Technical Milestone Report:
Flutter Boundary Identification from Simulation Time Histories
Report Date: December 18, 1997

Prepared for
The Boeing Company
Seattle, Washington 98124-2207

LIMITATION CHANGE
This document was formally controlled by Limited
Exclusive Rights under NASA Contract NASI-20220
and has been decontrolled per authority of NASA LaRC
and The Boeing Company. (HSR Integrated Planning
Team Minutes dated 5/7/99)
Changed by: [signature] Date: 10/1/99
DELIVERY TRANSMITTAL FORM (DTF)

1. CONTRACT NO: NAS1-20220
2. TASK ASSIGNMENT NO: TASK 26
3. REFERENCE (DTF) NO: 26-3-06

1. TITLE OF DELIVERABLE:
 Time Domain Flutter Identification Techniques

2. DUE DATE: 12/31/97
3. DELIVERY DATE: 1/28/98

4. NO. 7. ADDRESSEES/ADDRESSES: NAME, OFFICE/CODE/BASE AND CITY/STATE/ZIP

 National Aeronautics and Space Administration
 Langley Research Center
 Attn: Rob Scott, Mail Stop 340
 Contract NAS1-20220
 Hampton, VA 23681-0001

 A. R.B. Gardner, Contract Administrator, Mail Stop 126 (DTF only)
 B. R. Witcofski, Contracting Officer Technical Representative, M/S: 131 (DTF only)
 C. Attn: Rob Scott - Technical Contact, Mail Stop 340
 D. Cheryl Harrell, Configuration Mgmt, Mail Stop 131
 Ship to NASA Langley @ 3 W.Reid St, Bld 1152 Rm 224
 E. Glen Green, BCAG Contracts, Mail Stop 76-67

 10a. DTF PREPARED BY (PRINT NAME, ORGN., PHONE, M/S): Mike Plomski
 Business Mgmt, Schedules
 M/S GH-FP (425)965-1536

 10b. DTF APPROVED BY (PRINT NAME, ORGN., PHONE, M/S): William Boyd
 M/S: G1-OJ,(206) 905-5210
 BOEING COMMERCIAL AIRPLANE GROUP
 P. O. Box 3703
 SEATTLE, WA 98124-2207

 THE FOLLOWING IS FOR REFERENCE ONLY

ITEM	ITEM TITLE	DISTRIBUTION REQMTS FOR BLK 6 ABOVE
 1. | Informal Final Report | A-5 Copies
 3. | Task Assignment (Exhibit B) Deliverable (Identified in Block 2) | A-0, B-0, C-1 Copies

 LIMITATION CHANGE
 This document was formally controlled by Limited Exclusive Rights under NASA Contract NAS1-20220 and has been decontrolled per authority of NASA LaRC and The Boeing Company. (HSR Integrated Planning Team Minutes dated 5/27/99)
 Changed by C.F. Date 6/1/99
FOREWORD

This document is being submitted to satisfy the deliverable “Time Domain Flutter Identification Techniques” (WBS 4.2.6.2) of the High Speed Research II - Airframe Technologies Contract NAS1-20220.

The work reported here is part of the effort in Aeroelasticity, and was performed by a team of experts from Boeing Long Beach.

The NASA technical point of contact for this task is Rob Scott of NASA Langley Research Center.

The key personnel responsible for this effort were:

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Myles Baker</td>
<td>Sub-Task PI, Aeroelasticity</td>
</tr>
<tr>
<td>Dr. Peter Hartwich</td>
<td>Nonlinear Analysis</td>
</tr>
<tr>
<td>Mr. Raul Mendoza</td>
<td>Nonlinear Analysis</td>
</tr>
</tbody>
</table>
Table of Contents

INTRODUCTION .. 1

AEROELASTIC EQUATIONS OF MOTION .. 1

ALGORITHM .. 2

- IDENTIFICATION OF SYSTEM DYNAMICS ... 2
- INTERPOLATION/EXTRAPOLATION TO DIFFERENT CONDITIONS 3

RESULTS: FSM ANALYSIS ... 4

CONCLUSIONS ... 5

BIBLIOGRAPHY .. 6

APPENDIX: SOURCE CODE ... 7
Introduction
While there has been much recent progress in simulating nonlinear aeroelastic systems, and in predicting many of the aeroelastic phenomena of concern in transport aircraft design (i.e. transonic flutter buckets), the utility of a simulation in generating an understanding of the flutter behavior is limited. This is due in part to the high cost of generating these simulations, and the implied limitation on the number of conditions that can be analyzed, but there are also some difficulties introduced by the very nature of a simulation. Flutter engineers have traditionally worked in the frequency domain, and are accustomed to describing the flutter behavior of an airplane in terms of its V-G and V-F (or Q-G and Q-F) plots and flutter mode shapes. While the V-G and V-F plots give information about how the dynamic response of an airplane changes as the airspeed is increased, the simulation only gives information about one isolated condition (Mach, airspeed, altitude, etc.). Therefore, where a traditional flutter analysis can let the engineer determine an airspeed at which an airplane becomes unstable, while a simulation only serves as a "binary check:" either the airplane is fluttering at this condition, or it is not.

