
Software Productivity of Field Experiments Using the Mobile Agents Open
Architecture with Workflow Interoperability

William J. Clancey, Michael Lowry, Robert Nado, Maarten Sierhuis
Intelligent Systems Division

NASA Ames Research Center
Mountain View, CA 94035

William.J.Clancey@NASA.gov

Abstract—We analyzed a series of ten systematically developed
surface exploration systems that integrated a variety of
hardware and software components. Design, development, and
testing data suggest that incremental buildup of an exploration
system for long-duration capabilities is facilitated by an open
architecture with appropriate-level APIs, specifically designed
to facilitate integration of new components. This improves
software productivity by reducing changes required for
reconfiguring an existing system.

Keywords-Open architecture; interoperability; service-
oriented architecture; multiagent systems; exploration systems;
workflow automation.

I. INTRODUCTION
Future human spaceflight missions to near Earth objects

or Mars may be much longer and staged differently than
expeditions in low Earth orbit. Unlike the International
Space Station, systems may not be physically integrated, but
still require interoperation [15]. In particular, exchanging
data and commands among pressurized suits,
vehicles/habitats, and robotic systems could improve safety
and work productivity.

The Mobile Agents Project (2002-08) developed an open
architecture for an end-to-end exploration system that
facilitated crew self-reliance during simulated science EVAs
[4][5]. This report systematically analyzes software
productivity data from a series of field experiments involving
ten system reconfigurations. The objective is to develop
informative metrics for the design and value of software
open architectures intended for efficient reconfiguration.

In particular, this study sought data to assess whether the
incremental buildup of an exploration system for long-
duration, remote operations is facilitated by an open
architecture whose APIs are specifically designed to simplify
integration of new components. This approach maximizes
flexibility and minimizes costs by reducing changes to the
existing system when reconfiguring components. The study
shows the advantages of composite APIs that map
conventional component APIs (which provide access to the
functional methods and data objects of hardware and
software) to a service-oriented language through which
people and subsystems communicate.

The Mobile Agents Architecture (MAA) provides a
common goal-oriented, model-based interface that automates

communication of information and commands in a
distributed, concurrent system of systems, consisting of a
diversity of hardware and software interacting in a mobile,
distributed environment [6]. MAA uses a service-oriented
language for expressing messages about tasks (e.g., in terms
of an EVA plan, astronauts, life support tools such as
cameras, robotic assistants). This kind of composite API
enables a diversity of hardware and software components
(including COTS) to provide task-oriented services to the
overall exploration system; in particular it enables highly
flexible and efficient voice commanding.

The MAA open architecture, consisting of a workflow
backbone of services (“agents” [17]) and composite APIs,
enabled distributed, mobile agents to handle simultaneous
goal-oriented requests on a non-reliable network. This
architecture was developed from field experience with
different existing hardware and software systems for both
field science and routine habitat operations. The key
architectural lessons concern how distributed mobile
subsystems communicate, how task-level information and
commands are represented, how services operating on the
surface communicate with remote support teams, and how
asynchronous services manage multiple, simultaneous
requests.

In this paper we review the design of the MAA, the field
experiments, and the data that was analyzed. We summarize
the results of the analysis, interpreting charts and statistics in
terms of the complexity and costs for reusing and modifying
software. We describe what we learned about services
workflow agents should provide and how they should be
structured, and conclude with a summary of results and
recommendations.

II. MOBILE AGENTS ARCHITECTURE
Workflow software agents in the Mobile Agents field

experiments were implemented in the Brahms Language
[1][16]. To employ a common messaging scheme each
subsystem to be integrated is “agentified”—it is made to
behave like a Brahms workflow agent by “wrapping” it with
a Brahms Communications Agent (CA) using the Brahms
JAVA API.

A subsystem is made into an agent by defining
SpeechActs (structured messages, also “communicative
acts”) by which it will interact with other agents in the

system. For example a biosensor SpeechAct could
correspond to the voice command, “What is the pulse?” The
API of the subsystem is extended by the CA to translate its
API calls to SpeechActs and vice versa. We refer to this as a
“composite API” method. The subsystem’s API and CA
work together to enable communication with any workflow
agent in the system: {Workflow Agents} ⇔ Communication
Agent ⇔ Subsystem API ⇔ Subsystem.

