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Abstract—We analyzed a series of ten systematically developed 
surface exploration systems that integrated a variety of 
hardware and software components. Design, development, and 
testing data suggest that incremental buildup of an exploration 
system for long-duration capabilities is facilitated by an open 
architecture with appropriate-level APIs, specifically designed 
to facilitate integration of new components. This improves 
software productivity by reducing changes required for 
reconfiguring an existing system. 
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oriented architecture; multiagent systems; exploration systems; 
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I.  INTRODUCTION 
Future human spaceflight missions to near Earth objects 

or Mars may be much longer and staged differently than 
expeditions in low Earth orbit. Unlike the International 
Space Station, systems may not be physically integrated, but 
still require interoperation [15]. In particular, exchanging 
data and commands among pressurized suits, 
vehicles/habitats, and robotic systems could improve safety 
and work productivity. 

The Mobile Agents Project (2002-08) developed an open 
architecture for an end-to-end exploration system that 
facilitated crew self-reliance during simulated science EVAs 
[4][5]. This report systematically analyzes software 
productivity data from a series of field experiments involving 
ten system reconfigurations. The objective is to develop 
informative metrics for the design and value of software 
open architectures intended for efficient reconfiguration. 

In particular, this study sought data to assess whether the 
incremental buildup of an exploration system for long-
duration, remote operations is facilitated by an open 
architecture whose APIs are specifically designed to simplify 
integration of new components. This approach maximizes 
flexibility and minimizes costs by reducing changes to the 
existing system when reconfiguring components. The study 
shows the advantages of composite APIs that map 
conventional component APIs (which provide access to the 
functional methods and data objects of hardware and 
software) to a service-oriented language through which 
people and subsystems communicate.  

The Mobile Agents Architecture (MAA) provides a 
common goal-oriented, model-based interface that automates 

communication of information and commands in a 
distributed, concurrent system of systems, consisting of a 
diversity of hardware and software interacting in a mobile, 
distributed environment [6]. MAA uses a service-oriented 
language for expressing messages about tasks (e.g., in terms 
of an EVA plan, astronauts, life support tools such as 
cameras, robotic assistants). This kind of composite API 
enables a diversity of hardware and software components 
(including COTS) to provide task-oriented services to the 
overall exploration system; in particular it enables highly 
flexible and efficient voice commanding. 

The MAA open architecture, consisting of a workflow 
backbone of services (“agents” [17]) and composite APIs, 
enabled distributed, mobile agents to handle simultaneous 
goal-oriented requests on a non-reliable network. This 
architecture was developed from field experience with 
different existing hardware and software systems for both 
field science and routine habitat operations. The key 
architectural lessons concern how distributed mobile 
subsystems communicate, how task-level information and 
commands are represented, how services operating on the 
surface communicate with remote support teams, and how 
asynchronous services manage multiple, simultaneous 
requests.   

In this paper we review the design of the MAA, the field 
experiments, and the data that was analyzed.  We summarize 
the results of the analysis, interpreting charts and statistics in 
terms of the complexity and costs for reusing and modifying 
software. We describe what we learned about services 
workflow agents should provide and how they should be 
structured, and conclude with a summary of results and 
recommendations.  

II. MOBILE AGENTS ARCHITECTURE 
Workflow software agents in the Mobile Agents field 

experiments were implemented in the Brahms Language 
[1][16]. To employ a common messaging scheme each 
subsystem to be integrated is “agentified”—it is made to 
behave like a Brahms workflow agent by “wrapping” it with 
a Brahms Communications Agent (CA) using the Brahms 
JAVA API.  

A subsystem is made into an agent by defining 
SpeechActs (structured messages, also “communicative 
acts”) by which it will interact with other agents in the 



system. For example a biosensor SpeechAct could 
correspond to the voice command, “What is the pulse?” The 
API of the subsystem is extended by the CA to translate its 
API calls to SpeechActs and vice versa. We refer to this as a 
“composite API” method. The subsystem’s API and CA 
work together to enable communication with any workflow 
agent in the system: {Workflow Agents} ⇔ Communication 
Agent ⇔ Subsystem API ⇔ Subsystem. 

