NTRS - NASA Technical Reports Server

As of October 27, 2023, NASA STI Services will no longer have an embargo for accepted manuscripts. For more information visit NTRS News.

Back to Results
SiC-Based Miniature High-Temperature Cantilever AnemometerThe figure depicts a miniature cantilever-type anemometer that has been developed as a prototype of compact, relatively nonintrusive anemometers that can function at temperatures up to 600 C and that can be expected to be commercially mass-producible at low cost. The design of this anemometer, and especially the packaging aspect of the design, is intended to enable measurement of turbulence in the high-temperature, high-vibration environment of a turbine engine or in any similar environment. The main structural components of the anemometer include a single-crystal SiC cantilever and two polycrystalline SiC clamping plates, all made from chemical-vapor-deposited silicon carbide. Fabrication of these components from the same basic material eliminates thermal-expansion mismatch, which has introduced spurious thermomechanical stresses in cantilever-type anemometers of prior design. The clamping plates are heavily oxidized to improve electrical insulation at high temperature. A cavity that serves as a receptacle for the clamped end of the cantilever is etched into one end of one clamping plate. Trenches that collectively constitute a socket for a multipin electrical plug (for connection to external electronic circuitry) are etched into the opposite end of this clamping plate. Metal strips for electrical contact are deposited on one face of the other clamping plate. Piezoresistive single-crystal SiC thin-film strain gauges are etched in the n-type SiC epilayer in a Wheatstone-bridge configuration. Metal contact pads on the cantilever that extend into the clamping-receptacle area, are obtained by deposition and patterning using standard semiconductor photolithography and etching methods. The cantilever and the two clamping plates are assembled into a sandwich structure that is then clamped in a stainless-steel housing. The Wheatstone- bridge carrying SiC cantilever with the metal contact pads on the piezoresistors is slid into the receptacle in the bottom clamping plate. The top clamping plate is brought into contact with the bottom plate so that the narrow section of the metal strips on the top clamp plate aligns with the metal contact pads on the cantilever. When the parts are clamped together, the metal strips provide electrical connections between the Wheatstone-bridge contact points and the sides the trenches that constitute the socket for the multipin electrical plug. Hence, to connect the Wheatstone bridge to external circuitry for processing of the anemometer readout, one need only insert the plug in the socket. In operation, the cantilever end of the stainless-steel housing is mounted flush with an engine wall and the unclamped portion of the cantilever is exposed into the flow. The cantilever is deflected in direct proportion to the force induced by component of flow parallel to the engine wall and perpendicular to the broad exposed face of the cantilever. The maximum strain on the cantilever occurs at the clamped edge and is measured by the piezoresistors, which are located there. The corresponding changes in resistance manifest themselves in the output of the Wheatstone bridge.
Document ID
Document Type
Other - NASA Tech Brief
Okojie, Robert S.
(NASA Glenn Research Center Cleveland, OH, United States)
Fralick, Gustave
(NASA Glenn Research Center Cleveland, OH, United States)
Saad, George J.
(NASA Glenn Research Center Cleveland, OH, United States)
Date Acquired
August 25, 2013
Publication Date
July 1, 2004
Publication Information
Publication: NASA Tech Briefs, July 2004
Subject Category
Man/System Technology And Life Support
Report/Patent Number
Distribution Limits
Public Use Permitted.
No Preview Available