Other agent-based languages could be used to implement
the architecture described here. However, Brahms effectively
provides direct support for an open architecture with
interoperability via its SpeechAct and CA structures.
Service-oriented architectures (SOA) promote a similar
common messaging approach for interoperability, in which
subsystems provide “services.” The MAA illustrates how to
provide an SOA by converting subsystems into agents. The
diversity of MAA configurations demonstrates that agents
are a good way to implement a software service; in
particular, to make a component into a service, “agentify” it.

The MAA provides an open architecture with
interoperability by extending CORBA in a way that raises it
from the level of direct functional communications to the
level of services. In doing this, the MAA shifts system
design from the level of software objects and processes to the
level of agents who communicate using the language of
components and operations in which people naturally
describe their goals and activities (e.g., “Scout, take a
picture of Astronaut 2”; “Extend the duration of Surveying
Worksite-2 by 10 minutes”).

In itself, CORBA only enables exposing internal system
classes in one object-oriented program to another program.
This means that a program that uses exposed CORBA
classes needs to understand the internal functions of the
system with which it interacts. Every system has its own
internal structure and functions, perhaps written in different
programming languages. CORBA enables inter-process
communication, by allowing indirect access to the local data
storage of other processes.

In contrast, the agent approach does not expose a
software process’ internal methods/functions. It is based
instead on a more abstract protocol that defines how agents
communicate messages to each other and requires agents to
respond to these messages by providing data or causing
actions to occur. Using the agent approach, programmers do
not need to provide CORBA object definitions to each
developer of the integrated system. Instead, the team defines
a communication message protocol—in MAA this is the
syntax and language of SpeechActs—and then the
developers may work independently.

For example, the voice commands for two robots
“Boudreaux take a picture of me” and “Scout take a picture
of me” differ in only one word in the language of the task.
However, executing these requests involves different
networks, APIs, command processing, and even different
kinds of cameras, exemplifying how interoperability,
decomposition, and abstraction relate. It is not necessary to
pre-enumerate interactions—each agent handles cases that
pertain to its own functionality, which decompose the
request and pass on pieces to other agents, which do the

same. Primitive actions are carried out (e.g., taking a picture)
and requested data transformed and returned to the agents
that requested it and who now enact the desired workflow
(e.g., the photograph is passed to the agent creating a web
site documenting the EVA). The dynamic decomposition and
assembly each agent accomplishes avoids interfaces with n-
factorial combinations—and correspondingly avoids
subsystem developers requiring as many interactions with
each other. Yet, in fact all of these combinations can be
expressed in the task language and accomplished by the
exploration system. Through the task-level abstraction and
agent-based interoperability, the system’s possible states and
combinations of behaviors far exceed what designers have to
explicitly plan and formalize.

In summary, in terms of software architecture, Brahms
provides a language for creating agents and a communication
infrastructure for agents to interact. Considerable flexibility
in languages and methods is possible. For example, the API
of the EVA Robotic Assistant (ERA [11]) exposes its C++
methods using CORBA objects, which the ERA CA, written
in Java, translates to and from SpeechActs used by agents
throughout the exploration system. A later generalization,
called the Collaborative Infrastructure (CI) used in
Exploration Technology and Development “autonomy for
operations” projects for information exchange services and
in OCAMS [9] for ISS file management, handles this
translation by providing a toolkit of C++ and Java libraries
that include SpeechActs for “agentifying” an external system
[10].

Of special note are the communication agents that
interact with subsystems having interfaces that people use
directly. For example, ScienceOrganizer is a web-based
display of EVA progress and data, organized according the
objects and actions of the domain (e.g., plans, people,
locations). Such subsystems often require particular
communication methods for receiving data and/or
commands. In particular, the ScienceOrganizer CA uses
SOAP to interact with ScienceOrganizer; the Dialog CA uses
OAA with the Dialog System; the Compendium CA uses
SQL to communicate with Compendium’s database (of plans
and data), which Compendium displays in its own GUI. Each
of these communication agents “agentifies” external systems,
but their design and operation are focused on enabling
people to communicate with the exploration system through
different views in different modalities.

