Final Report: Fire Prevention, Detection, and Suppression Project
Exploration Technology Development Program

Gary A. Ruff
Glenn Research Center, Cleveland, Ohio

September 2011
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA STI Help Desk at 443–757–5803
- Telephone the NASA STI Help Desk at 443–757–5802
- Write to:
 NASA Center for AeroSpace Information (CASI)
 7115 Standard Drive
 Hanover, MD 21076–1320
Final Report: Fire Prevention, Detection, and Suppression Project
Exploration Technology Development Program

Gary A. Ruff
Glenn Research Center, Cleveland, Ohio

National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

September 2011
Acknowledgments

The implementation of the Fire Prevention, Detection, and Suppression project described in this report required the dedication and hard work of numerous technologists and project management personnel. Most notably, the researchers in the Microgravity Combustion and Reacting Systems Branch and Instrumentation and Sensors Branch at NASA John H. Glenn Research Center are acknowledged for their contributions to this project and the advancement of fire safety technology for human spaceflight.

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

Level of Review: This material has been technically reviewed by technical management.
Contents

Abstract .. 1

1.0 Project Overview ... 1

1.1 Introduction .. 1

1.2 Objectives ... 2

1.2.1 Fire Prevention and Material Flammability—Low-g Oxygen Thresholds 4

1.2.2 Fire Signatures and Detection .. 4

1.2.3 Fire Detector Development and Testing .. 4

1.2.4 Fire Suppression ... 4

1.2.5 Post-Fire Monitoring and Response ... 5

2.0 Summary of the Technical Accomplishments ... 5

2.1 FPDS Transition Face-to-Face Presentation .. 5

3.0 Closure .. 67

4.0 Selected Bibliography .. 68
Final Report: Fire Prevention, Detection, and Suppression Project
Exploration Technology Development Program

Gary A. Ruff
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

The Fire Prevention, Detection, and Suppression (FPDS) project is a technology development effort within the Exploration Technology Development Program of the Exploration System Missions Directorate (ESMD) that addresses all aspects of fire safety aboard manned exploration systems. The overarching goal for work in the FPDS area is to develop technologies that will ensure crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the crew, mission, or system. This is accomplished by addressing the areas of (1) fire prevention and material flammability, (2) fire signatures and detection, and (3) fire suppression and response. This report describes the outcomes of this project from the formation of the Exploration Technology Development Program (ETDP) in October 2005 to September 31, 2010 when the Exploration Technology Development Program was replaced by the Enabling Technology Development and Demonstration Program. NASA’s fire safety work will continue under this new program and will build upon the accomplishments described herein.

1.0 Project Overview

1.1 Introduction

The Vision for Space Exploration (VSE) announced by President George W. Bush on January 14, 2004 directed NASA to achieve the long-term goal of sending humans back to the Moon and then on to Mars. The amount of knowledge that must be gained and the number of technologies that must be developed before such missions can occur are certainly formidable. The performance standards required for these technologies are, in many cases, well beyond those used on the International Space Station and the Space Shuttle and will stretch our current knowledge of living and working in space. A large number of the challenges are related to ensuring the health and safety of the crew during the exploration mission.

The Exploration Technology Development Program (ETDP) was initiated in 2005 to address the technologies required for the successful completion of the planned exploration missions. This program, led by the Exploration Technology Development Program Office (ETDPO) at NASA Langley Research Center, consisted of 22 projects (at its conclusion) each addressing a required technology development area required by the Constellation Program (CxP). The ETDPO organization chart in Figure 1 shows the projects, lead center, and project manager for each project. Direct oversight, both project management and technical implementation of the Fire Prevention, Detection, and Suppression project was conducted at the NASA Glenn Research Center. This project addressed all aspects of fire safety aboard manned exploration systems.

The overarching goal for work in the FPDS project is to develop technologies that will ensure crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the crew, mission, or system. This is accomplished by addressing the areas of (1) fire prevention and material flammability, (2) fire signatures and detection, and (3) fire suppression and response. Deliverables from the tasks conducted within the FPDS project could be hardware, design requirements, data for trade studies, test procedures, data libraries, or recommendations for fire response procedures, depending on the area. To realize these deliverables, the project drew on expertise in the
disciplines of combustion science, fire safety engineering, risk assessment, failure analysis and systems engineering. The tasks to be conducted take place in normal-gravity test facilities and ground-based microgravity facilities. The successful implementation of this project also depended on results obtained from several experiments to be conducted on the ISS, specifically, the Smoke Aerosol Measurement Experiment (SAME) and the Flame Extinguishment Experiment (FLEX). These projects are being conducted under the ISS Research Project but, while conducted through a different ETDP project, FPDS personnel were responsible for the interpretation and infusion of the data from these experiments into their appropriate technological area in spacecraft fire safety.

1.2 Objectives

The objective of the Fire Prevention, Detection, and Suppression (FPDS) technology development area is to develop hardware, design rules and requirements, and procedures in the three distinct topical areas within FPDS. These include the general areas of (1) Fire Prevention and Material Flammability, (2) Fire Signatures and Detection, and (3) Fire Suppression and Response. Each of these areas has products that will be delivered to exploration systems to ensure crew health and safety. The specific objectives of the tasks in each of these areas are described in the following sections.
Figure 1.—Projects, Project Managers, and Organization of the Exploration Technology Development Program (ETDP).
1.2.1 Fire Prevention and Material Flammability—Low-g Oxygen Thresholds

The screening of materials to be used on spacecraft to determine their flammability is an integral part of NASA’s fire protection strategy. With CxP, NASA took a new approach for the selection of materials in that they are determining the oxygen threshold for a set of important spacecraft materials, identified by NASA Materials and Processes (M&P) personnel, based on standard 1-g flammability tests. However, the oxygen threshold has been shown to be lower in reduced-gravity and is a function of the local convective velocity. Therefore, the objective of this task was to determine the oxygen flammability threshold in reduced-gravity for materials identified by NASA Materials and Processes personnel and quantify the difference from thresholds determined in normal gravity.

1.2.2 Fire Signatures and Detection

Constellation vehicles and habitats will require assured fire detection throughout their operational lifetimes. Developments in sensor technology have increased the reliability of fire detection not only by increasing sensor lifetime but decreasing the mass, volume, and power and the rate of nuisance alarms. However, advanced sensors require knowledge of the fire signatures, i.e., the gaseous species and particulate properties produced by a fire that provide the quickest and most reliable detection. Assured fire detection also depends on knowledge of where a fire detector should located and the associated time to detection. (In spacecraft, unlike in terrestrial applications, fire detection is not achieved simply placing a detector on the ceiling and letting the smoke rise!) The objective of this task was to conduct normal-gravity testing to identify suitable fire signatures, test prototype fire detectors in this normal gravity facility, and model smoke and gaseous contaminant transport in a low-g forced convective environment.

1.2.3 Fire Detector Development and Testing

Accompanying the task to determine relevant signatures from spacecraft materials and the modeling of smoke transport is the task to develop sensors for fire detection and conduct relevant tests to characterize and verify the performance of the advanced fire detection system. This data is required to conduct trade studies for every CxP vehicle and habitat that will be developed. These trade studies are needed to select a fire detection strategy and appropriate technology that is compatible with the other requirements of the environmental control and life support system. Within the FPDS project, the objective of this task is to develop and perform tests of candidate particulate and gaseous sensors, improving their performance with each design and test iteration. When appropriate, we will also incorporate them into fire detector suite and conduct tests at GRC, JSC, or WSTF to evaluate the fire detection and post-fire monitoring characteristics. A correlated objective of this portion of the FPDS project is to collect and evaluate data from any candidate fire detection or post-fire monitoring system so that a reliable comparison of their performance is available to perform these trades.