Other agent-based languages could be used to implement 
the architecture described here. However, Brahms effectively 
provides direct support for an open architecture with 
interoperability via its SpeechAct and CA structures. 
Service-oriented architectures (SOA) promote a similar 
common messaging approach for interoperability, in which 
subsystems provide “services.” The MAA illustrates how to 
provide an SOA by converting subsystems into agents. The 
diversity of MAA configurations demonstrates that agents 
are a good way to implement a software service; in 
particular, to make a component into a service, “agentify” it. 

The MAA provides an open architecture with 
interoperability by extending CORBA in a way that raises it 
from the level of direct functional communications to the 
level of services.  In doing this, the MAA shifts system 
design from the level of software objects and processes to the 
level of agents who communicate using the language of 
components and operations in which people naturally 
describe their goals and activities  (e.g., “Scout, take a 
picture of Astronaut 2”; “Extend the duration of Surveying 
Worksite-2 by 10 minutes”). 

In itself, CORBA only enables exposing internal system 
classes in one object-oriented program to another program. 
This means that a program that uses exposed CORBA 
classes needs to understand the internal functions of the 
system with which it interacts. Every system has its own 
internal structure and functions, perhaps written in different 
programming languages. CORBA enables inter-process 
communication, by allowing indirect access to the local data 
storage of other processes.  

In contrast, the agent approach does not expose a 
software process’ internal methods/functions. It is based 
instead on a more abstract protocol that defines how agents 
communicate messages to each other and requires agents to 
respond to these messages by providing data or causing 
actions to occur. Using the agent approach, programmers do 
not need to provide CORBA object definitions to each 
developer of the integrated system. Instead, the team defines 
a communication message protocol—in MAA this is the 
syntax and language of SpeechActs—and then the 
developers may work independently.  

For example, the voice commands for two robots 
“Boudreaux take a picture of me” and “Scout take a picture 
of me” differ in only one word in the language of the task. 
However, executing these requests involves different 
networks, APIs, command processing, and even different 
kinds of cameras, exemplifying how interoperability, 
decomposition, and abstraction relate. It is not necessary to 
pre-enumerate interactions—each agent handles cases that 
pertain to its own functionality, which decompose the 
request and pass on pieces to other agents, which do the 

same. Primitive actions are carried out (e.g., taking a picture) 
and requested data transformed and returned to the agents 
that requested it and who now enact the desired workflow 
(e.g., the photograph is passed to the agent creating a web 
site documenting the EVA). The dynamic decomposition and 
assembly each agent accomplishes avoids interfaces with n-
factorial combinations—and correspondingly avoids 
subsystem developers requiring as many interactions with 
each other. Yet, in fact all of these combinations can be 
expressed in the task language and accomplished by the 
exploration system. Through the task-level abstraction and 
agent-based interoperability, the system’s possible states and 
combinations of behaviors far exceed what designers have to 
explicitly plan and formalize. 

In summary, in terms of software architecture, Brahms 
provides a language for creating agents and a communication 
infrastructure for agents to interact. Considerable flexibility 
in languages and methods is possible. For example, the API 
of the EVA Robotic Assistant (ERA [11]) exposes its C++ 
methods using CORBA objects, which the ERA CA, written 
in Java, translates to and from SpeechActs used by agents 
throughout the exploration system. A later generalization, 
called the Collaborative Infrastructure (CI) used in 
Exploration Technology and Development “autonomy for 
operations” projects for information exchange services and 
in OCAMS [9] for ISS file management, handles this 
translation by providing a toolkit of C++ and Java libraries 
that include SpeechActs for “agentifying” an external system 
[10]. 

Of special note are the communication agents that 
interact with subsystems having interfaces that people use 
directly. For example, ScienceOrganizer is a web-based 
display of EVA progress and data, organized according the 
objects and actions of the domain (e.g., plans, people, 
locations). Such subsystems often require particular 
communication methods for receiving data and/or 
commands. In particular, the ScienceOrganizer CA uses 
SOAP to interact with ScienceOrganizer; the Dialog CA uses 
OAA with the Dialog System; the Compendium CA uses 
SQL to communicate with Compendium’s database (of plans 
and data), which Compendium displays in its own GUI. Each 
of these communication agents “agentifies” external systems, 
but their design and operation are focused on enabling 
people to communicate with the exploration system through 
different views in different modalities.  

