ISS - Enabling Exploration through Docking Standards

C.A. Hatfield
Docking Systems Manager
International Space Station Program
Standards – Enabling Exploration

• Connecting spacecraft from different nations has required unique development and expensive integration and test
 – Apollo-Soyuz Test Project
 – International Space Station

• Expansion of spacefaring nations (and non-governmental entities) will compound this issue in the future
 – Exploration cooperation could be much easier with internationally accepted interface standards

• One of the key elements involved in mating dissimilar spacecraft is docking systems
 – Enabling dissimilar spacecraft mating for crew and cargo exchange
 – Enabling spacecraft assembly (e.g., APAS joining USOS and Russian Segments on ISS)
Enabling a Docking Standard

- The ISS partnership has developed an International Docking System Standard (IDSS)
 - An expanded version is expected to be approved in the second quarter 2011 by the ISS partnership
 - The latest version of IDSS can be found at http://internationaldockingstandard.com/

- It is expected that several versions of IDSS compatible docking systems will eventual emerge
 - Both NASA and ESA are currently developing systems

- NASA will install an adapter to use this standard on the U.S. segment of ISS beginning in 2015
 - The two new adapters will replace existing APAS adapters used by the Space Shuttle
Docking System Early Design Progression

Apollo Probe Cone

Russian Probe Cone

Apollo Soyuz – the first androgynous system

(No scale is implied between figures)
Docking and Berthing

Docking
- Enables direct mating of vehicles
- Controlled by chasing vehicle
- Attenuates contact forces and moments

Berthing
- Large passageway and load carrying capability
- Ease of utility routing in pressurized volume
- Needs manipulator for installation

Androgynous Peripheral Attach System (APAS) Common Berthing Mechanism (CBM)
Next Generation Systems and IDSS

• **Evolutionary**
 – Based on peripheral type architecture, incorporating proven hard capture system
 – Peripheral systems satisfy capture performance requirements for the widest range of vehicles (small crew capsules to orbiter like vehicles)
 – Peripheral systems allows for max pass through the docking interface without hardware dismantling

• **Androgynous**
 – Enables either vehicle to be the active “chaser”

• **Allows both docking and berthing**

• **Enables Low Impact technology**
 – All previous docking mechanisms have required the use of impacts (i.e. velocity or post-contact thrusting) to create the energy required for soft capture mechanism interface alignment and capture between mating docking interfaces
 – Low impact technology can accommodate wide range of vehicle contact and capture conditions
NASA ISS Docking System Policy

• NASA plans to use the International Space Station as the first use of the IDSS
 – Will be the docking system used on the U.S. segment of the ISS for all visiting vehicles

• All vehicles visiting the USOS will be required to be IDSS compliant

• NASA is building and qualifying the NDS system as reference design

• NASA will provide the NDS data package to commercial vehicle providers having agreements with NASA to provide services, who can
 – Build their own design
 – “Build to print” the NDS design
 – Buy the system from the production vendor
 – Request NASA provision the NDS
NASA Docking System – Features

- Low Impact six degree of freedom force feedback platform for soft capture
- IDSS Compatible
- **Simple interfaces to host vehicle**
- Block development with a family of configurations planned

![Diagram showing various components of the NASA Docking System](image)

- 6 Linear EMA Stewart Table
- Soft Capture Load Sensing System Extended
- Electromagnet (3 ea.) Striker plate
- MMOD Shield
- Docking Seal
- SCS Lockdown & future Mech. SCS Striker (3 ea.)
- IVA Removable Guide Petals (3 ea.)
- Retractable Separator (3 ea.)
- Active Hook (12 ea.)
- Passive Hook
- Hook drive train flexshaft
- Retractable Power/Data Transfer Umbilicals (2 ea.)
ISS Docking and Berthing Ports

NDS installation will update existing APAS systems on PMAs to be IDSS compatible

Planned NDS (IDSS): 2

Berthing Ports: 2

Probe & Cone: 4
Until recently, new CBM-based adapters were planned for ISS.