1.2.4 Fire Suppression

As work on the Constellation Program progressed and the designs for the Orion and Altair vehicles matured, contractor and NASA project teams completed independent trade studies of candidate fire suppression systems. Similar to the trade study completed by FPDS personnel in October 2007, they concluded that there was insufficient information to conduct a quantitative trade study of existing fire suppression systems for spacecraft. FPDS personnel developed a plan to obtain this data. Since then fine water mist has become a prime candidate for the portable fire extinguisher on Orion and Altair even though the technology is still being developed. The objective of this task is to continue to implement the fire suppression test plan to provide data on candidate fire suppression techniques, focusing on water mist fire suppression.
1.2.5 Post-Fire Monitoring and Response

Fire suppression is intimately linked to post-fire response because not only must the crew clean-up the cabin atmosphere from any smoke or gaseous combustion products, they must also clean-up any fire suppression agent that was discharged. They must do so while probably wearing breathing apparatus or filtering respirators which must be sized to provide protection for the duration of the clean-up process. The connectivity between these procedures and systems requires an integrated approach that includes crew response to the fire alarm, fire suppression, clean-up, and monitoring of the event. The FPDS project has been involved with researchers and engineers from NASA JSC and WSTF to develop a test for the rational evaluation of post-fire monitoring and clean-up equipment and instrumentation. *The objective of this task is to support the development of the post-fire test and of suitable clean-up procedures and monitoring instruments. FPDS technologists will also continue to support the testing and evaluation of instruments for post-fire monitoring that were previously developed from FPDS technologies and are candidates for post-fire monitoring on CxP vehicles.*

2.0 Summary of the Technical Accomplishments

During the implementation of the FPDS project, the primary mechanism to document technical results was through the publication of technical papers in conference proceedings and archival journals. Many of these documents are listed in the bibliography. However, the project also documented programmatic plans and overviewed the technical results through numerous presentations to ETDPO as well as to GRC management and other organizations. In July 2010, a presentation was made to representatives of the ETDPO and personnel from the program that was replacing it, the Enabling Technology Development and Demonstration (ETDD) Program. The purpose of these “transition face-to-face” presentations was to summarize the accomplishments of each project in ETDP, status each technology being developed in terms of Technology Readiness Level (TRL), review outstanding technical risks, and document lessons learned during the implementation of the project. The presentation delivered by the FPDS Project Manager is shown in this section.

2.1 FPDS Transition Face-to-Face Presentation

This slides shown in this section was delivered at NASA John H. Glenn Research Center on July 21, 2010 to representatives of the ETDP and ETDD program offices.
Background

- Prior to 2001, NASA's emphasis on *technology development* for spacecraft fire safety was through:
 - Justifications for science-based ground-based and flight projects funded by NRA’s and the Microgravity Combustion Science Program
 - International collaborations
 - Various groups within NASA
- In 2001, NASA initiated the Bioastronautics Initiative provided funds to allow researchers in the Microgravity Combustion Science Program to transition from basic research to applied fire safety investigations
 - Through the peer-reviewed NASA Research Announcement (NRA) process
- Announcement of the VSE continued the transition towards a technology development projects with a stand-alone fire safety technology development project being formed shortly thereafter
 - Fire Prevention, Detection, and Suppression (FPDS) project within the Exploration Technology Development Program (ETDP)
Outline

- Overview
- FPDS Organization
- Requirements from CxP
- Technology Prioritization Process
- Key Performance Parameters
 - Where we started
 - Where we ended
- Disposition of Risks
- Accomplishments
 - Assessment of TRL for each task
- Remaining tasks and close-out plans
- Lessons Learned
FPDS Overview

- The overarching goal for the FPDS project is to develop technologies that will ensure crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the crew, mission, or system.

- Accomplished by addressing the areas of:
 1) fire prevention and material flammability
 2) fire signatures and detection,
 3) fire suppression, and
 4) post-fire response

- The Fire Prevention, Detection, and Suppression project is NASA’s primary activity for the development of spacecraft fire safety technology
 - This is an on-going project (and process) that advances fire safety knowledge and technologies in distinct phases

- During operation of any spacecraft, fire safety issues continuously arise
 - Validity of material flammability testing at off-nominal conditions
 - Analysis of false (nuisance) alarms on fire detection strategy
 - Other combustion-related events
FPDS Overview

- When vehicles are not being developed, we pursue lower TRL activities
 - Understanding ignition, flame spread, and fire suppression in low-g
 - Development of new flammability test methods
 - Advancement of sensor technology

- During times of vehicle development, higher TRL work is emphasized
 - Definition of operational atmospheres (material flammability)
 - Fire suppression strategies and equipment
 - Post-fire response
 - Development of technologies and relevant testing environments

- Time frame for the delivery of fire safety product spans from 1-2 years before System Requirements Review to Critical Design Review
 - In many respects, we were late on technology development when CxP was initiated.

➢ The implementation of this project as a technology supplier to the Constellation Program has allowed us to formulate a technology development process for spacecraft fire safety.
Constellation requirements driving fire safety

Documents
- Constellation Architecture Requirements Document (CxP-70000, Revision C, Change 001, March 5, 2009)
- Human-System Integration Requirements (CxP-70024, Revision C, Change 001, March 6, 2009)

What they say
- Need a fire detection and suppression system
- Specify pressure and %O₂ combinations permitted in the habitable volume
- Identify the gaseous combustion products that are to be monitored
- Clean-up after a fire and return the cabin to a habitable condition.

What they don’t say
- Details of the fire detection and suppression systems
 - Required response time
 - Smoke/gas concentrations to detect
 - Clean-up requirements of limitations
 - Fire suppressant type and characteristics
 - Type or size of design fire
- Uniformity of fire response equipment across CxP vehicles
 - Differences in oxygen concentrations, ambient pressures, gravity levels, and consumables in different mission phases
Customer Needs - FY08 TPP

<table>
<thead>
<tr>
<th>Customer</th>
<th>Criticality</th>
<th>TPP #: Technology</th>
<th>TPP Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orion</td>
<td>Highly Desirable</td>
<td>126: Fire Detection</td>
<td>24</td>
</tr>
<tr>
<td>Altair</td>
<td>Highly Desirable</td>
<td>478: Fire Detection</td>
<td>38</td>
</tr>
<tr>
<td>Lunar Surf Sys</td>
<td>Highly Desirable</td>
<td>707 & 481: Fire Detection</td>
<td>43</td>
</tr>
<tr>
<td>Lunar Surf Sys</td>
<td>Highly Desirable</td>
<td>886: Partial Gravity Fire Suppression</td>
<td>22</td>
</tr>
<tr>
<td>Lunar Surf Sys</td>
<td>Highly Desirable</td>
<td>705: Low-g Material Flammability Test</td>
<td>42</td>
</tr>
<tr>
<td>Altair</td>
<td>Critical</td>
<td>502: Post-fire Cleanup Monitor</td>
<td>43</td>
</tr>
<tr>
<td>Lunar Surf Sys</td>
<td>Critical</td>
<td>630 & 474: Post-fire Cleanup Monitor</td>
<td>39</td>
</tr>
<tr>
<td>Lunar Surf Sys</td>
<td>Desirable</td>
<td>716: Low Flammability, Low Toxicity, Multicolor Textiles</td>
<td>N/A</td>
</tr>
<tr>
<td>Orion</td>
<td>N/A</td>
<td>Low-g Material Flammability Oxygen Thresholds</td>
<td>N/A</td>
</tr>
</tbody>
</table>

- Fire detection is highly desirable for Orion, Altair, and LSS
- Fire suppression only ranked by LSS, but Orion has an active tech development program
- Post-fire cleanup monitor was critical for Altair and LSS
 - Orion has an active technology development program
- CxP-wide material flammability issues were not ranked
Key Performance Parameters (FY08)

<table>
<thead>
<tr>
<th>Customer Requirements/Needs</th>
<th>Key Performance Parameters</th>
<th>State-of-the-Art</th>
<th>Performance Target (Full Success)</th>
<th>Performance Target (Minimal Success)</th>
<th>Validation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop normal gravity test method to evaluate reduced gravity material flammability</td>
<td>Characterization of low-g flammability</td>
<td>Screen materials using 1-g test; apply barriers as directed by M&P</td>
<td>Test(s) to fully describe low-g flammability characteristics and eliminate use of fire barriers</td>
<td>Test(s) to evaluate a single critical low-g flammability parameter (ignition delay, flame spread rate, heat release rate, etc.)</td>
<td>Normal gravity testing; testing in ground-based low-g facilities</td>
</tr>
<tr>
<td>Quantitative evaluation of NASA-STD-6001 Test 1</td>
<td>Risk of fire (both probability and severity)</td>
<td>NASA-STD-6001 Test 1</td>
<td>New NASA flammability test to replace NASA-STD-6001 Test 1 that quantifies risk of fires in low-g</td>
<td>Methods to extract quantitative data from NASA-STD-6001 Test 1 to assess relative risk of fires in low-g</td>
<td>Normal gravity testing; testing in ground-based low-g facilities</td>
</tr>
<tr>
<td>Design rules for suppressant system including effectiveness of suppressants, required concentrations, and dispersion methods</td>
<td>Mass of fire suppression system</td>
<td>Current ISS</td>
<td>10% reduction in mass</td>
<td>5% reduction in mass</td>
<td>Testing and trade studies</td>
</tr>
<tr>
<td>Design rules for suppressant system including effectiveness of suppressants, required concentrations, and dispersion methods</td>
<td>Mass of suppressant mass released per event</td>
<td>ISS Portable fire extinguishers</td>
<td>20% reduction in mass of suppressant released</td>
<td>no reduction in mass of suppressant released</td>
<td>Testing and analysis</td>
</tr>
<tr>
<td>Design rules for suppressant system including effectiveness of suppressants, required concentrations, and dispersion methods</td>
<td>Mass of consumables req’d for clean-up/recovery</td>
<td>Current ISS</td>
<td>No additional consumables for fire clean-up/recovery</td>
<td>Consumables required specifically for post-fire clean-up and recovery</td>
<td>Analysis</td>
</tr>
<tr>
<td>Design rules for suppressant system including effectiveness of suppressants, required concentrations, and dispersion methods</td>
<td>Replenishment of suppressant</td>
<td>Not currently available</td>
<td>Suppression system rechargeable to pre-use level</td>
<td>Partially rechargeable fire suppression system</td>
<td>Testing and analysis</td>
</tr>
<tr>
<td>Analysis and simulation of spacecraft fire scenarios</td>
<td>Decrease response time to fire</td>
<td>Current ISS training</td>
<td>30% decrease in response time</td>
<td>10% decrease in response time</td>
<td>Analysis and simulation</td>
</tr>
</tbody>
</table>
Flammability and Fire Detection Key Performance Parameters (FY10)