Thus we say at one level that the agents provide 
“services,” emphasizing communications among workflow 
agents and subsystems. But more generally from the human-
task perspective, the agents are providing people with direct 
control of robots and devices and immediate access to 
information, without concern for low-level commands and 
interfaces. That is, “agentifying” enables people to tell 
subsystems the goal they want accomplished or the 
information they seek in task-level terms (e.g., “Are the 
batteries charging?”). This design correspondingly reduces 
the training required for using the exploration system. 

To recap, the MAA enables arbitrary object-oriented 
systems to become agents not just by exposing their 
methods, but by wrapping the software so communications 



between subsystems occur using task-level messages 
(SpeechActs). The CA straddles the programming domain of 
the subsystem (its language, data, and functions) and the 
agent domain of the integrated workflow system (represented 
in terms of the objects and activities of the EVA system).  
Using a common SpeechAct language to integrate data and 
functionality follows the principles of “model-based” 
programming, which enables relating semantically different 
data across hardware and software systems [13].  
Consequently, designing an agent to command a robot is 
handled in the same manner (at the same semantic level) as 
designing an agent to associate a photograph with a map 
location and sample.  

III. FIELD EXPERIMENTS AND DATA ANALYZED 
The field experiments for MAA were based on the 

methodology of empirical requirements analysis, in which 
prototype exploration systems were used for assisting crew 
members in simulated surface missions [3]. In particular, the 
project explored how existing components (robots, cameras, 
computers, biosensors, GPS devices, electric power systems, 
databases, email, heads-up display, etc.) could be made into 
an integrated exploration system that was easily reconfigured 
for different EVAs and settings.  

The data analyzed in this report consists of four different 
kinds of configurations comprising ten systems designed, 
developed, and tested by NASA Ames and JSC from 2002 
through 2008: 

• “Automating Capcom” Configurations for Desert-
RATS and Mars Desert Research Station:  

o DRATS02, MDRS03, MDRS04 (all 
using EVA Robotic Assistant) 

o MDRS05, DRATS05 (Scout vehicle), 
CDS05 [14] (K9 & Gromit robots)  

o DRATS06 [8] (pressurized suits, JSC 
ExPOC, and GeoPhone Array, Fig. 1) 

• “Power Agents”: MDRS06 [7] 
• Metabolic Advisor: POGO07 
• iMAS Scientist’s Field Assistant: iMAS08  
Table I describes the systems, which are listed 

chronologically by field test; Table II summarizes 
configurations. “Platforms” are laptop computers running 
Brahms agents; “functions” are workflow capabilities (Table 
III); external systems are any devices or software with APIs 
communicating with agents (e.g., biosensors, cameras, email, 
power inverter, robots).  

A workflow capability, as the name implies, pertains to 
the flow of information requests, commands, and work 
products, initiated by either people or software in the context 
of a crew’s work activity. Workflow capabilities usually take 
the form of requests for information that require data to be 
interpreted (e.g., how many hours will the batteries on some 
device last given current draw and planned usage?) or 
operations for subsystems to perform that require automated 
coordination of subsystems over time  (e.g., “K9, inspect the 
area around waypoint 5”). Workflow capabilities also 
include direct requests for data readouts (“what is the current 
battery voltage?”) and primitive subsystem operations 

(“Scout, turn on headlights”). Some functions require 
ongoing monitoring of sensor data (“Tell me when the 
generator is off-line”).  

TABLE I.  DESCRIPTION OF MOBILE AGENTS FIELD EXPERIMENT 
CONFIGURATIONS 

Mobile Agents System Descriptions  

DRATS02 Initial system build, single laptop platform, camera, biosensors, 
voice. Agent communications represented as Brahms Objects. Includes 
“proxy agents” for potentially queuing requests to agents on inaccessible 
platforms. 

