Miniature Blimps for Surveillance and Collection of Samples
These robots could follow complex three-dimensional trajectories through buildings.

NASA's Jet Propulsion Laboratory, Pasadena, California

Miniature blimps are under development as robots for use in exploring the thick, cold, nitrogen atmosphere of Saturn’s moon, Titan. Similar blimps can also be used for surveillance and collection of biochemical samples in buildings, caves, subways, and other, similar structures on Earth. The widely perceived need for means to thwart attacks on buildings and to mitigate the effects of such attacks has prompted consideration of the use of robots. Relative to “rover”-type (wheeled) robots that have been considered for such uses, miniature blimps offer the advantage of ability to move through the air in any direction and, hence, to perform tasks that are difficult or impossible for wheeled robots, including climbing stairs and looking through windows. In addition, miniature blimps are expected to have greater range and to cost less, relative to wheeled robots.

The upper part of the figure depicts two of the blimps, which have lengths of 2.3 and 1 m, and are commercially available as toys or advertising devices. The smaller blimp has a total mass of 200 g, maneuvers by use of fan motors, operates under radio control, and carries a video camera and transmitter. It is equipped with a JPL-fabricated biochemical collector in the form of a small cylinder filled with activated carbon and sandwiched by two open-cell filters. As shown in the lower part of the figure, the biochemical collector is mounted behind a fan motor, so that it automatically becomes filled with gas and/or biochemical dust when the motor is running. To kick up and collect surface dust, the blimp is made to land on its engine cowling and then its fan motors are turned on.

The larger blimp has a total mass of 1.2 kg. It can be filled in 30 seconds from the small bottle shown on the table in the figure. This blimp also operates under radio control and carries a video camera. This blimp has been equipped with an ultralight (170 g) automatic pilot manufactured commercially for radio-controlled small airplanes. This autopilot enables the control system of the blimp to utilize the Global Positioning System in following a trajectory through as many as 60 different waypoints. This autopilot also utilizes ultrasound for precise measurement and control of altitude when the blimp is <5 m above a surface.

For either blimp, the video signal could be utilized in conjunction with target tracking software running on a computer in a remote control station, such that the blimp could automatically approach a target chosen by a remote operator. Either blimp could easily pass through an open door, climb an open stairwell, or rise to look through a window. It could enter an elevator that was remotely operated or that had been manually set to open at a floor under surveillance. It could place small remote surveillance devices and/or relay devices at designated locations, including on ceilings.

This work was done by Jack Jones of Caltech for NASA's Jet Propulsion Laboratory. Further information is contained in a TSP (see page 1) NPO-30443

Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle
This engine would operate with high fuel efficiency and generate little pollution.

Langley Research Center, Hampton, Virginia

A proposed hybrid (internal-combustion/electric) automotive engine system would include as its internal-combustion subsystem, a modified Miller-cycle engine with regenerative air preheating and with autoignition like that of a Diesel engine. The fuel would be ethanol and would be burned lean to ensure complete combustion. Although the proposed engine would have a relatively low power-to-weight ratio compared to most present engines, this would not be the problem encountered if this engine were used in a non-hybrid system since hybrid systems require significantly lower power and thus smaller engines than purely internal-combustion-engine-driven vehicles. The disadvantage would be offset by the advantages of high fuel efficiency, low emission of nitrogen oxides and particulate pollutants, and the fact that ethanol is a renewable fuel.

The original Miller-cycle engine, named after its inventor, was patented