<table>
<thead>
<tr>
<th>Customer Requirements/Needs</th>
<th>Key Performance Parameters</th>
<th>State-of-the-Art</th>
<th>Performance Target (Full Success)</th>
<th>Performance Target (Minimal Success)</th>
<th>Validation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine oxygen flammability thresholds in low-gravity for relevant CoP materials</td>
<td>Low-gravity oxygen thresholds (Δ %O₂)</td>
<td>Oxygen flammability thresholds as determined by NASA-STO-6031 Test 1 (normal gravity)</td>
<td>Quantification of the difference in oxygen thresholds to within ±1 %O₂ by volume for thin materials (expt), extrapolation to thick and “real” materials through modeling</td>
<td>Quantification of difference in oxygen thresholds to within ±1 %O₂ by volume for thin CoP materials</td>
<td>Experimental verification of oxygen flammability thresholds; modeling of materials</td>
</tr>
<tr>
<td>Advanced fire detectors</td>
<td>CO monitoring</td>
<td>CO monitoring not used on ISS or STS for fire detection</td>
<td>Sensitivity to 1 ppm</td>
<td>Sensitivity to 3 ppm</td>
<td>JSC Toxicology/Lab Ventilation or CO sensitivity</td>
</tr>
<tr>
<td></td>
<td>Particulate monitoring</td>
<td>ISS and STS smoke detectors</td>
<td>Responds to particles in the range 0.5 to 4 microns; ignores larger particles (dust)</td>
<td>Responds to particles only in the sub-micron range</td>
<td>Characterization against a standard particle source at GRC and/or NIST</td>
</tr>
<tr>
<td></td>
<td>Sensor lifetime</td>
<td>ISS and STS smoke detectors; ISS CSA-CPS</td>
<td>Calibrations stable for at least two cycles of being unpowered for 1 month and idle (unpowered) for 6 months</td>
<td>Correctable calibrations for at least two cycles of being unpowered for 1 month and idle (unpowered) for 6 months</td>
<td>Lifetime testing at two locations (JSC, Engineering, GRC, or JSC)</td>
</tr>
</tbody>
</table>
Fire Suppression Key Performance Parameters (FY10)

<table>
<thead>
<tr>
<th>Customer Requirements/Needs</th>
<th>Key Performance Parameters</th>
<th>State-of-the-Art</th>
<th>Performance Target (Full Success)</th>
<th>Performance Target (Minimal Success)</th>
<th>Validation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacecraft fire suppression</td>
<td>Compatible with ECLSS</td>
<td>Halon incompatible with ISS TCCS</td>
<td>No adverse impact on ECLSS</td>
<td>None</td>
<td>Design and testing</td>
</tr>
<tr>
<td></td>
<td>Low conductivity</td>
<td>Russian foam extinguishers are not to be used on US modules of ISS</td>
<td>Non-conductive</td>
<td>Less than 3960 microseimens (Russian foam extinguisher)</td>
<td>Testing at GRC/ASC</td>
</tr>
<tr>
<td></td>
<td>Clean-up</td>
<td>STS: terminate mission; ISS-Russian: wipe equipment; ISS-US CO removal</td>
<td>No impact to crew or mission after clean-up</td>
<td>Recovery of critical systems</td>
<td>Testing at GRC, analysis</td>
</tr>
<tr>
<td>Rechargeable (LSS only)</td>
<td>Extinguishers are not rechargeable</td>
<td>Recharge extinguishers from existing stores</td>
<td>None</td>
<td></td>
<td>Design and testing</td>
</tr>
<tr>
<td>Extinguishing effectiveness</td>
<td>No test fire exists (1-g or 0-g)</td>
<td>Extinguish two test fires with 30 sec of discharge</td>
<td>Extinguish test fire with 30 sec discharge</td>
<td></td>
<td>Testing at GRC or WSTF</td>
</tr>
</tbody>
</table>
Fire Prevention, Detection, and Suppression (FPDS) Master Schedule

August 2009

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shuttle & ISS</td>
<td>Retire Shuttle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constellation Milestones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orion</td>
<td>PDR</td>
<td>CDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q1 2016 CDR</td>
</tr>
<tr>
<td>Lunar Surface Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orion</td>
<td>LSCR</td>
<td>SRR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0 Fire Prevention and Material Flammability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Material Flammability Oxygen Thresholds/Non-oxic Curve Flammability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 Forced Ignition and Flame Spread Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Modeling of Upward Flame Spread</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0 Fire Signatures and Detection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Modeling of Smoke/Contaminant Transport</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0 Fire Detector Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 Sensor Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.1 Particulate Sensor Dev</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.2 Gaseous Sensor Dev</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2 Fire Detector Evaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Orion
Fire Prevention, Detection, and Suppression (FPDS) Master Schedule

August 2009

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
</tr>
<tr>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
</tr>
</tbody>
</table>

Constellation Milestones

- **Shuttle & ISS**: Retire Shuttle
- **Orion**: PDR, CDR
- **Altair**: Q1 2016 CDR

Lunar Surface Systems

- 2.0 Fire Prevention and Material Flammability
 - 2.1 Material Flammability Oxygen
 - Thresholds/Normoxic Curve Flammability
 - 2.2 Forced Ignition and Flame Spread Test
 - 2.3 Modeling of Upward Flame Spread

- 3.0 Fire Signatures and Detection
 - 3.1 Modeling of Smoke/Contaminant Transport

- 4.0 Fire Detector Development
 - 4.1 Sensor Development
 - 4.1.1 Particulate Sensor Dev
 - 4.1.2 Gaseous Sensor Dev
 - 4.2 Fire Detector Evaluation

- Smoke detector activation in LSS habitat
- Smoke detector activation in Altair
- Smoke detector activation in Lunar gravity
- Printability and smoke detector performance
- Detection and detection failure
- Verification test completed

Altair
Fire Prevention, Detection, and Suppression (FPDS) Master Schedule

August 2009

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shuttle & ISS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retire Shuttle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constellation Milestones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDR</td>
<td></td>
<td>CDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRR</td>
<td></td>
<td>PDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunar Surface Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.0 Fire Suppression and Response

5.1 Quantification of fire extinguisher characteristics

- 5.1.1 Fine water mist
- 5.1.2 Flight-prototype (Orion) extinguisher characteristics

5.2 Hot fire test for portable fire suppression

- Fire suppression and test

5.3 Evaluation of Orion PFE for Altair

- Altair PFE test

6.0 Post-fire Response

- 6.1 Particulate measurement system
- 6.2 LD-PAS acid gas and CO assessment
- 6.3 AEMC post-fire monitor

- Air Monitor (AEMC Orion)
- Post-fire monitor (AEMC FPDS & TBC)
Fire Prevention, Detection, and Suppression (FPDS) Master Schedule

August 2009

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
</tr>
</tbody>
</table>

Shuttle & ISS
- Retire Shuttle

Constellation Milestones

<table>
<thead>
<tr>
<th>Orion</th>
<th>PDR</th>
<th>CDR</th>
<th>Initial Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altair</th>
<th>Q1 2016 CDR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lunar Surface Systems

<table>
<thead>
<tr>
<th>LSSR</th>
<th>LSSR</th>
<th>SRR</th>
<th>SDR</th>
<th>Tech Inf</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Réstart of low-a flammarity assessment
- Screening of non-flammable crew clothing
- MOC of non-flammable crew clothing