MDRS03 Addition of an EVA Robotic Assistant (ERA), 2nd astronaut 
laptop, and habitat computer (for HabCom crew member), i.e., four 
distributed platforms. Agent communication uses KaOS with CORBA as 
transport layer and directory service across network for multiple platforms. 
MDRS04 Fully functional location and plan assistance. ERA follows 
astronauts in canyon, automated video tracking. Agent communication via 
KaOS/CORBA now uses FIPA SpeechAct envelope with Brahms 
“Communication Acts” as payloads; centralized directory service on 
mobile laptop (ATV) acceptable, but single point of failure.  

MDRS05 2nd ERA relay controlled by human operator; temperature 
probe; dynamic reconfiguration of ERA roles during EVA. Personal agents 
for astronauts and robots decomposed to create service-oriented 
“assistants”; Plan Assistant enables agents to handle multiprocessing 
(simultaneous open requests) through task list. 
DRATS05 Scout rover is configured to use ERA control system; heads-up 
display. Insufficient testing time provided in field to complete integration. 

CDS05 Two weeks after DRATS05: Same software package as DRATS05 
with bugs fixed. System incorporates Gromit and K9 robots as adapted 
ERA agents; one astronaut, no HUD; HabCom crew member interacts with 
EUROPA planner to control K9 via agent architecture. 

PA06 “Power Agents”; no robots; all inside MDRS habitat; completely 
new functionality in monitoring electric power system, including generator, 
batteries, solar panels. Voice mail implemented during two-week shake 
down test; configuration retains all  science data collection and EVA 
management capabilities. Introduces sound beeps to provide confirmation 
for certain routine commands. 
iMAS06 Same software as PA06, but configured for one laptop operating 
in standalone (off-network) mode, for use by a field scientist. 

DRATS06 Reconfiguration of DRATS/CDS05 to enable second 
commanding console off-site (JSC’s Exploration Planning & Operations 
Center, ExPOC); automated control of geophone deployment from 
Houston. Voice commanding by crew in pressurized suits with special 
microphones. Demonstrated autonomous driving of Scout (“Go to 
waypoint” “Follow astronaut one”). 
POGO07 Based on iMAS06; integrates with Metabolic Algorithm (Excel 
VBA) connected to biosensors in pressurized suit during partial-gravity 
experiments. Language grammar rebuilt from scratch to be more compact, 
enabling much faster compilation.   
iMAS08 Based on POGO07, with more automated science data logging; 
used in practical settings by geologists in Hi and NM and by divers with 
scuba gear (Belize). 

 



TABLE II.  MOBILE AGENTS SYSTEM CONFIGURATIONS 
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DRATS02 2 1 3 X     4 
MDRS03 1.4 4 29 X     7 
MDRS04 2.8 4 53 X     10 
MDRS05 2.9 5 82 X X    13 
DRATS05 0.9 4 77   X   14 
CDS05 0.9 4 80    X X 11 
PA06 1.1 5 45      10 
iMAS06 .01 1 51      5 
DRATS06 
 0.7 

5 91   X   16 

POGO07 0.3 1 63      7 
iMAS08 0.05 1 50      5 

TABLE III.  CATEGORIZATION OF EVA WORKFLOW AUTOMATION 
CAPABILITIES 

Hardware Integration 
 

Robots, cameras, sensors, instruments,  
displays, etc. 

Software Integration 
 

Software incorporated as separate 
components, e.g., planning system, Excel 

Astronaut Health Monitoring Available data and alerts, e.g., heart rate 
System Health Monitoring Computer, Power, & Life Support systems 
Location Tracking 
 

All aspects of logging, tracking, finding 
assets in the field 

Human-Robot Coordination Commands involving robotic systems  
Plan Management Getting status and changing the work plan 
Science Data Logging All aspects of data collection during EVA 

Voice Mail  
Crew communication via recorded 
messages 

Alert Management Control of alert types and modality 
Voice Command Controls Control of voice interface 

 
Capabilities are counted to group commands handled 

uniformly by a subsystem. For example, asking the Scout to 
power on/off its brakes, headlights, or motors counts as one 
capability. Here many different task-level commands map 
onto a single method in Scout’s communication agent. 
However asking Scout to follow someone and asking it to 
halt are two capabilities because these task-level operations 
are handled by different CA methods, coordinating data and 
commands from different sources. One source of efficiency 
is that agents may retain methods relevant to different 
configurations. For example, the agents used in DRATS05 
and CDS05 were identical except for adding CAs for the 

new robots and removing Scout and its CA; thus a voice 
command to Scout in CDS05 would be properly interpreted 
and result in the response that Scout is unavailable. 

