. The Fast Fourier
node is a sensor node whose input is from a fast Fourier trans-
form software module performing time-series analysis to de-
tect cyclic events such as oscillations in aircraft altitude when
the aircraft pitch command signals are delayed. These two
additional nodes are instrumental in inference to determine
the most likely cause of a plant oscillations. Given that PIO
(Pilot Induced Oscillations) can also be the source of plant
oscillations, we can add yet another node to this network and
connect it to the fast Fourier sensor node to factor pilot input
in posterior marginals evaluations in order to disambiguate
the cause of plant oscillations.
This Bayesian network is compiled into an arithmetic circuit
whose definition serves as the SWHM model (the knowledge
base), and is integrated with the rest of the system (tasks in-
cluding controller, plant, and the Inference engine) running
over the RTOS. The Bayesian network model is compiled
“offline”—only once—into an Arithmetic Circuit.

4.4 Results

Analysis of experimental runs with this architecture indicated
that the system undergoing SHWM runs fine in the nominal
case (Figure 5). However, the SWHM inference engine was
instrumental in pointing toward the root cause of oscillations
when pitch-up and pitch-down commands to the aircraft plant
are affected by faults originating in the file system causing the
aircraft to oscillate up and down rather than maintaining the
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desired altitude. For the purpose of our experiments, the file
system was set to almost full at the start of the run, and as the
system runs and controls are issued and logged, delays in ex-
ecutions start taking place at time t=30 (Figure 6). Eventually
altitude oscillations are detected by a Fast Fourier Transform
performed on the altitude sensor readings shown in the middle
panel of Figure 6. The bottom panel indicates that when the
Fast Fourier Transform eventually detects oscillations around
t = 100, the SWHM infers that the posterior probability that
the health of the software is good is low as it substantially
drops while the health of pitch and accelerometer systems are
mostly high despite some transient lows. This indicates a low
degree of belief in the health of the software and that the most
likely cause for a state with oscillations would be a software
fault. For the purpose of this experiment, no additional pilot
inputs were assumed.

Figure 5. Temporal trace for the nominal case of file system
based scenarios. The degree of belief in the health of the sys-
tem software, in blue, remains high (bottom panel)

SHWM can also be instrumental in disambiguating the root
cause of oscillations when we add a pilot input node con-
nected to the oscillation detection fast Fourier transform sen-
sor node. The SWHM reasoner can then disambiguate the
diagnosis by evaluating whether the fault is due to Pilot In-
duced Oscillations (PIO), or rather some software failures.

5. CONCLUSIONS

Software plays an important and increasing role in aircraft.
Unfortunately, software (like hardware) can fail in spite of
extensive verification and validation efforts. This obviously
raises safety concerns.
In this paper, we discuss a Software Health Management
(SWHM) approach to tackle problems associated with soft-
ware bugs and failures. The key idea is that an SWHM system
can help to perform on-board fault detection and diagnosis on
aircraft.
We have illustrated the SWHM concept using Bayesian net-
works, which can be used to model software as well as inter-
facing hardware sensors, and fuse information from different

Figure 6. Temporal trace for a file system related fault sce-
nario resulting in oscillations. The SWHM inference en-
gine’s evaluation outputs show that the degree of belief in the
health of the system’s software (blue in bottom panel) sub-
stantially drops when oscillations are eventually detected by
a fast Fourier transform at about t=100, after overflow of the
file system resulted in delayed pitch up and pitch down com-
mand signals from the controller. Readings from the altitude
sensor(blue in middle panel) show oscillating altitude starting
at about t=30.

layers of the hardware-software stack. Bayesian network sys-
tem health models, compiled to arithmetic circuits, are suit-
able for on-line execution in embedded software systems.
Our Bayesian network-based SWHM approach is illustrated
for a simplified aircraft guidance, navigation, and control
(GN&C) system implemented using the OSEK8 embedded
operating system. While OSEK is rather simple, it is exten-
sively applied in the automotive and industrial sectors. We
show, using scenarios with injected faults, that our approach
is able to detect and diagnose software faults.
In future work, we plan to investigate how the SWHM con-
cept can be extended to robustly handle unexpected and un-
modeled failures, as well as how to more automatically gener-
ate SWHM Bayesian models based on information in artifacts
including software engineering models, source code, as well
as configuration and log files.
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