- 2.2 Forced Ignition and Flame Spread
 - Test

- 2.3 Modeling of Upward Flame Spread

- 3.0 Fire Signatures and Detection
 - Modeling of Smoke/Contaminant Transport

- 4.0 Fire Detector Development
 - 4.1 Sensor Development
 - 4.1.1 Particulate Sensor Dev
 - 4.1.2 Gaseous Sensor Dev
 - 4.2 Fire Detector Evaluation

- Fire detection/ post-fire evaluations (annual) test-coordinated with customers

- Multi-parameter fire detector complete
- Verification test complete
Fire Prevention, Detection, and Suppression (FPDS) Master Schedule

August 2009

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shuttle & ISS</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
</tr>
<tr>
<td>Constellation Milestones</td>
<td>Retire Shuttle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orion</td>
<td>PDR</td>
<td>CDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunar Surface Systems</td>
<td>LSCR</td>
<td></td>
<td>SRR</td>
<td></td>
<td>SDR</td>
<td>Tech Inf</td>
<td></td>
</tr>
</tbody>
</table>

5.0 Fire Suppression and Response

5.1 Quantification of fire extinguisher characteristics

5.1.1 Fire water mist
5.1.2 Flight prototype (Orion) extinguisher characteristics

5.2 Hot-fire test for portable fire suppression

5.3 Evaluation of Orion PFE for Altair

6.0 Post-fire Response

6.1 Particulate measurement system
6.2 LD-PAS acid gas and CO assessment
6.3 AEMC post-fire monitor

LSS
FPDS Risks

Risks as of October FY09

<table>
<thead>
<tr>
<th>Trend</th>
<th>Risk ID and Open Date</th>
<th>Risk Title</th>
<th>Risk Statement</th>
<th>Affinity Group (Budge, Performance, Cost, Schedule)</th>
<th>Owner/Initiator</th>
<th>Approach (R/W/A/S)</th>
<th>Status/Content</th>
<th>Mitigation 1</th>
<th>Estimated Start Date</th>
<th>Estimated End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F1 (10/1/2009)</td>
<td>Low Flammability Task Termination</td>
<td>Given the current FY09 PMCD in grantees, there is a possibility that we will be unable to supply sufficient low-flammability materials for the CPV-MAP to incorporate into the safety design.</td>
<td>4</td>
<td>Performance</td>
<td>GAR W M</td>
<td>The difference between the minimum oxygen concentration and the atmospheric NOx determines whether fire detection and suppression are required.</td>
<td>This work remains out of scope for FY09. We conducted basic R&D tests using LSS funding and will conduct tests as other funding sources become available. We will continue to interact with customers on issues of low-material flammability and advocate for future funding as necessary.</td>
<td>1-Oct-09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F2 (10/1/2009)</td>
<td>Loss of Key Personnel - Drop Tower</td>
<td>Given that there is no FY98 funding for material flammability, there is a possibility that key personnel will be lost to other projects.</td>
<td>4</td>
<td>Performance, Cost</td>
<td>GAR M</td>
<td>There is unique experience required for the operation of low-gravity test facilities and analysis of the data. Training personnel will become increasingly difficult as the experience base erodes.</td>
<td>Drop tower technicians are currently being reassigned to other facilities as the use of the Zero Gravity Facility has significantly decreased. Occasional tests have been conducted using two FFGS tests and have maintained capability and workforce (9/30/09).</td>
<td>1-Oct-09</td>
<td>30-Sep-10</td>
</tr>
<tr>
<td></td>
<td>D1 (10/1/2009)</td>
<td>Acid Gas Fire Detection</td>
<td>Given that the contract for acid gases, such as HCl or HF, is not a standard fire detection method, there is a possibility that the system will not prove suitable for spacecraft fire detection.</td>
<td>4</td>
<td>Performance</td>
<td>GAR M</td>
<td>The detection of acid gases such as HCl or HF is required for post-fire monitoring. Verification of these species for detection could allow the same instrument to be used for both fire detection and monitoring.</td>
<td>We will mitigate this risk by conducting tests to evaluate the potential of these gases in the early phase and during a typical spacecraft fire. Also, we will pursue the development of CO and particulate sensors that are more reliable for fire detection.</td>
<td>1-Aug-09</td>
<td>31-Aug-09</td>
</tr>
<tr>
<td></td>
<td>D2 (10/1/2009)</td>
<td>Low Concentration CO Detection</td>
<td>Given that the FY97 low-concentration CO sensor demonstrated increased noise in a practical fire environment, there is a possibility that these sensors will prove not to be usable.</td>
<td>3</td>
<td>Performance</td>
<td>GAR W M</td>
<td>The levels of CO required for post-fire monitoring are substantially lower than those required for fire detection. One sensor that could span both regimes would satisfy both applications.</td>
<td>Continued development of sensors has continued to improve performance and another set of tests will be performed in October 2009. Other technologies for monitoring CO have been tested in post-fire applications (9/30/09).</td>
<td>1-Oct-08</td>
<td>30-Nov-08</td>
</tr>
<tr>
<td></td>
<td>D3 (10/1/2009)</td>
<td>Unavailability of Sensor Testing Opportunities</td>
<td>Given that the CPV project does not support the post-fire clean-up tests conducted at NSTTF (a.k.a. Shenstone Fire Tests), there is a possibility that these tests will not be conducted or conducted at acceptable levels to satisfy CPV milestones.</td>
<td>4</td>
<td>Schedule</td>
<td>GAR W M</td>
<td>The Smoke Tester tests have been conducted each of the past two years, generally in the late spring or summer. While the original purpose was to evaluate post-fire air cleanup equipment, they have been useful to demonstrate post-fire monitoring instruments. However, the tests conducted in FY09 did not match CPV planned deployment, resulting in no post-fire tests for the FY09 program.</td>
<td>Tests have begun in a new facility at NSTTF that is dedicated to the evaluation and monitoring of post-fire cleanup. Because there is a need for more tests by CPV and the project has insufficient funds to conduct our own tests, we will continue to schedule our tests around others' schedules.</td>
<td>1-Oct-08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D4 (11/1/2009)</td>
<td>Loss of Key Personnel - Participate Monitor</td>
<td>Given that highly skilled technicians are required to manufacture components for the advanced particulate detector and CPV cannot fully support these personnel, there is a possibility that they will be reassigned and will not be available to this project.</td>
<td>4</td>
<td>Schedule, Performance</td>
<td>GAR-PGM W M</td>
<td>CPV and several other technology projects at SRC supported several technicians who have very skillful and have become familiar with the requirements of each task. Funding reductions have forced all but one to be assigned elsewhere. This will directly impact the particulate sensor development task.</td>
<td>We have requested at least 25% of the technician's time to support our work. However, we will hire another technician to perform this task.</td>
<td>1-Jan-09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S1 (10/1/2009)</td>
<td>Fire Suppression Development</td>
<td>Given that there is a desire for common cabin fire suppression systems, we are developing the CPV architecture and that insufficient information is available on candidate suppression agents to perform suitable tests, there is a possibility that a suppression agent selected for one vehicle may not be suitable for other CPV vehicles.</td>
<td>4</td>
<td>Performance, Cost</td>
<td>GAR M</td>
<td>Fire extinguishers on current space vehicles are generally incompatible with the systems to which they are attached. Using incomplete data on extinguisher performance during live tests and design increases the likelihood that the trend will continue through CPV.</td>
<td>We will evaluate this risk by conducting tests to obtain the required data on candidate suppression agents. However, the risk still exists that there will be insufficient funds to complete the planned test program.</td>
<td>1-Aug-08</td>
<td></td>
</tr>
</tbody>
</table>
FPDS Risks