Overall, in the ten MAA system reconfigurations 134 
workflow capabilities were developed for astronaut health 
monitoring, system health monitoring, location tracking, 
human-robot coordination, plan management, science data 
logging, voice command interface controls, and alert 
management. The Mobile Agents systems were developed to 
illustrate typical functionalities that may be useful to 
scientist-astronauts during EVAs in which real-time 
communication with mission support is not possible due to 
light-speed time delay [4]. Voice commanding capabilities 
were designed to assist creating documented EVA products 
while flexibly following an EVA plan, keeping on route and 
schedule, and remaining aware of logistic/safety constraints 
and limitations. 

The sources of data analyzed for this study include: code 
repositories; project reports, schedules, email, and budgets; 
and expedition records. Analysis produced statistics about 
software modification (e.g., direct reuse or number of lines of 
code added) and personnel effort (e.g., size and distribution 
of teams; FTE for agents and integration only, not 
subsystems).  Statistics were charted to determine advantages 
of the open architecture for phased development of EVA 
exploration system capabilities, such as adding robotic 
systems in the same production line (e.g., MDRS05 added a 
second ERA to MDRS04), adding a new robotic system by 
adapting existing software (e.g., Scout), and incorporating 
existing capabilities for different purposes (e.g., creating 
PA06 from DRATS05). Productivity calculations reflect the 
different kinds of work required for revising the system in 
these ways. In particular, a distinction was made between: 
Reusing a task-level service (no change), adding 
functionality to a service, and adapting a service for a 
different subsystem.  

Analysis also examined the ability to reconfigure the 
exploration system for different work contexts, such as 
adding new kinds of external systems (shifting among 
science instruments, electric power systems, and life support 
systems) and directly using existing services (e.g., email 
alerts) for new purposes or changing communication media 
(e.g., from email to HUD to voice loop) without modifying 
code. Cost for these changes was estimated and correlated by 
counting workflow capabilities, thousands of source lines of 
code (KSLOC), and programming time comparatively in the 
series of ten system reconfigurations.  



 
Figure 1. Desert-RATS 2006 EVA Exploration System Configuration (Meteor Crater, September 2006) [8]. Green rectangles are MAA subsystems; ovals 
are computer platforms containing a Brahms multiagent system: EVA astronauts (EV1, EV2), Scout, Habcom, and ExPOC. DRATS06 reconfigured 
MDRS05 to use Scout rover instead of ERAs. Agents control Scout’s Geophone deployment system from the ExPOC agent platform in Houston. This 
configuration demonstrated how two kernel support systems, one local (HabCom) and the other remote (ExPOC), could be used to coordinate the flow of 
data, information, and goal directed commands coming from EVA astronauts, the surface habitat operator, and the remote ground support operator. 

IV. ANALYSIS OVERVIEW 
For a closed architecture not designed for adding new 

capabilities, the amount of effort (in FTE cost and KSLOC) 
can increase rapidly when new capabilities are added. We 
hypothesized that an open architecture designed for 
flexibility would make reconfiguration and addition of 
components easier and less costly. 

Our experience and analysis confirmed three primary 
hypotheses: 

1. An agent-oriented workflow system using composite 
APIs enables integrating new components (e.g., 
biomedical algorithms, robots, databases) without 
modifying them. 