Change was made to use existing Pressurized Mating Adapters (PMA) as a base for the new adapters:
- Providers greater clearance for winged vehicles
- Frees an additional CBM port for potential use
NDS and Docking Adapter Status

• NASA is working closely with the ISS partnership to further refine the IDSS standard
 – Further revisions after the upcoming release are not anticipated in the near future
 – NDS team is collaborating with other agencies to agree on remaining interface features (e.g., connectors)

• NDS design kicked off CDR this week
 – Long lead part procurement underway
 – Flight representative EDU assembly early 2012
 – Qualification program begins late 2012, complete 2013

• ISS Docking Adapters planned for launch beginning in 2015

• http://dockingstandard.nasa.gov/documents.html
Summary

- NASA and the ISS partnership are jointly developing a key standard to enable future collaborative exploration.

- The IDSS is based on flight proven design while incorporating new low impact technology:
 - Low impact technology accommodates a wide range of vehicle contact and capture conditions.

- This standard will get early demonstration on the ISS.

- Experience gained here will enable operational experience and the opportunity to refine the standard.

- NASA and ESA are developing new docking system; others are expected later:
 - ESA: IBDM
 - NASA: NASA Docking System (NDS)
Backup
Block 0 System Configurations Summary

- **-301/Core**
 - Active, Fully Androgynous*, 120VDC power, integrated electronics
 - Configuration can dock in either active or passive mode to all configurations or to any IDSS compatible system

- **-302/Short**
 - Reduced height; electronics boxes remotely mounted
 - Current NDS ISS adapter and Hub baseline
 - *Note: This configuration detailed features are under review*

- **-303/Lower Voltage**
 - Same as -301 except 28VDC power input
 - -301 avionics was designed to support power board swap out; board has not been designed
NDS-to-Host Vehicle Interfaces

Vehicle to hook pyro
2 x (Active/Passive)

Structural I/F
48-bolts on 53.150" (1350 mm) DIA BC (thru holes on NDS, inserts on host, NDS provides bolts)
3 shear pins different than

Docking Umbilicals
2 x ISS FRAM type connectors (Channel A/B), each has:
• Two 8 AWG power circuits w/ both
 • MIL-STD-1553B
 • 100 Base T Ethernet
All wiring passed thru to inside of tunnel for host

Seal I/F
Two concentric seal beads (NDS provides)

Electrical Bonding
NASA-STD-4003, Class R/H

NDS Data
2 x TIA-422-B or MIL-STD-1553B (A/B)

NDS Power
2 Connectors for 120V (or 28v) feeds (A/B) for system and heater power

Return
NDS Mass Status

<table>
<thead>
<tr>
<th>Title/Description</th>
<th>-301</th>
<th>-302***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Mass</td>
<td>679.65</td>
<td>630.65</td>
</tr>
<tr>
<td>Basic Mass + MGA</td>
<td>744.31</td>
<td>684.54</td>
</tr>
<tr>
<td>Avg MGA</td>
<td>10%</td>
<td>9%</td>
</tr>
<tr>
<td>Allocated Mass</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>System Roll-up*</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Hard Capture System (HCS)**</td>
<td>480.43</td>
<td>527.39</td>
</tr>
<tr>
<td>Soft Capture System (SCS)</td>
<td>135.16</td>
<td>147.20</td>
</tr>
<tr>
<td>Control Box Assy** (Qty 2)</td>
<td>31.51</td>
<td>31.51</td>
</tr>
<tr>
<td>Motor Box Assy** (Qty 2)</td>
<td>34.05</td>
<td>34.05</td>
</tr>
<tr>
<td>Power Box Assy** (Qty 2)</td>
<td>45.35</td>
<td>45.35</td>
</tr>
</tbody>
</table>

*System Roll-up mass includes top components assembled at a higher level than the HCS and SCS sub-assemblies.
**Box masses below are included in the Hard Capture System Mass Above. The same boxes are used in -301 & -302
***302 Mass does not include host provided h/w (MMOD shiel, box mounting, extension cables, etc.)