Thus we say at one level that the agents provide
“services,” emphasizing communications among workflow
agents and subsystems. But more generally from the human-
task perspective, the agents are providing people with direct
control of robots and devices and immediate access to
information, without concern for low-level commands and
interfaces. That is, “agentifying” enables people to tell
subsystems the goal they want accomplished or the
information they seek in task-level terms (e.g., “Are the
batteries charging?”). This design correspondingly reduces
the training required for using the exploration system.

To recap, the MAA enables arbitrary object-oriented
systems to become agents not just by exposing their
methods, but by wrapping the software so communications

between subsystems occur using task-level messages
(SpeechActs). The CA straddles the programming domain of
the subsystem (its language, data, and functions) and the
agent domain of the integrated workflow system (represented
in terms of the objects and activities of the EVA system).
Using a common SpeechAct language to integrate data and
functionality follows the principles of “model-based”
programming, which enables relating semantically different
data across hardware and software systems [13].
Consequently, designing an agent to command a robot is
handled in the same manner (at the same semantic level) as
designing an agent to associate a photograph with a map
location and sample.

III. FIELD EXPERIMENTS AND DATA ANALYZED
The field experiments for MAA were based on the

methodology of empirical requirements analysis, in which
prototype exploration systems were used for assisting crew
members in simulated surface missions [3]. In particular, the
project explored how existing components (robots, cameras,
computers, biosensors, GPS devices, electric power systems,
databases, email, heads-up display, etc.) could be made into
an integrated exploration system that was easily reconfigured
for different EVAs and settings.

The data analyzed in this report consists of four different
kinds of configurations comprising ten systems designed,
developed, and tested by NASA Ames and JSC from 2002
through 2008:

• “Automating Capcom” Configurations for Desert-
RATS and Mars Desert Research Station:

o DRATS02, MDRS03, MDRS04 (all
using EVA Robotic Assistant)

o MDRS05, DRATS05 (Scout vehicle),
CDS05 [14] (K9 & Gromit robots)

o DRATS06 [8] (pressurized suits, JSC
ExPOC, and GeoPhone Array, Fig. 1)

• “Power Agents”: MDRS06 [7]
• Metabolic Advisor: POGO07
• iMAS Scientist’s Field Assistant: iMAS08
Table I describes the systems, which are listed

chronologically by field test; Table II summarizes
configurations. “Platforms” are laptop computers running
Brahms agents; “functions” are workflow capabilities (Table
III); external systems are any devices or software with APIs
communicating with agents (e.g., biosensors, cameras, email,
power inverter, robots).

A workflow capability, as the name implies, pertains to
the flow of information requests, commands, and work
products, initiated by either people or software in the context
of a crew’s work activity. Workflow capabilities usually take
the form of requests for information that require data to be
interpreted (e.g., how many hours will the batteries on some
device last given current draw and planned usage?) or
operations for subsystems to perform that require automated
coordination of subsystems over time (e.g., “K9, inspect the
area around waypoint 5”). Workflow capabilities also
include direct requests for data readouts (“what is the current
battery voltage?”) and primitive subsystem operations

(“Scout, turn on headlights”). Some functions require
ongoing monitoring of sensor data (“Tell me when the
generator is off-line”).

TABLE I. DESCRIPTION OF MOBILE AGENTS FIELD EXPERIMENT
CONFIGURATIONS

Mobile Agents System Descriptions

DRATS02 Initial system build, single laptop platform, camera, biosensors,
voice. Agent communications represented as Brahms Objects. Includes
“proxy agents” for potentially queuing requests to agents on inaccessible
platforms.

MDRS03 Addition of an EVA Robotic Assistant (ERA), 2nd astronaut
laptop, and habitat computer (for HabCom crew member), i.e., four
distributed platforms. Agent communication uses KaOS with CORBA as
transport layer and directory service across network for multiple platforms.
MDRS04 Fully functional location and plan assistance. ERA follows
astronauts in canyon, automated video tracking. Agent communication via
KaOS/CORBA now uses FIPA SpeechAct envelope with Brahms
“Communication Acts” as payloads; centralized directory service on
mobile laptop (ATV) acceptable, but single point of failure.