2. Incremental Cost/capability is linear or decreasing 
as new capabilities are added. 

3. Incremental KSLOC/capability is linear or 
decreasing as new capabilities are added.  

Analysis showed that a workflow service backbone was 
established in the third year (MDRS05) and was reused for 
subsequent configurations, ranging from 85% carryover 
when entirely different robots and a planning system were 
incorporated (CDS05) to 100% carryover when shifting from 
an EVA system to a habitat power monitoring system 
(MDRS06). At the same time, in developing the workflow 
service backbone, nearly half of the APIs were unchanged. 
Architecture changes focused on reconfiguring workflow 
services to respond to interface requirements, rather than re-
integration with subsystems. That is, the data show that 
enhancement of workflow capabilities is often possible 
without modifying existing systems and their APIs, given an 
open architecture in which integration occurs through task-
level communications. 



Furthermore, in the aggregate 80% of added KSLOC for 
system reconfigurations was for task-level API translators 
(“communication agents”; CAs) to integrate new 
components (Fig. 2). But a relatively small amount was 
added for each configuration after the architecture was 
mature. On average Workflow KSLOC was increased by 
14% and CA KSLOC by 13% for each reconfiguration.  

 

 
Figure 2. Total KSLOC (thousands of lines of code) for each system 
configuration (columns, broken into Workflow Backbone and 
Communication Agent parts) and new KSLOC (for new or modified 
agents; shown as lines).  Code for Communication Agents dominates. 

 
Figure 3. Percentage of KSLOC added to Communication Agents and 
Workflow Agents for each configuration; Percentage of KSLOC Workflow 
Agents relative to the system total KSLOC . 

 
Figure 4. Average KSLOC added for each new capability. 

 
Figure 5. Number of new capabilities per Full-Time Equivalent effort 
(annualized over development period). 

Depending on the component, API translators for 
complex systems such as rovers might require 20 KSLOC (1 
FTE or more), while simple systems such as cameras might 
require 2 KSLOC (0.1 FTE).  

The ratio of total workflow KSLOC to the total system 
KSLOC (Fig. 3) remained surprisingly constant at 16%, 
which demonstrates that the amount of code required is 
linear with the number of capabilities, and additions require 
only incremental changes to affected workflow functions. 

The series of exploration system experiments 
demonstrated efficiency in designing, developing and testing 
new systems. The average (and median) DDT&E elapsed 
time per configuration was 172 days with five programmers 
on average (varying from nine to one). Programming effort 
varied from 3.4 FTE to less than 0.1 FTE, which underscores 
the minimal re-engineering required. 

The three key productivity findings are: code added for 
each new workflow capability trends downwards from 1.5 to 
less than 1 KSLOC (Fig. 4); new capabilities/FTE trends 
upwards from 10 to 20, and KSLOC/FTE trends upwards 
from 15 to 20. These data show that size of the modifications 
and effort required are generally predictable and constant, 
with addition of task-level APIs for new automated hardware 
and software systems requiring more code and time. These 
data suggest that the overall exploration system architecture 
is stable and new capabilities neither interfere with existing 
capabilities nor require increasing complexity of interactions.   
Therefore, in using an open architecture with APIs providing 
task-level services, we can treat capabilities abstractly and 
make predictions at design time of the amount of code and 
effort required to build or modify an exploration system 
configuration. Specifically, the analysis predicts that each 
workflow capability added by an experienced team will 
require 1.5 KSLOC or less and correspondingly 0.07 FTE or 
less.  

Viewing the field configurations in the aggregate, 134 
capabilities were developed with 13 FTE in total DDT&E 
time of about 4 years. The overall average of 10 new 
capabilities per FTE closely fits the development efficiency 
of creating the mature architecture (2002-2005), when 64% 
of the total system capabilities were developed with 70% of 
the total FTE. Subsequent systems introduced relatively 
fewer new capabilities with increased productivity (Fig. 5). 
Effort for DRATS/CDS05 and DRATS06 reflects 



significantly more complex commanding for four different 
robotic systems with a variety of peripheral subsystems. 

These data show the upfront cost is relatively small given 
the functionality provided to the crew, with direct reuse (at 
no cost) of code and functionalities in very different settings. 
The upfront investment pays off as much smaller teams 
reused the existing workflow backbone, making only 
incremental changes to introduce completely different kinds 
of components (e.g., power and life support systems) with 
new kinds of support for crew self-reliance and safety (e.g., 
providing status information and alerts relevant to using 
resources during ongoing work activities).  

