DIAGNOSTIC ALGORITHM BENCHMARKING
Scott Poll (NASA Ames Research Center)

Objectives
- Benchmark diagnostic algorithms (DAs) using standardized platform
- Compare performance empirically
- Facilitate research in and maturation of diagnostic technologies

Challenges
- Various diagnostic approaches (expert systems, model-based, data-driven, stochastic)
- Diagnostic algorithms support different operational contexts – difficult to define evaluation criteria

Approach
- Acquire nominal and faulty experimental data with known ground truth
- Use standard formats for system description, data, and diagnosis results
- Create software framework to execute diagnostic algorithms and evaluate performance

Diagnostic Framework (DXF)
- High-level representation of physical system description, sensor data, diagnosis output
- Run-time architecture for executing DAs with experimental scenarios
- Evaluation component that evaluates DAs using pre-defined metrics

Implementation
- Two system descriptions created from the ADAPT Electrical Power System tested
- Archived ~4 minute nominal and faulty system description, sensor data, and diagnosis results

DXC’10 Diagnostic Problems
- DXF and ADAPT EPS scenarios used in two diagnostic competitions (DXC’09, DXC’10), hosted by the International Workshop on Principles of Diagnosis
- DXC’10 introduced new challenges: new fault types, reduced sensor set, multiple sample rates

Results (only DXC’10 DP-I shown, see links for more information)
- No DA dominates all metrics
- Real-world system noise, latencies, transients, and coding errors resulted in DA false positives and classification errors

Publications and Data Sets
- ADAPT Electrical Power System information, software framework, sample data, test data, results, publications, and presentations are available on DASHLink:
 - DXC’09: https://c3.ndc.nasa.gov/dashlink/projects/36/
 - DXC’10: https://c3.ndc.nasa.gov/dashlink/projects/33/