In this document, a new technique is described in which system identification is used to easily extract modal frequencies and damping ratios from simulation time histories, and shows how the identified parameters can be used to determine the variation in frequency and damping ratio as the airspeed is changed. This technique not only provides the flutter engineer with added insight into the aeroelastic behavior of the airplane, but it allows calculation of flutter mode shapes, and allows estimation of flutter boundaries while minimizing the number of simulations required.

Aeroelastic Equations of Motion
For the purposes of this document, it is useful to consider the aeroelastic system as a separate structural dynamic system (which depends only on the structure's stiffness and mass properties) and aerodynamic system (which depends on the flow parameters). These systems are then conceptually coupled into an aeroelastic system using a feedback loop, where the generalized deflections from the structural system drive the aerodynamic model, and the generalized forces from the aerodynamic model in turn drive the structural model. This is shown schematically in Figure 1.

Before considering the coupled aeroelastic system, it is useful to define the form of the dynamic equations governing the structural dynamic system and the aerodynamic system separately. Invoking a small perturbation assumption, the dynamics of each system can be approximated using a linear first-order matrix equation. The resulting state-space equations for the structural model are given below.

\[x_{t+1} = A_s x_t + B_s f_t \]

(1)
where x_i is a vector containing the (structural) generalized deflection and generalized velocity information describing the airplane motion, and f_i is the generalized aerodynamic force.

The first order differential equation governing the aerodynamic system can be written as

$$
\xi_{i+1} = A_a \xi_i + B_a x_i \\
_f^i = qC \xi_i + qDx_i
$$

where ξ_i is a vector containing a description of the state of the aerodynamic system. Note that this state vector is in general extremely large, containing a degree of freedom for every degree of freedom of the CFD model. For example, in a potential based code, ξ_i would contain the potentials for every grid point in the CFD model.

Combining These Equations Leads to

$$
x_{i+1} = (A_s + qB_s D)x_i + qB_s C \xi_i \\
\xi_{i+1} = A_a \xi_i + B_a x_i
$$

or

$$
\begin{bmatrix}
x \\
\xi
\end{bmatrix}_{i+1} =
\begin{bmatrix}
A_s + qB_s D & qB_s C \\
B_a & A_a
\end{bmatrix}
\begin{bmatrix}
x \\
\xi
\end{bmatrix}_i
$$

This equation representing the coupled aerelastic system will form the basis of the flutter boundary identification algorithm described below.

Algorithm

There are two significant features of the method presented here. The first is the application of system identification methods to efficiently and accurately estimate the dynamic behavior (including modal frequencies and damping ratios) of the coupled aeroelastic system. The second contribution is a technique for expanding the resulting information (which is applicable only to the exact combination of Mach number and dynamic pressure simulated in the CFD code) into a description of how the system dynamics vary with changes in dynamic pressure.

Identification of System Dynamics

Consider the dynamic system described in equation (4) above. Note that this representation appends the aerodynamic states to the structural states to form the coupled aeroelastic system. Strictly speaking, the number of aerodynamic states is extremely high, and scales with the number of grid points in the CFD model. In practice, however, the dynamics of the aerodynamic system can be adequately represented by a much smaller set of degrees of freedom that contain essentially the same information (conceptually similar to aerodynamic lags). The number of "important" states is often very small, and some very important information about the aeroelastic system can be obtained by treating the aerodynamic states as second order effects and simply neglecting them. Truncating the aerodynamic states results in an approximate dynamic equation of the form

$$
x_{i+1} = (A_s + qB_s D)x_i
$$
Note that a large part of the aerodynamic force is accounted for in a quasi-unsteady fashion in the term \(qB_D \), while the increment to fully unsteady aerodynamics is neglected. This can be written as

\[
x_{i+1} = A_{AE}(q)x_i
\]

where \(A_{AE}(q) \) is a state transition matrix for the aeroelastic system, and is obviously dependent on dynamic pressure. The problem then is to estimate the matrix \(A_{AE}(q) \) given the time history of the generalized deflections \(x_i \).