V. LESSONS LEARNED FROM FIELD CONFIGURATIONS 
The development of the workflow agents involved a 

substantial learning process through trial and error in the 
field experiments, particularly in 2002-04. (It is humorous to 
recall how an old hand at DRATS02, unfamiliar with 
experimental prototyping, referred to the initial configuration 
as “not ready for prime time.”) The methodology of 
empirical requirements analysis employed throughout 
involved using the prototype system for authentic scientific 
exploration (e.g., use by scientists in a new terrain that 
addressed their specialized expertise and interests). During 
these experiments we learned how people and systems 
interacted in practical work settings and realized the value of 
additional workflow automation. For instance, during 
iMAS08 it became obvious that explorers wanted to ask 
“Guide me to <location>”—receiving alerts thereafter to 
correct course—rather than repeatedly asking for the 
distance and bearing to the desired location. We recognized 
requirements and invented methods to make the wireless, 
distributed agent communications more robust and to handle 
loss of communications gracefully. We also made many 
improvements to the interaction between people and their 
personal agents and robotic assistants to make commanding 
more reliable and simpler, for example, substituting a beep 
confirmation for non-critical requests and not having an 
agent speak when you are speaking to someone else. We 
discovered some complications that will require future 
research and experimentation, such as how to avoid having 
an agent speak to you when you are listening to someone 
else. 

Some of the lessons learned about what services 
workflow agents should provide and how they should be 
structured include: 

• Use of a distributed directory service [10] to deal 
with unreliable wireless communication and to allow 
subsystems to be disabled and restored in a running 
system configuration. 

• Use of a workflow backbone—consisting of 
individual agents for people and robots, 
complemented by shared functional workflow agents 
for navigation, planning, database management, 
communications (e.g., via email, GUI, voice loop, 
voicemail)—distinct from the component CAs that 
interface with component APIs provides great 
flexibility for reconfiguring components during an 
expedition for different EVA requirements (e.g., the 

transformation of MDRS05 to DRATS05 and 
CDS05; MDRS05 to PA06; PA06 to iMAS06, 
POGO07, and iMAS08). 

• Use of a web-based semantic database to 
consolidate data from different sources for a 
common repository [1]. 

• Experimentation with a variety of reconfigurable, 
mixed communication methods for controlling and 
getting data from arbitrary systems: Voice 
(including shared loudspeaker), menu-based GUI, 
audible tones, heads-up display. 

• Allowing alternative data-exchange services for CA 
ó component API communications (e.g., SOAP, 
OAA). 

• Providing methods for creating and relating 
different types of data for different purposes (e.g., 
photographs, GPS coordinates, biosensor telemetry, 
voice recordings, terrain maps). 

VI. CONCLUSIONS AND RECOMMENDATIONS 
An open software architecture enables adding, upgrading 

and swapping components. From the perspective of human 
space exploration, the objective is to support upgrading and 
incorporating new elements (e.g., vehicles, robots, 
instruments), allowing for new forms of automation, 
migration and changing distribution of mission support 
functions, plus new and more complex simultaneous 
distributed operations [15]. This objective is often referred to 
in the context of “growth potential” and “incremental 
buildup,” emphasizing technology upgrades. After analyzing 
a series of ten systematically developed surface systems that 
integrated a variety of hardware and software, we found 
evidence that incremental buildup of an exploration system 
for long-duration capabilities is facilitated by an open 
architecture with appropriate-level APIs, specifically 
designed to facilitate integration of new components, and 
this minimizes costs by reducing changes to the existing 
system.  

Specifically, the study shows the advantages of 
composite APIs that map or translate conventional 
component APIs (which provide access to the functional 
methods and data objects of components) to the language of 
the task. Messages expressed as SpeechActs—in terms of an 
EVA plan; names and relationships of people, places, and 
robots; and features of work products—mediate 
communications between components and people through 
arbitrary media, including displays and voice commanding. 
Using this kind of secondary API (a “communication agent”) 
as a wrapper effectively enables each component, including 
off-the-shelf hardware and software, to provide task-oriented 
services to the overall exploration system.  
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