MDRS05 2nd ERA relay controlled by human operator; temperature
probe; dynamic reconfiguration of ERA roles during EVA. Personal agents
for astronauts and robots decomposed to create service-oriented
“assistants”; Plan Assistant enables agents to handle multiprocessing
(simultaneous open requests) through task list.
DRATS05 Scout rover is configured to use ERA control system; heads-up
display. Insufficient testing time provided in field to complete integration.

CDS05 Two weeks after DRATS05: Same software package as DRATS05
with bugs fixed. System incorporates Gromit and K9 robots as adapted
ERA agents; one astronaut, no HUD; HabCom crew member interacts with
EUROPA planner to control K9 via agent architecture.

PA06 “Power Agents”; no robots; all inside MDRS habitat; completely
new functionality in monitoring electric power system, including generator,
batteries, solar panels. Voice mail implemented during two-week shake
down test; configuration retains all science data collection and EVA
management capabilities. Introduces sound beeps to provide confirmation
for certain routine commands.
iMAS06 Same software as PA06, but configured for one laptop operating
in standalone (off-network) mode, for use by a field scientist.

DRATS06 Reconfiguration of DRATS/CDS05 to enable second
commanding console off-site (JSC’s Exploration Planning & Operations
Center, ExPOC); automated control of geophone deployment from
Houston. Voice commanding by crew in pressurized suits with special
microphones. Demonstrated autonomous driving of Scout (“Go to
waypoint” “Follow astronaut one”).
POGO07 Based on iMAS06; integrates with Metabolic Algorithm (Excel
VBA) connected to biosensors in pressurized suit during partial-gravity
experiments. Language grammar rebuilt from scratch to be more compact,
enabling much faster compilation.
iMAS08 Based on POGO07, with more automated science data logging;
used in practical settings by geologists in Hi and NM and by divers with
scuba gear (Belize).

TABLE II. MOBILE AGENTS SYSTEM CONFIGURATIONS

SYSTEM
FT

E

 #
 P

la
tf

or
m

s

 #
 F

un
ct

io
ns

 Robotic Systems
(adapting ERA CA)

E

xt
er

na
l

Sy
st

em
s

E
R

A
 1

E
R

A
 2

SC
O

U
T

 K

9

G
ro

m
it

DRATS02 2 1 3 X 4
MDRS03 1.4 4 29 X 7
MDRS04 2.8 4 53 X 10
MDRS05 2.9 5 82 X X 13
DRATS05 0.9 4 77 X 14
CDS05 0.9 4 80 X X 11
PA06 1.1 5 45 10
iMAS06 .01 1 51 5
DRATS06
 0.7

5 91 X 16

POGO07 0.3 1 63 7
iMAS08 0.05 1 50 5

TABLE III. CATEGORIZATION OF EVA WORKFLOW AUTOMATION
CAPABILITIES

Hardware Integration

Robots, cameras, sensors, instruments,
displays, etc.

Software Integration

Software incorporated as separate
components, e.g., planning system, Excel

Astronaut Health Monitoring Available data and alerts, e.g., heart rate
System Health Monitoring Computer, Power, & Life Support systems
Location Tracking

All aspects of logging, tracking, finding
assets in the field

Human-Robot Coordination Commands involving robotic systems
Plan Management Getting status and changing the work plan
Science Data Logging All aspects of data collection during EVA

Voice Mail
Crew communication via recorded
messages

Alert Management Control of alert types and modality
Voice Command Controls Control of voice interface

Capabilities are counted to group commands handled

uniformly by a subsystem. For example, asking the Scout to
power on/off its brakes, headlights, or motors counts as one
capability. Here many different task-level commands map
onto a single method in Scout’s communication agent.
However asking Scout to follow someone and asking it to
halt are two capabilities because these task-level operations
are handled by different CA methods, coordinating data and
commands from different sources. One source of efficiency
is that agents may retain methods relevant to different
configurations. For example, the agents used in DRATS05
and CDS05 were identical except for adding CAs for the

new robots and removing Scout and its CA; thus a voice
command to Scout in CDS05 would be properly interpreted
and result in the response that Scout is unavailable.