This is accomplished using a simple least squares approach. First, the history of the generalized displacements and generalized velocities are assembled into a matrix:

\[
X^0_n = \begin{bmatrix} x_0 & \cdots & x_{n-1} \\ \end{bmatrix} \\
X^1_n = \begin{bmatrix} x_1 & \cdots & x_n \\ \end{bmatrix}
\]

and the dynamic equation of the aeroelastic system over the time history can be written in matrix form as

\[
X^1_n = A_{AE}(q)X^0_n
\]

Since the aerodynamic lag terms are neglected, and since the system is not perfectly linear, there is not an exact solution for \(A_{AE}(q) \), but it can be estimated in a least squares sense:

\[
A_{AE}(q) = X^1_nX^0_n^T \left(X^0_nX^0_n^T \right)^{-1}
\]

This can also be written as

\[
A_{AE}(q) = U_n(V_n)^{-1}
\]

where the matrices \(U_n \) and \(V_n \) are defined as

\[
U_n = \sum_{i=0}^{n-1} x_{i+1}x_i^T \\
V_n = \sum_{i=0}^{n-1} x_ix_i^T
\]

In this approach, the state transition matrix \(A_{AE}(q) \) can be estimated at every iteration as the simulation progresses, and by tracking the eigenvalues (frequency and damping ratio) of the state transition matrix, an excellent feeling for the convergence of the solution can be obtained. This makes it easy to determine when to stop CFD solutions, so CPU time is not wasted.

Interpolation/Extrapolation to Different Conditions

If a the state transition matrix at is available at at least two dynamic pressures, a flutter analysis can be performed by using linear interpolation/ extrapolation on a term-by-term basis to estimate a state transition matrix at any dynamic pressure of interest:
This matrix can be inexpensively estimated at a large number of dynamic pressures, and its eigenvalues can be calculated. These can be transformed into the continuous-time domain and be used to calculate modal frequencies and damping ratios of the aeroelastic system. This information can be tabulated for all the dynamic pressures, and a set of Q-G and Q-F plots can be constructed, allowing flutter interactions to be identified, and flutter crossings to be estimated. It should be emphasized that the resulting plots are exact only at \(q = q_i \) and \(q = q_c \), and are "unmatched" approximations at other dynamic pressures.

In this report, a single aeroelastic CFD analysis was performed at \(q_2 \), and \(q_i \) was taken to be zero. The known frequencies and damping ratios of the structural dynamic system were then used to construct a state transition matrix for the wind-off condition \(A_{AE}(0) \). In general, to avoid excessive interpolation/extrapolation errors, multiple aeroelastic analyses might be required, and piecewise linear or higher order polynomial interpolation might be used. A preliminary analysis using the wind-off dynamics and a state transition matrix at an initial guess of dynamic pressure could also be used to guide the engineer's choice of additional dynamic pressures to run to ensure adequate accuracy to predict the flutter crossing.

Results: FSM Analysis

The algorithms described above have been applied to several configurations, including the AGARD 445.6 wing and the HSR Flexible Semispan Model (FSM). A typical set of results from the FSM configuration are shown here for illustrative purposes.

The structural model used in this example is the Long Beach version of the correlated M18-5 Finite element model. This is documented thoroughly in Reference 1, and a plan view of the FEM is shown in Figure 1. In order to perform the aeroelastic solutions, the vibration modes of the Finite Element Model are calculated, and used as input into the Boeing Long Beach version of CFL3D-AE (CFL3D-AE-BA), which is described in Reference 2. The Euler grid used in this example is shown in Figure 2.

In order to compute a flutter simulation, a steady-state aeroelastic solution must first be obtained in order to accurately capture the mean steady flow properties. This is accomplished in two steps. First, a rigid steady-state solution is computed, and then the solution is restarted with the effects of structural flexibility included. The convergence plots of the static aeroelastic solution (in terms of modal generalized displacements of the dominant modes) are shown in Figure 3. The flutter analysis is then performed by restarting the aeroelastic solution, and by imparting a nonzero generalized velocity to each of the modes. In this case, the analysis was performed at Mach 0.8, \(Q = 250 \text{ PSF} \), and angle of attack of 2 degrees. Ten modes were used in the aeroelastic solution. The resulting time histories of generalized deflections then represent the impulse response of the coupled aeroelastic system, and are shown in Figure 4. Only modes 1, 3, 4, and 6 are shown because these show the most interesting dynamics.

On inspecting Figure 4, it can clearly be seen that we are very close to neutrally stable in at least one aeroelastic mode (the generalized deflections of Modes 1 and 3 are virtually undamped). There is also some interaction in Modes 4 and 6, since the presence of different frequency components is evident in the time histories. This is expected since the generalized deflections represent the natural modes of the wind-off system, and once the dynamic pressure is raised above zero, coupling between generalized coordinates
introduces multiple frequency components. All that can really be ascertained from these plots, however, is that this condition is not significantly unstable.