Risks as of October FY10

<table>
<thead>
<tr>
<th>Trend</th>
<th>Risk ID and Open Date</th>
<th>Risk Title/WBS</th>
<th>Risk Statement (MUST USE: “Given that there is a possibility...”)</th>
<th>L</th>
<th>C</th>
<th>Affinity Group (Budget, Performance, Cost, Schedule)</th>
<th>Owner/Initiator</th>
<th>Approach (M/W/A/R)</th>
<th>Status/Context</th>
<th>Mitigation 1</th>
<th>Estimated Start Date</th>
<th>Estimated End Date</th>
<th>Mitigation 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>F1 (10/1/2009)</td>
<td>Low-g Flammability Task Termination (344977.04.03.03)</td>
<td>Given that current FY10 PRBS fails in all points, there is a possibility that we will be unable to supply sufficient low-g oxygen threshold data to CIP, which will impact the safety margins into the FPDS strategy for Orion/Atmos.</td>
<td>4</td>
<td>3</td>
<td>Performance</td>
<td>CCR</td>
<td>W, M</td>
<td>The difference between the maximum oxygen concentration and the atmospheric SO2 determines whether fire detection and suppression are required.</td>
<td>Drop tower tests are currently being re-assigned to other facilities as the use of the Drop Tower Facility has significantly decreased. Occasional tests have been conducted using non-FPDS fuels and non-maintained capability.</td>
<td>1-Oct-48</td>
<td>30-Jun-11</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>F2 (10/1/2009)</td>
<td>Loss of Key Personnel - Drop Tower (344977.04.03.03)</td>
<td>Given that there is no FY10 funding for material flammability, there is a possibility that key personnel will be lost to other projects.</td>
<td>4</td>
<td>3</td>
<td>Performance, Cost</td>
<td>CCR</td>
<td>M</td>
<td>There is a virtual experience required for the operation of drop tower test facilities and analysis of data. Fire-testing personnel will become increasingly difficult as the experience base erodes.</td>
<td>Drop tower tests are being reassigned to other facilities as the use of the Drop Tower Facility has significantly decreased. Occasional tests have been conducted using non-FPDS fuels and non-maintained capability.</td>
<td>1-Oct-48</td>
<td>30-Sep-11</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>D1 (10/1/2009)</td>
<td>Low-concentration CO Detection</td>
<td>Given that the FY10 low-concentration CO sensor demonstrated increased noise in a practical pre-fire environment, there is a possibility that these sensors will prove not to be viable.</td>
<td>3</td>
<td>4</td>
<td>Performance</td>
<td>CCR</td>
<td>W, M</td>
<td>The levels of CO required for positive monitoring are substantially less than those required for fire detection. One sensor that could span both regimes would satisfy both applications.</td>
<td>Continued development of sensors has continued.</td>
<td>1-Oct-48</td>
<td>30-Oct-09</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>D2 (10/1/2009)</td>
<td>Unavailability of Smoke Testing Opportunities (344977.04.03.03) and (344977.04.03.03)</td>
<td>Given that the FPDS project does not fund the post-fire smoke testing conducted at WSEP it is a smoke testing test. There is a possibility that these tests will not be conducted or conducted at suitable times to satisfy FPDS milestones.</td>
<td>4</td>
<td>4</td>
<td>Schedule</td>
<td>CCR</td>
<td>W, M</td>
<td>The smoke layer tests have been conducted each of the last two years generally in the late spring or summer. The original purpose was to conduct post-fire smoke testing equipment, that have been useful to demonstrate post-fire smoke testing equipment. Tests conducted in FY10 did not match FPDS planed development, resulting in no post-fire smoke tests for FY11 products.</td>
<td>Texts have been added to the smoke testing plan.</td>
<td>1-Oct-48</td>
<td>30-Sep-10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>D3 (11/15/2009)</td>
<td>Loss of Key Personnel - Particulate Monitor (344977.04.03.03)</td>
<td>Given that highly skilled machinists and technicians are required to manufacture components for the advanced particulate monitor and FPDS cannot fully support these personnel, there is a possibility that they will be reassigned and be unavailable to this project.</td>
<td>4</td>
<td>4</td>
<td>Schedule, Performance</td>
<td>CCR</td>
<td>P, G</td>
<td>The smoke layer tests have been conducted each of the last two years generally in the late spring or summer. The original purpose was to conduct post-fire smoke testing equipment, that have been useful to demonstrate post-fire smoke testing equipment. Tests conducted in FY10 did not match FPDS planed development, resulting in no post-fire smoke tests for FY11 products.</td>
<td>Texts have been added to the smoke testing plan.</td>
<td>1-Oct-48</td>
<td>30-Sep-10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>D4 (10/1/2009)</td>
<td>Fire Suppression Development (344977.04.03.03)</td>
<td>Given that there is a desire for common space cabin fire suppression across the CIP architecture and that insufficient information is available on candidate suppression systems to perform satisfactory trades, there is a possibility that a suppression agent selected for one vehicle may not be suitable for other CIP vehicles.</td>
<td>4</td>
<td>4</td>
<td>Performance, Cost</td>
<td>CCR</td>
<td>M</td>
<td>Fire extinguishers on current space vehicles are generally incompatible with the systems to which they are attached. Using incomplete data on extinguisher performance during fire tests and design increases the likelihood that the fire trend will continue through CIP.</td>
<td>We will mitigate this risk by conducting tests to obtain the required data on candidate suppression agents. However, the risk still exists that there will be insufficient funds to complete the planned test program by the time decisions are made.</td>
<td>1-Aug-09</td>
<td>30-Sep-10</td>
<td></td>
</tr>
</tbody>
</table>
FPDS Risks

- **Risks as of July 2010**

<table>
<thead>
<tr>
<th>Trend</th>
<th>Risk ID and Open Date</th>
<th>Risk Title/WBS</th>
<th>Risk Statement (MUST USE: "Given that...there is a possibility...")</th>
<th>L</th>
<th>C</th>
<th>Affinity Group (Budget, Performance, Cost, Schedule)</th>
<th>Owner/Initiator</th>
<th>Approach (M,W,AR)</th>
<th>Status/Context</th>
<th>Mitigation 1</th>
<th>Estimated Start Date</th>
<th>Estimated End Date Mitigation 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>F1 (10/1/2008)</td>
<td>Low Flammability Task Termination (34497.04 11.0)</td>
<td>Given that the FY10 PPBE exceeds limits, there is a possibility that we will be unable to supply sufficient low oxygen threshold data to CSNP & M&G to incorporate low-safety margins into the FDS strategy for Orion.</td>
<td>3</td>
<td>3</td>
<td>Performance</td>
<td>BAR</td>
<td>W, M</td>
<td>The difference between the maximum oxygen concentration and the atmospheric N2O2 determines whether fire detection and suppression are required.</td>
<td>This work remains out of scope for FY10. We have continued to interact with M&P personnel and obtained new data through other projects (NASA and LLU Research). Given NASA's new direction, additional data is not needed for CSNP. We will continue work in this area as funding allows in the new program. (6/30/2010)</td>
<td>1-Oct-08</td>
<td>30-Jan-11</td>
</tr>
<tr>
<td>D</td>
<td>D2 (10/1/2008)</td>
<td>Unavailability of Sensor Testing Opportunities (34497.04 33.01.01 and 34497.04 03.03.02)</td>
<td>Given that the FPDS project does not fund the post-fire cleanup tests conducted at WSTF (i.e., the Smoke Eater Tests), there is a possibility that these tests will not be conducted or conducted at suitable times to satisfy FPDS milestones.</td>
<td>4</td>
<td>4</td>
<td>Schedule</td>
<td>BAR</td>
<td>W, M</td>
<td>The Smoke Eater tests have been conducted each of the past two years; generally is the late spring or summer. While the original purpose was to evaluate postfire or cleanup equipment, they have been useful to demonstrate post-fire monitoring instruments. However, the tests conducted in FY09 did not match FPDS planned development, resulting in no post-fire tests for the FY09 product.</td>
<td>Tests have begun in a new facility at WSTF that is dedicated to the evaluation and monitoring of post-fire clean-up. Orion is not performing tests so FPDS will be funding our own tests. Plans are made to develop a portion of this capability at ORC so testing can proceed in a more timely manner. (6/12/2010)</td>
<td>1-Oct-08</td>
<td>30-Sep-13</td>
</tr>
<tr>
<td>D</td>
<td>D3 (1/4/2009)</td>
<td>Loss of Key Personnel - Particle Monitor (34497.04 33.01.02)</td>
<td>Given that highly skilled machinists and technicians are required to manufacture components for the advanced particle detector and FPDS cannot fully support these personnel, there is a possibility that they will be reassigned and be unavailable to this project.</td>
<td>4</td>
<td>3</td>
<td>Schedule</td>
<td>Performance</td>
<td>BAR/PD</td>
<td>W, M</td>
<td>FPDS and several other technology projects at ORC support several technicians who are highly skilled and very familiar with the requirements of each task. Funding reductions have forced all of them to be terminated. This directly impacts the particle sensor development task.</td>
<td>We have requested an appropriate number of the technician's time to support our work. However, availability when needed may be in question. We will continue to watch this issue to report and predict impacts to the FPDS team.</td>
<td>1-Jan-09</td>
</tr>
<tr>
<td>D</td>
<td>D4 (11/30/2009)</td>
<td>Low-concentration CO Detection</td>
<td>Given that the FY08 and FY09 low-concentration CO sensor demonstrated anomalous behavior in a practical smoke environment, there is a possibility that the Pt-Rh/C-type sensors will prove not to be viable.</td>
<td>3</td>
<td>4</td>
<td>Performance</td>
<td>BAR</td>
<td>W, M</td>
<td>The levels of CO required for post-fire monitoring are substantially less than those required for fire detection. One sensor that could span both regimes would satisfy both applications.</td>
<td>Progress has been made in achieving CO concentrations less than 5 ppm using Pt-Rh/C and LC sensors. These solutions will continue to be evaluated. Other technologies are also being developed. (6/12/10)</td>
<td>1-Dec-09</td>
<td>30-Sep-10</td>
</tr>
</tbody>
</table>