Overall, in the ten MAA system reconfigurations 134
workflow capabilities were developed for astronaut health
monitoring, system health monitoring, location tracking,
human-robot coordination, plan management, science data
logging, voice command interface controls, and alert
management. The Mobile Agents systems were developed to
illustrate typical functionalities that may be useful to
scientist-astronauts during EVAs in which real-time
communication with mission support is not possible due to
light-speed time delay [4]. Voice commanding capabilities
were designed to assist creating documented EVA products
while flexibly following an EVA plan, keeping on route and
schedule, and remaining aware of logistic/safety constraints
and limitations.

The sources of data analyzed for this study include: code
repositories; project reports, schedules, email, and budgets;
and expedition records. Analysis produced statistics about
software modification (e.g., direct reuse or number of lines of
code added) and personnel effort (e.g., size and distribution
of teams; FTE for agents and integration only, not
subsystems). Statistics were charted to determine advantages
of the open architecture for phased development of EVA
exploration system capabilities, such as adding robotic
systems in the same production line (e.g., MDRS05 added a
second ERA to MDRS04), adding a new robotic system by
adapting existing software (e.g., Scout), and incorporating
existing capabilities for different purposes (e.g., creating
PA06 from DRATS05). Productivity calculations reflect the
different kinds of work required for revising the system in
these ways. In particular, a distinction was made between:
Reusing a task-level service (no change), adding
functionality to a service, and adapting a service for a
different subsystem.

Analysis also examined the ability to reconfigure the
exploration system for different work contexts, such as
adding new kinds of external systems (shifting among
science instruments, electric power systems, and life support
systems) and directly using existing services (e.g., email
alerts) for new purposes or changing communication media
(e.g., from email to HUD to voice loop) without modifying
code. Cost for these changes was estimated and correlated by
counting workflow capabilities, thousands of source lines of
code (KSLOC), and programming time comparatively in the
series of ten system reconfigurations.

Figure 1. Desert-RATS 2006 EVA Exploration System Configuration (Meteor Crater, September 2006) [8]. Green rectangles are MAA subsystems; ovals
are computer platforms containing a Brahms multiagent system: EVA astronauts (EV1, EV2), Scout, Habcom, and ExPOC. DRATS06 reconfigured
MDRS05 to use Scout rover instead of ERAs. Agents control Scout’s Geophone deployment system from the ExPOC agent platform in Houston. This
configuration demonstrated how two kernel support systems, one local (HabCom) and the other remote (ExPOC), could be used to coordinate the flow of
data, information, and goal directed commands coming from EVA astronauts, the surface habitat operator, and the remote ground support operator.

IV. ANALYSIS OVERVIEW
For a closed architecture not designed for adding new

capabilities, the amount of effort (in FTE cost and KSLOC)
can increase rapidly when new capabilities are added. We
hypothesized that an open architecture designed for
flexibility would make reconfiguration and addition of
components easier and less costly.

Our experience and analysis confirmed three primary
hypotheses:

1. An agent-oriented workflow system using composite
APIs enables integrating new components (e.g.,
biomedical algorithms, robots, databases) without
modifying them.

2. Incremental Cost/capability is linear or decreasing
as new capabilities are added.

3. Incremental KSLOC/capability is linear or
decreasing as new capabilities are added.

Analysis showed that a workflow service backbone was
established in the third year (MDRS05) and was reused for
subsequent configurations, ranging from 85% carryover
when entirely different robots and a planning system were
incorporated (CDS05) to 100% carryover when shifting from
an EVA system to a habitat power monitoring system
(MDRS06). At the same time, in developing the workflow
service backbone, nearly half of the APIs were unchanged.
Architecture changes focused on reconfiguring workflow
services to respond to interface requirements, rather than re-
integration with subsystems. That is, the data show that
enhancement of workflow capabilities is often possible
without modifying existing systems and their APIs, given an
open architecture in which integration occurs through task-
level communications.

Furthermore, in the aggregate 80% of added KSLOC for
system reconfigurations was for task-level API translators
(“communication agents”; CAs) to integrate new
components (Fig. 2). But a relatively small amount was
added for each configuration after the architecture was
mature. On average Workflow KSLOC was increased by
14% and CA KSLOC by 13% for each reconfiguration.

Figure 2. Total KSLOC (thousands of lines of code) for each system
configuration (columns, broken into Workflow Backbone and
Communication Agent parts) and new KSLOC (for new or modified
agents; shown as lines). Code for Communication Agents dominates.

