DIAGNOSTIC ALGORITHM BENCHMARKING

Scott Poll (NASA Ames Research Center)

Objectives
- Benchmark diagnostic algorithms (DAs) using standardized platform
- Compare performance empirically
- Facilitate research in and maturation of diagnostic technologies

Challenges
- Various diagnostic approaches (expert systems, model-based, data-driven, stochastic)
- Diagnostic algorithms support different operational contexts – difficult to define evaluation criteria

Approach
- Acquire nominal and faulty experimental data with known ground truth
- Use standard formats for system description, data, and diagnosis results
- Create software framework to execute diagnostic algorithms and evaluate performance

Implementation
- Two system descriptions created from the ADAPT Electrical Power System testbed
- Archived ~4 minute nominal and faulty scenarios with known ground truth for ADAPT-Lite and ADAPT systems

Results (only DXC’10 DP-I shown, see links for more information)
- No DA dominates all metrics
- Real-world system noise, latencies, transients, and coding errors resulted in DA false positives and classification errors

DXC’10 Diagnostic Problems
- Aspect: DP-I, DP-II
 - System: ADAPT-Lite, ADAPT
 - Diagnostic case: single-string UAS mission
 - Fault isolation time: detection
 - Isolation: detection
 - Diagnosis output: detection
 - CPU load: detection
 - Memory load: detection

Publication and Data Sets
- ADAPT Electrical Power System information, software framework, sample data, test data, results, publications, and presentations are available on DASHlink:
 - DXC’09: https://c3.ndc.nasa.gov/dashlink/projects/36/
 - DXC’10: https://c3.ndc.nasa.gov/dashlink/projects/33/

Team: Scott Poll (NASA Ames), Sriram Narasimhan (UARC @ NASA Ames), Tolga Kurtoglu (PARC), David Garcia (PARC), Johan de Kleer (PARC), Alexander Feldman (Delft University of Technology & PARC), Arjan van Gemund (Delft University of Technology)