- **By end of FY10, testing could remove Risk D4: Low-concentration CO Detector.**
 - Issues could then be calibration
 - Laser spectroscopic technologies are alternatives
- **Other risks could remain relevant but will be re-evaluated in the new program**
FPDS Major Accomplishments

• Low-g Maximum Oxygen Concentration tests
 – For the first time, quantifies the difference between 0-g, Lunar-g and 1-g MOC for relevant materials
• Flammability correlations as functions of pressure, velocity, and %O₂
 – What is the impact on material flammability as you trade oxygen concentration and pressure?
• Ignitability of materials increases as pressure decreases
• Fire Detection
 – Interpretation of results for the Smoke Aerosol Measurement Experiment (SAME) and SAME-R (Reflight)
 – Development of the Multiparameter Aerosol Scattering Spectrometer
 – Simulation of smoke detector activation
• Water mist fire extinguisher
 – Sufficiently raised TRL for extinguisher to warrant a change in Orion baseline
• Post-fire Clean-up
 – Development of a standard challenge
 – Suite of instrumentation (from SBIRs)
Low-g Oxygen Flammability Threshold Tests

Objective
- Quantify the low-g flammability thresholds for typical spacecraft materials and compare results with thresholds determined in normal gravity
 - Ultem 1000
 - Nomex
 - Mylar

- Tests conducted in Zero Gravity Facility at NASA-GRC for Ultem 1000, Nomex, and Mylar
 - 5.2-sec limits samples to thin materials
Lunar-g Maximum Oxygen Concentration

- Centrifuge drop rig being prepared for a drop in the Zero Gravity Facility.
- Fuel sample is 5 cm wide by 6 cm long.

![Image of drop rig with labels: Dome, Experiment support plate, Control hardware and electronics]
Zero-g and Lunar-g MOC Results

- Tests were conducted at WSTF (normal-g) and GRC (Lunar-g) to quantify changes in the MOC for Nomex, Mylar, and Ultem

- Conditions run in Lunar-g burned at both the normal gravity MOC and at the zero-g convective MOC
 - Lunar-g flammability appears more like zero-g rather than 1-g
 - Cessation of ventilation flow is not effective

- Significant impact on a fire safety strategy, especially if the need for fire detection and suppression is dictated by the difference between the MOC and atmosphere of use.

➢ How large can a fire get and how long will it take a fire to get that large?
FPDS Major Accomplishments

- Low-g Maximum Oxygen Concentration tests
 - For the first time, quantifies the difference between 0-g, Lunar-g and 1-g MOC for relevant materials
- Flammability correlations as functions of pressure, velocity, and %O₂
 - What is the impact on material flammability as you trade oxygen concentration and pressure?
- Ignitability of materials increases as pressure decreases
- Fire Detection
 - Interpretation of results for the Smoke Aerosol Measurement Experiment (and Reflight)
 - Development of the Multiparameter Aerosol Scattering Spectrometer
 - Simulation of smoke detector activation
- Water mist fire extinguisher
 - Sufficiently raised TRL for extinguisher to warrant a change in Orion baseline
- Post-fire Clean-up
 - Development of a standard challenge
 - Suite of instrumentation (from SBIRs)
Spacecraft Habitable Atmosphere Trades

- In 2005, the Exploration Atmospheres Working Group performed a detailed trade study of potential atmospheres for exploration missions
 - Experts in space medicine and physiology, mission operations, and vehicle and habitat systems
- Traded against decompression sickness (pre-breathe time), hypoxia and material flammability
- What is the quantitative effect of elevated mole fractions of oxygen and reduced ambient pressure on material flammability in low- and partial-gravity?
 or
- How large can a fire get and how long will it take a fire to get that large?
Flame spread data for Kimwipes, fit to an oxygen-pressure correlation [Magee and McAlevy, 1971] for opposed flow under a variety of atmospheric and gravitational conditions.
Concurrent Flow Flame Spread Correlation

Graph:
- **Variables:**
 - V_f: flame spread rate, cm/s
 - O_2 (mole fraction) * flow (cm/s) * $P\text{ (atm)}^{0.5}$

Data Points:
- Normoxic data
- Oxygen varies
- Velocity varies
- Pressure varies
- Other combination

Models:
- Linear: $R^2 = 0.9696$
- Power: $R^2 = 0.9277$
MOC values from NASA Test 1 resemble opposed spread trends
Ignition in Spacecraft Atmospheres

- Tests by researchers at University of California at Berkeley have shown that the time required for a material to ignite after it has been exposed to an external heat flux (ignition delay time) decreases with decreasing pressure and increasing oxygen concentration.
 - ignition is easier at low pressures and increased oxygen concentrations
- If a low-g spacecraft fire ignites easier and has a lower oxygen flammability limit ...

How large can a fire get and how long will it take a fire to get that large?
FPDS Major Accomplishments

- Low-g Maximum Oxygen Concentration tests
 - For the first time, quantifies the difference between 0-g, Lunar-g and 1-g MOC for relevant materials
- Flammability correlations as functions of pressure, velocity, and %O₂
 - What is the impact on material flammability as you trade oxygen concentration and pressure?
- Ignitability of materials increases as pressure decreases
- Fire Detection
 - Interpretation of results for the Smoke Aerosol Measurement Experiment (SAME) and SAME-R (Reflight)
 - Development of the Multiparameter Aerosol Scattering Spectrometer (MPASS)
 - Simulation of smoke detector activation
- Water mist fire extinguisher
 - Sufficiently raised TRL for extinguisher to warrant a change in Orion baseline
- Post-fire Clean-up
 - Development of a standard challenge
 - Suite of instrumentation (from SBIRs)
SAME Operations

- SAME launched on STS-118 in August 2007
- Operated in the Microgravity Science Glovebox in September and October 2007 by Expedition 15
- 30 Samples of 5 Materials Distributed in 5 Carousels
 - Silicone Rubber
 - Teflon
 - Kapton
 - Lampwick (cellulose)
 - Dibutyl phthalate (DBP)
- 47 total test points
- Samples and TEM grids were returned on STS-120
Summary of SAME results

- Lampwick and silicone produced pyrolysis aerosols similar to those associated with terrestrial early warning fire signatures.
 - After a 720 second aging period, the CMDs increased significantly
- Teflon samples produced somewhat smaller particles than lampwick and silicone and similar evolution with aging
 - not significantly differed from particulate observed terrestrially
 - somewhat inconsistent with the larger particle sizes that were qualitatively observed in the CSD experiment
- Kapton aerosols were relatively small, roughly a third of the nominal value for terrestrial signatures (190 nanometers)
 - even after aging, the CMD remained roughly 20% smaller than this value

➤ Based on the SAME results, possible fire signatures occur in both large and small particle size regimes
 - Problematic for conventional ionization and optical scattering fire detectors
➤ Size selective smoke detection will improve reliability and false alarm rejection.
 - Classifying the particles or by measuring multiple moments
Motivation for an Improved Smoke Detector

- With increased knowledge of low-g smokes, we have the opportunity to create smoke detectors having increased capabilities.
- Reliable and prompt identification of evolving fire hazards requires sensors of adequate sensitivity,
 - provisions to exclude false events with high probability
- The inclusion of additional sensors, such as gas-phase composition, may prove to be an important component
 - An alternate approach is to maximize the information available from the particulate aerosol.
- The current detector development makes use of optical scattering due to the richness of information available from particle-light interactions
 - Supported in part by the Fire Prevention, Detection, and Suppression (FPDS) project within Exploration Tech Development Program (ETDP)
- A re-flight of the SAME experiment (SAME-R) presentec the opportunity to demonstrate additional diagnostic instruments.
- The resulting capability could augment the science return of SAME by providing additional characterization of the test aerosols.
MPASS SAME-R Flight Hardware

- In the SAME hardware, the MPASS mimics a TSI DustTrak
 - physical size, connections, and communication
Smoke Transport and Detector Activation in Orion

Objective
- Apply tools developed to simulate smoke transport and fire spread in terrestrial systems to exploration systems
- Understand how fire detector activation times are affected by: sensor location, size of fire, ventilation flows, and obstructions
- Fire Dynamic Simulator (FDS) developed and supported by NIST
 - Has become a widely-used tool for fire analysis
 - Developers have a grant to verify the large-eddy simulation capabilities of this tool for low-g

Procedure
- Smoke originates from a cable interface
- Transported to detector via module air flow
- Calculate time-to-alarm for various fire locations
Smoke Transport and Detector Activation in Orion