Figure 3. Percentage of KSLOC added to Communication Agents and
Workflow Agents for each configuration; Percentage of KSLOC Workflow
Agents relative to the system total KSLOC .

Figure 4. Average KSLOC added for each new capability.

Figure 5. Number of new capabilities per Full-Time Equivalent effort
(annualized over development period).

Depending on the component, API translators for
complex systems such as rovers might require 20 KSLOC (1
FTE or more), while simple systems such as cameras might
require 2 KSLOC (0.1 FTE).

The ratio of total workflow KSLOC to the total system
KSLOC (Fig. 3) remained surprisingly constant at 16%,
which demonstrates that the amount of code required is
linear with the number of capabilities, and additions require
only incremental changes to affected workflow functions.

The series of exploration system experiments
demonstrated efficiency in designing, developing and testing
new systems. The average (and median) DDT&E elapsed
time per configuration was 172 days with five programmers
on average (varying from nine to one). Programming effort
varied from 3.4 FTE to less than 0.1 FTE, which underscores
the minimal re-engineering required.

The three key productivity findings are: code added for
each new workflow capability trends downwards from 1.5 to
less than 1 KSLOC (Fig. 4); new capabilities/FTE trends
upwards from 10 to 20, and KSLOC/FTE trends upwards
from 15 to 20. These data show that size of the modifications
and effort required are generally predictable and constant,
with addition of task-level APIs for new automated hardware
and software systems requiring more code and time. These
data suggest that the overall exploration system architecture
is stable and new capabilities neither interfere with existing
capabilities nor require increasing complexity of interactions.
Therefore, in using an open architecture with APIs providing
task-level services, we can treat capabilities abstractly and
make predictions at design time of the amount of code and
effort required to build or modify an exploration system
configuration. Specifically, the analysis predicts that each
workflow capability added by an experienced team will
require 1.5 KSLOC or less and correspondingly 0.07 FTE or
less.

Viewing the field configurations in the aggregate, 134
capabilities were developed with 13 FTE in total DDT&E
time of about 4 years. The overall average of 10 new
capabilities per FTE closely fits the development efficiency
of creating the mature architecture (2002-2005), when 64%
of the total system capabilities were developed with 70% of
the total FTE. Subsequent systems introduced relatively
fewer new capabilities with increased productivity (Fig. 5).
Effort for DRATS/CDS05 and DRATS06 reflects

significantly more complex commanding for four different
robotic systems with a variety of peripheral subsystems.

These data show the upfront cost is relatively small given
the functionality provided to the crew, with direct reuse (at
no cost) of code and functionalities in very different settings.
The upfront investment pays off as much smaller teams
reused the existing workflow backbone, making only
incremental changes to introduce completely different kinds
of components (e.g., power and life support systems) with
new kinds of support for crew self-reliance and safety (e.g.,
providing status information and alerts relevant to using
resources during ongoing work activities).

V. LESSONS LEARNED FROM FIELD CONFIGURATIONS
The development of the workflow agents involved a

substantial learning process through trial and error in the
field experiments, particularly in 2002-04. (It is humorous to
recall how an old hand at DRATS02, unfamiliar with
experimental prototyping, referred to the initial configuration
as “not ready for prime time.”) The methodology of
empirical requirements analysis employed throughout
involved using the prototype system for authentic scientific
exploration (e.g., use by scientists in a new terrain that
addressed their specialized expertise and interests). During
these experiments we learned how people and systems
interacted in practical work settings and realized the value of
additional workflow automation. For instance, during
iMAS08 it became obvious that explorers wanted to ask
“Guide me to <location>”—receiving alerts thereafter to
correct course—rather than repeatedly asking for the
distance and bearing to the desired location. We recognized
requirements and invented methods to make the wireless,
distributed agent communications more robust and to handle
loss of communications gracefully. We also made many
improvements to the interaction between people and their
personal agents and robotic assistants to make commanding
more reliable and simpler, for example, substituting a beep
confirmation for non-critical requests and not having an
agent speak when you are speaking to someone else. We
discovered some complications that will require future
research and experimentation, such as how to avoid having
an agent speak to you when you are listening to someone
else.

Some of the lessons learned about what services
workflow agents should provide and how they should be
structured include:

• Use of a distributed directory service [10] to deal
with unreliable wireless communication and to allow
subsystems to be disabled and restored in a running
system configuration.

• Use of a workflow backbone—consisting of
individual agents for people and robots,
complemented by shared functional workflow agents
for navigation, planning, database management,
communications (e.g., via email, GUI, voice loop,
voicemail)—distinct from the component CAs that
interface with component APIs provides great
flexibility for reconfiguring components during an
expedition for different EVA requirements (e.g., the

transformation of MDRS05 to DRATS05 and
CDS05; MDRS05 to PA06; PA06 to iMAS06,
POGO07, and iMAS08).

• Use of a web-based semantic database to
consolidate data from different sources for a
common repository [1].

• Experimentation with a variety of reconfigurable,
mixed communication methods for controlling and
getting data from arbitrary systems: Voice
(including shared loudspeaker), menu-based GUI,
audible tones, heads-up display.

• Allowing alternative data-exchange services for CA
ó component API communications (e.g., SOAP,
OAA).

• Providing methods for creating and relating
different types of data for different purposes (e.g.,
photographs, GPS coordinates, biosensor telemetry,
voice recordings, terrain maps).

VI. CONCLUSIONS AND RECOMMENDATIONS
An open software architecture enables adding, upgrading

and swapping components. From the perspective of human
space exploration, the objective is to support upgrading and
incorporating new elements (e.g., vehicles, robots,
instruments), allowing for new forms of automation,
migration and changing distribution of mission support
functions, plus new and more complex simultaneous
distributed operations [15]. This objective is often referred to
in the context of “growth potential” and “incremental
buildup,” emphasizing technology upgrades. After analyzing
a series of ten systematically developed surface systems that
integrated a variety of hardware and software, we found
evidence that incremental buildup of an exploration system
for long-duration capabilities is facilitated by an open
architecture with appropriate-level APIs, specifically
designed to facilitate integration of new components, and
this minimizes costs by reducing changes to the existing
system.

Specifically, the study shows the advantages of
composite APIs that map or translate conventional
component APIs (which provide access to the functional
methods and data objects of components) to the language of
the task. Messages expressed as SpeechActs—in terms of an
EVA plan; names and relationships of people, places, and
robots; and features of work products—mediate
communications between components and people through
arbitrary media, including displays and voice commanding.
Using this kind of secondary API (a “communication agent”)
as a wrapper effectively enables each component, including
off-the-shelf hardware and software, to provide task-oriented
services to the overall exploration system.

ACKNOWLEDGMENT
Funding for the Mobile Agents Project has been provided

by NASA’s Intelligent Systems, Moon and Mars Analogue
Mission Activities (MMAMA), and Exploration Technology
and Research Programs (ETDP). This study was supported
by ETDP/Lunar Surface Systems Project. Many people in

three NASA centers, co-authors in the references cited here,
collaborated to develop Mobile Agent systems over the past
decade. Special thanks to Rick Alena, John Dowding, and
the JSC Scout/ERA team (especially Rob Hirsh, Jeff
Graham, and Kim Shillcutt Tyree), and to our geologist
collaborators, Brent Garry and Abby Semple, who
experimented with the system doing field science at MDRS
and other analog sites.

REFERENCES
[1] D. C. Berrios, M. Sierhuis, and R. M. Keller, “Geospatial information

integration for science activity planning at the Mars Desert Research
Station,” in The Geospatial Web: How Geobrowsers, Social Software
and the Web 2.0 are Shaping the Network Society, A. Scharl and K.
Tochtermann, Eds. Springer-Verlag, London, 2007, pp. 131-140.

[2] W. J. Clancey, P. Sachs, M. Sierhuis, and R. van Hoof, “Brahms:
Simulating practice for work systems design,” Int. J. Human-
Computer Studies, 49, 831-865, 1998.

[3] W. J. Clancey, Principles for integrating Mars analog science,
operations, and technology research. Workshop on Analog Sites and
Facilities for the Human Exploration of the Moon and Mars, May 21-
23, 2003. Colorado School of Mines, Golden, CO.

[4] W. J. Clancey, Automating Capcom: Pragmatic Operations and
Technology Research for Human Exploration of Mars. In Martian
Expedition Planning, vol. 107, C. Cockell Ed. AAS Science and
Technology Series, 2004, pp. 411-430.