- Simulations run for 5 minutes computational time (or until smoke detector alarms)
 - Requires over 100 hours clock time
- Smoke sources on forward bulkhead are detected within no more than 120 sec
- Sources behind ECLSS wall require 160 sec (minimum) to alarm

- Hidden fire sources
- Open cabin fire sources

➢ How fast does a low-g fire grow and how big does it get?
Multiparameter Fire Detection System

- System features include:
 - Four chemical sensors: CO, H₂/HC, CO₂
 - Particulate sensor: IMS cell or two-moment optical scattering sensor
 - Two environmental sensors: humidity and pressure
 - Small pump for air flow
 - Core hardware for power, acquisition, analysis
 - Battery operation and wireless transmission possible

➢ Recent work has focused on the low-concentration CO sensor

Comparison of aeronautics fire detector (10" x 10" x 4.5") to FPDS fire detector (7" x 5.9" x 2.1")

Miniaturized multiparameter fire detection system
Advanced Fire Detection Technologies

- **Low-concentration (< 5 ppm) CO sensor**
 - Solid State: OSU/Makel/GRC
 - LD-PAS: SBIR Phase III - Vista Photonics
 - Integrated VCSEL-WMS: SBIR Phase II – Vista Photonics
 - QCL absorption: SBIR Phase I – Maxion, Inc.
 - absorption measurement at 4.610-μm

- **HF, HCN, HCl sensor**
 - LD-PAS: SBIR Phase III - Vista Photonics
 - Solid state sensors – GRC and Makel Engineering

- **Evaluation of post-fire environments and sensors will determine applicability for post-fire monitoring**

LD-PAS detector for CO. The operation of the instrument is monitored on the computer.

VCSEL-WMS CO detector. 2.3 mm VCSEL absorption-based sensor (0.5 ppm CO)

LD-PAS detector for HF, HCl, and HCN. The data is shown in the display on the front panel.
FPDS Major Accomplishments

- Low-g Maximum Oxygen Concentration tests
 - For the first time, quantifies the difference between 0-g, Lunar-g and 1-g MOC for relevant materials
- Flammability correlations as functions of pressure, velocity, and %O₂
 - What is the impact on material flammability as you trade oxygen concentration and pressure?
- Ignitability of materials increases as pressure decreases
- Fire Detection
 - Interpretation of results for the Smoke Aerosol Measurement Experiment (SAME) and SAME-R (Refight)
 - Development of the Multiparameter Aerosol Scattering Spectrometer
 - Simulation of smoke detector activation
- Water mist fire extinguisher
 - Sufficiently raised TRL for extinguisher to warrant a change in Orion baseline
- Post-fire Clean-up
 - Development of a standard challenge
 - Suite of instrumentation (from SBIRs)
Fire Extinguisher Development

Issue
- Even though fine water mist was recognized as having beneficial characteristics for spacecraft fire suppression, it was not baselined by contractor trade studies because of the lower TRL (relative to the presumed TRL of COTS extinguishers)
- Received some FTE from CxP, supplemented by ETDP to advance TRL
- Worked with JSC Orion and ADA Technologies, Inc.

Fine Water Mist Fire Extinguisher
- Cylinder is 5.25” diameter, 14.25” tall
- Charge with 1000 psi N₂
- Holds ~900 cc water
- Produces water droplets 20-50 μm in diameter
Fine Water Mist Fire Extinguisher

- Nozzle has six jets
 - Three central jets
 - Three outer jets
Steady Flow Water/Gas Supply Cart

- System developed for long discharge times and constant pressure operation
 - Good for measuring droplet diameter and velocity, mass flow rate as a function of system pressure
- Use 5 gal (18.9 L) tank containing water and nitrogen
 - Holds enough water for four minutes of use
- Connects to hand piece (valve, nozzle) similar to hand extinguisher
 - Cart uses shop-air driven piston instead of hand lever to open valve
Droplet Diameter and Velocity Measurements

- Use Dantec Dynamics PDA system to make measurements
 - System reports individual measurements, we calculate ensemble values
 - Velocity
 - Mean and standard deviation
 - Droplet diameter
 - Mean, standard deviation, second and third moments, Sauter diameter
- Mount nozzle on three-axis translation stage
- Current measurements made along axial centerline and radially at 28 cm below nozzle
Droplet Size and Dispersion Pattern

- **SBIR Prototype Extinguisher**

- Center orifice
- 28 cm downstream of the nozzle
- 6.5 MPa
Fine Water Mist Fire Extinguisher

- Worked with JSC Engineering and ADA Technologies, Inc. to develop a flight prototype fire extinguisher (funded by JSC)
- Fire tests at ADA Tech/Colorado School of Mines are on-going
- Prototype will then come to GRC for drop size characterization and dispersion testing
- Develop Product Specification Document

How large a fire does a spacecraft extinguisher have to put out?

[Diagram of the fire extinguisher with labels: Aerating mixer, Atomizing nozzle, Water seal, Nitrogen seal, Water flow path, Nitrogen flow path]
FPDS Major Accomplishments

- Low-g Maximum Oxygen Concentration tests
 - For the first time, quantifies the difference between 0-g, Lunar-g and 1-g MOC for relevant materials
- Flammability correlations as functions of pressure, velocity, and %O₂
 - What is the impact on material flammability as you trade oxygen concentration and pressure?
- Ignitability of materials increases as pressure decreases
- Fire Detection
 - Interpretation of results for the Smoke Aerosol Measurement Experiment (SAME) and SAME-R (Refight)
 - Development of the Multiparameter Aerosol Scattering Spectrometer
 - Simulation of smoke detector activation
- Water mist fire extinguisher
 - Sufficiently raised TRL for extinguisher to warrant a change in Orion baseline
- Post-fire Clean-up
 - Development of a standard challenge
 - Suite of instrumentation (in-house and SBIR Program)
Post-Fire Cleanup

- The most important requirement in developing a post-fire cleanup process is to specify the state of the atmosphere to be scrubbed
 - pressure, temperature, and composition
- With WSTF, FPDS personnel helped develop a suitable post-fire challenge

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Percent Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicone</td>
<td>20.8</td>
</tr>
<tr>
<td>Epoxy</td>
<td>20.8</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>15.1</td>
</tr>
<tr>
<td>Polycarbonate</td>
<td>8.7</td>
</tr>
<tr>
<td>PTFE</td>
<td>6</td>
</tr>
<tr>
<td>Polymide</td>
<td>5.7</td>
</tr>
<tr>
<td>Polyvinylchloride</td>
<td>5.7</td>
</tr>
<tr>
<td>Polyurethane</td>
<td>4.9</td>
</tr>
<tr>
<td>Polyphenylene Oxide</td>
<td>4.9</td>
</tr>
<tr>
<td>Phenol formaldehyde</td>
<td>3.8</td>
</tr>
<tr>
<td>Polysulfone</td>
<td>1.8</td>
</tr>
<tr>
<td>Polyester</td>
<td>1.8</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Sample Composition

Pelletized fuel sample

Sample heated

Sample heated
Post-Fire Cleanup Test Protocol

- Post-fire test conducted in a glovebox facility at WSTF
 - evaluate smoke and contaminant scrubbing
 - mask filters
 - evaluate CO and acid gas monitoring technologies

Typical Spacecraft Mix
Low Visibility, significant smoke produced

Does this represent a realistic post-fire environment?
Status of FPDS Technologies

Technology Readiness Level

TRL 1 Basic principles observed and reported
TRL 2 Technology concept and/or application formulated
TRL 3 Analytical and experimental critical function and/or characteristic proof-of-concept
TRL 4 Component and/or breadboard validation in laboratory environment
TRL 5 Component and/or breadboard validation in relevant environment
TRL 6 System/subsystem model or prototype demonstration in a relevant environment (ground or space)
TRL 7 System prototype demonstration in a space environment
TRL 8 Actual system completed and "flight qualified" through test and demonstration (ground or space)
TRL 9 Actual system "flight proven" through successful mission operations
Status of FPDS Technologies

Capability Readiness Level

- A Capability is defined as a set of systems (or system of systems) with associated technologies & knowledge that enable NASA to perform a function (e.g. scientific measurements) required to accomplish the NASA mission.
- A Capability needs to be demonstrated and qualified, just as a technology does, in both laboratory and relevant environments.
 - The infrastructure and knowledge (process, procedures, training, facilities) of the Capability needs to be
 - demonstrated and qualified in both laboratory and relevant environments and
 - available to support the Capability in order for it to be considered mission-ready.