[5] W. J. Clancey, Roles for agent assistants in field science:
Understanding personal projects and collaboration. IEEE
Transactions on Systems, Man and Cybernetics, Part C: Applications
and Reviews, 34, 2, 125-137, May 2004. Special Issue on Human-
Robot Interaction.

[6] W. J. Clancey, M. Sierhuis, R. Alena, D. Berrios, J. Dowding, J. S.
Graham, K. S. Tyree, R. L. Hirsh, W. B. Garry, A. Semple, S. J.
Buckingham Shum, N. Shadbolt, and S. Rupert, “Automating
CapCom using Mobile Agents and robotic assistants,” American
Institute of Aeronautics and Astronautics 1st Space Exploration
Conference, 31 Jan-1 Feb, 2005, Orlando, FL.

[7] W. J. Clancey, M. Sierhuis, R. Alena, J. Dowding, M. Scott, and R.
van Hoof, “Power system agents: The Mobile Agents 2006 field test
at MDRS,” Mars Society Annual Convention, 2006. Available:
http://homepage.mac.com/wjclancey/%7EWJClancey/ClanceyMarsS
oc2006.pdf

Video report: http://www.youtube.com/watch?v=zez9JINQm44
[8] W. J. Clancey, M. Sierhuis, J. Dowding, D. Berrios, M. Scott, R. van

Hoof, F. Delgado, S. Tourney, and J. Kosmo, “Mobile Agents
integrate astronauts, rover, and mission support In Desert-RATS
mission simulation,” Mars Society Annual Convention. Los Angeles,
2007. Video report: http://www.youtube.com/watch?v=fTTrFDR9I1I

[9] W. J. Clancey, M. Sierhuis, C. Seah, C. Buckley, F. Reynolds, T.
Hall, and M. Scott, “Multi-agent simulation to implementation: a
practical engineering methodology for designing space flight
operations,” in Engineering Societies in the Agents’ World VIII,
Lecture Notes in Artificial Intelligence, vol. 4995, A. Artikis, G.,
O’Hare, K., Stathis, and G. Vouros, Eds. Heidelberg: Springer, 2008,
pp. 108–123.

[10] W. J. Clancey, M. Sierhuis, R. Nado, and R. van Hoof, “Collaborative
infrastructure conceptual overview,” NASA Ames Research Center,
Intelligent Systems Division, TM10-0001, unpublished, 2010.

[11] R. Hirsh, J. Graham, K. S. Tyree, M. Sierhuis, and W. J. Clancey,
“Intelligence for human-assistant planetary surface robots,” in
Intelligence for Space Robotics, A. M. Howard and E. W. Tunstel,
Eds. Albuquerque: TSI Press, 2006, pp. 261-279.

[12] A. W. Johnson, D. J. Newman, J. M. Waldie, and J. A. Hoffman, “An
EVA mission planning tool based on metabolic cost optimization”,
SAE 2009-01-2562, 39th International Conference on Environmental
Systems, Savannah, GA, 12-16 July 2009.

[13] C. Kaskiris, M. Sierhuis, W. J. Clancey, and R. van Hoof, “Mobile
Agents: A ubiquitous multi-agent system for human-robotic planetary
exploration,” 2nd International Symposium on Systems and Human
Science, San Francisco, 2005.

[14] L. Pedersen, W. J. Clancey, M. Sierhuis, N. Muscettola, D. E. Smith,
D. Lees, K. Rajan, S. Ramakrishnan, P. Tompkins, A. Vera, and T.
Dayton, “Field demonstration of surface human-robotic exploration
activity,” AAAI-06 Spring Symposium: Where no human-robot team
has gone before, 2006.

[15] S. Rader, “Constellation’s command, control, communications, and
information architecture (C3I) overview,” Software & Avionics
Integration Office (SAVIO) PowerPoint presentation, 11 Dec 2008.

[16] M. Sierhuis, Modeling and Simulating Work Practice. Ph.D. thesis,
Social Science and Informatics (SWI), University of Amsterdam, The
Netherlands, 2001.

[17] M. Wooldridge, An Introduction to MultiAgent Systems. Chichester,
UK: John Wiley & Sons Ltd, 2002.