<table>
<thead>
<tr>
<th>Capability Operational Readiness</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

*Sub-capabilities include technologies, infrastructure, and knowledge (process, procedures, training, facilities)
Status of FPDS Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Responsible Party</th>
<th>TRL/CRL</th>
<th>Assessment and Future Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Flammability (capability to use low-g material flammability as acceptance criteria)</td>
<td></td>
<td></td>
<td>More materials need to be tested. Need to verify at larger length and time scales</td>
</tr>
<tr>
<td>Maximum Oxygen Concentration</td>
<td>GRC</td>
<td>CRL 2</td>
<td>More materials need to be tested. Need to verify at larger length and time scales</td>
</tr>
<tr>
<td>Effect of pressure and %O<sub>2</sub> on flammability and ignition</td>
<td>GRC</td>
<td>CRL 2</td>
<td>More materials need to be tested. Need to verify at larger length and time scales</td>
</tr>
<tr>
<td>Fire Detection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiparameter Aerosol Scattering Spectrometer</td>
<td>GRC</td>
<td>TRL 5-6</td>
<td>Flight instrument has been produced, experiments ongoing with results TBD</td>
</tr>
<tr>
<td>Solid-state multiparameter gas sensors</td>
<td>GRC/Makel Engineering</td>
<td>TRL 5</td>
<td>Fire detection is mature.</td>
</tr>
<tr>
<td>Smoke detector activation modeling</td>
<td>GRC</td>
<td>CRL 3</td>
<td>Capability demonstrated but not used/verified in an operational environment</td>
</tr>
<tr>
<td>Fire Suppression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water mist fire extinguisher</td>
<td>ADA Technologies, Inc.</td>
<td>TRL 5-6</td>
<td>Tests are on-going. Will be TRL 6 when characterization for Product Specification Document is complete</td>
</tr>
<tr>
<td>Post-fire Cleanup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-fire test facility</td>
<td>WSTF/JSC/GRC</td>
<td>CRL 3</td>
<td>Tests have been conducted. Environment must be characterized and verified against a spacecraft post-fire environment</td>
</tr>
<tr>
<td>Low-concentration CO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid-state sensors</td>
<td>GRC/Makel Engineering</td>
<td>TRL 3-4</td>
<td>Rounds of testing and improvements of prototype</td>
</tr>
<tr>
<td>LD-PAS: SBIR Phase III</td>
<td>Vista Photonics, Inc.</td>
<td>TRL 5</td>
<td>Successfully evaluated in post-fire test facility</td>
</tr>
<tr>
<td>Integrated VCSEL-WMS: SBIR Phase II</td>
<td>Vista Photonics, Inc.</td>
<td>TRL 4</td>
<td>Successfully evaluated in JSC Toxicology Lab</td>
</tr>
<tr>
<td>QCL absorption: SBIR Phase I</td>
<td>Maxion Technology</td>
<td>TRL 2</td>
<td>Phase I ending July 31 with promising results</td>
</tr>
<tr>
<td>HF, HCl, HCN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-PAS: SBIR Phase III</td>
<td>Vista Photonics, Inc.</td>
<td>TRL 5</td>
<td>Evaluated in post-fire test facility. Questions about presence of gases.</td>
</tr>
<tr>
<td>Solid-state sensors</td>
<td>GRC/Makel Engineering</td>
<td>TRL 3-4</td>
<td>Prototypes evaluated in laboratory. Under development</td>
</tr>
</tbody>
</table>
To be Completed in FY10

- Testing of post-fire sensor suite at WSTF (week of August 16)
 - VCSEL-WMS for CO
 - HF via integrating sphere
 - LD-PAS for HCN and HCl

- Characterization of drop sizes and spray dispersion from ADA Technologies, Inc. flight prototype water mist fire extinguisher (end of August)

- Accumulation of documents on ETDP close-out checklist
 - Technical papers
 - Risk disposition and status
Lessons Learned

- Technology assessments are required throughout the project/program lifetime
 - “Who’s doing what” changes after several years of implementation
 - Assessment of relevance and consistency is needed across customers’ programs
- Timing is important and needs to be taken into account
 - Information about fire safety technologies is needed at System Requirements Review or shortly thereafter
 - Consistent data is needed for early trade studies
 - Hardware could be as late as CDR
- Consider development time/window in prioritization
 - Balance between near-term needs and far-term needs
- When rated against other life support systems, FDS will always rate lower
 - But it will be on the vehicle and the technology will impact other systems
- Within ETDP, we’ve had a chance to develop integrated fire safety technology development within NASA
Spacecraft Fire Prevention, Detection, and Suppression Design Processes

- Habitable atmosphere (pressure and %O₂)
- Maximum Oxygen Concentration

Material flammability
- Advanced fire detectors
- Simulation of fire detector activation
- Collateral impacts and damage

Post-fire cleanup
- Post-fire challenge
- Advanced monitoring technologies
- Filters and masks

How large can a spacecraft fire get and how long does it take?

Fire Detection

Fire Suppression
- Suppression agent characteristics
- Effectiveness
- Mass and volume
Large-Scale Fire Demonstration Experiment

- Utilize/recycle the current automated servicing vehicles as a platform for fundamental research free-flyer tests and large scale fire tests
- After vehicle is loaded with trash, install other free flyer payloads or, in the case of a fire experiment, igniters and fire sensors.
 - Allow the free flyer experiment to complete its testing and then trigger the fire event after the vehicle has performed its deorbit burn
- Technical issues involve size of experiment, telemetry, and safety
Relative size of ATV, Progress, and Apollo
Fire Prevention, Detection, and Suppression

Summary

- Implementation of the CxP has focused many of the fire safety technology development efforts directly onto the hardware that will be needed for exploration spacecraft.
- FPDS has implemented an integrated approach to fire safety
 - Addressed areas where uncertainties have been identified
 - Brought ground-based fire safety technologies and processes to bear on spacecraft
- New knowledge and technology have been rapidly infused into CxP requirements and even baselined in spacecraft designs
 - Critical design and development of flight hardware to follow
- Future emphasis will be on flammability, detector development, and post-fire
- Many of the design trades have identified a knowledge gap of what a spacecraft fire will look like
 - How large is it?, How rapidly does it grow?
 - Combustion products as a function of what is burning?
- A large-scale fire demonstration experiment is a logical “next step”
 - Material flammability, fire detection, and fire suppression are possible
3.0 Closure

Protecting spacecraft from fire has been of critical importance to NASA since the beginning of the human spaceflight program. During the design of new spacecraft, trade studies for fire detection, fire suppression, and post-fire cleanup and monitoring systems are conducted using the most recent knowledge regarding spacecraft fires. The design and implementation of these systems has evolved with succeeding vehicle as new data and hardware technologies have become available. Because of the specialized nature of fire protection in spacecraft operating in low- or partial-gravity, commercial off-the-shelf terrestrial fire safety technologies are seldom relevant. While current terrestrial fire safety technologies have developed over more than a century of fighting fires, spacecraft fire safety technology has only been studied for a little over 30 years with varying emphasis. The Fire Prevention, Detection, and Suppression technology development effort was the first concerted effort within NASA to advance spacecraft fire safety technologies and incorporate that technology into the design of crewed space vehicles and habitats. No matter what destination astronauts from the United States will eventually be directed, the implementation of a robust spacecraft fire safety technology development program between now and then will provide the best methods for them to respond to a fire, recover the vehicle, and continue with their mission. Crew safety has been and will continue to be the primary objective of NASA’s spacecraft fire safety technology development effort.
4.0 Selected Bibliography

The major publications and presentations prepared by FPDS personnel from 2004 to 2010 are listed in this section. They are categorized into the topical areas of material flammability, fire detection, and fire suppression as well as several programmatic overview papers. Because technology development work in spacecraft fire safety will continue after the ETDP Fire Prevention, Detection, and Suppression project transitions to the ETDD program, this list of publications represents a “snap-shot” of the publications and will undoubtedly increase.

Programmatic

Material Flammability

Fire Detection

Fire Suppression

The Fire Prevention, Detection, and Suppression (FPDS) project is a technology development effort within the Exploration Technology Development Program of the Exploration System Missions Directorate (ESMD) that addresses all aspects of fire safety aboard manned exploration systems. The overarching goal for work in the FPDS area is to develop technologies that will ensure crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the crew, mission, or system. This is accomplished by addressing the areas of (1) fire prevention and material flammability, (2) fire signatures and detection, and (3) fire suppression and response. This report describes the outcomes of this project from the formation of the Exploration Technology Development Program (ETDP) in October 2005 to September 31, 2010 when the Exploration Technology Development Program was replaced by the Enabling Technology Development and Demonstration Program. NASA’s fire safety work will continue under this new program and will build upon the accomplishments described herein.

15. SUBJECT TERMS
Fire prevention; Smoke detection; Fire detection; Fire extinguishers; Safety