Figures 5 and 6 show the application of the system identification technique for estimating the eigenvalues of the aeroelastic system. Figure 5 shows the convergence of the modal frequency estimates, and Figure 6 shows the convergence of the modal damping estimates. The algorithm exhibits some chaotic behavior for about the first 100 iterations, but has no trouble converging on frequency and damping estimates in about 200-250 iterations. This represents about 5 cycles of the dominant aeroelastic mode. The results of this analysis are consistent with our visual interpretation of Figure 4: there is a marginally stable mode at a frequency of about 13-14 Hz, and a slightly more stable mode at a frequency of about 18 Hz.

The FSM results using CFD (CFL3D-AE-BA) and system identification are expanded into Q-G and Q-F plots in Figures 7 and 9, and the results of a linear flutter analysis are presented for comparison in Figures 8 and 10. From Figure 7, it can clearly be seen that the first aeroelastic mode rises in frequency as dynamic pressure is increased, and crosses the third aeroelastic mode at a dynamic pressure of about 200 PSF and the fourth aeroelastic mode at a dynamic pressure of 300 PSF. Above 300 PSF, this mode’s frequency starts dropping off. The other significant effect is that the sixth aeroelastic mode’s frequency drops as the Q is increased, and the frequency shows a distinct inflection at about 300 PSF.

Compare the frequency behavior from the nonlinear solution with the results of the linear flutter analysis in Figure 8. Again, we see that the frequency of the first mode increases with Q, and that the first and third modes cross at roughly 180 PSF. The first and fourth modes interact at about 275-325 PSF, after which the frequency associated with the first mode begins to fall off. We also see that the sixth elastic modal frequency drops as Q is increased, and that there is a distinct inflection at about 320 PSF. The comparison between the Q-F curves deteriorates above about 400 PSF.

Now consider the damping behavior as dynamic pressure is increased. In the nonlinear results (Figure 9), the existence of three aeroelastic mechanisms can be seen. The first is a hump mode that peaks at a damping value just below zero at about 250 PSF. By referring to the Q-F plot, it can be seen that this mode corresponds to the third elastic mode, and has a frequency of about 13 Hz. Figure 10 shows a similar mechanism for the linear analysis, but the peak damping value is about 5% beyond the stability boundary.

The second aeroelastic mechanism seen in the nonlinear results is a hard flutter crossing occurring at around 260 PSF. This mode corresponds to the fourth elastic mode, and has a frequency of about 18 Hz. Inspecting the linear analysis shows a similar flutter mechanism with a crossing at about 280 PSF.

The third mechanism in the nonlinear results is again a hump mode that peaks at nearly 500 PSF, significantly below the stability boundary. Since the results at Q=500 PSF are extrapolated from Q=250 PSF, there is a low degree of confidence in this mechanism. The linear results show action in this mechanism, but the interaction between mechanisms is significantly different at the high dynamic pressures involved.

Conclusions

The techniques presented in this document have been used to estimate the flutter boundaries of the FSM configuration, and have provided some valuable insight into the aeroelastic interactions involved. This approach offers three main advantages over other techniques:

1. It gives the engineer insight into the adequacy of the simulation for identifying system dynamics (through convergence plots of modal frequencies and dampings).
2. It allows interpolation/extrapolation of the identified dynamics to predict the flutter behavior at other dynamic pressures, and to see the aeroelastic interactions leading to flutter modes.

3. It allows the potential for calculating flutter mode shapes from the eigenvectors of the identified state transition matrix.

Some caveats on these results are also in order. To date, the validation of these techniques is fairly sparse, and questions about the range of applicability of interpolated/extrapolated solutions and the application to highly nonlinear conditions (i.e. Mach 0.95) still need to be answered. Further validation will take place as the nonlinear analysis of the FSM configuration continues.

The source code of the program that performs this analysis is shown in the Appendix.

Bibliography

Appendix: Source Code

```fortran
program flutter
  c maximum number of modes
  parameter (nmax=20)
  implicit real*8 (a-h,p-z)
  real*8 d(nmax),v(nmax),f(nmax),dt,u0,cbar,stm(nmax,nmax)
  real*8 freq(nmax),damp(nmax),wr(nmax),wi(nmax)
  complex*16 e
  character*132 fn,line
  ff = 1.000
  nq = 300
  qmaxq = 3.0
  c CAP-TSD style MCFOUT file containing modal time history data
  iin = 9
  c output file for convergence of modal frequencies and damping ratios.
  icov = 10
  open(icov, file='freqdamp.conv')
  c flutter crossing file
  iflut = 11
  write(*,*) 'enter the filename of the CAP-TSD style MCFOUT file.'
  read(*,'(a132)',end=700) fn
  write(*,*) 'opening file:'
  write(*,1(a132)) fn
  open(iin, file=fn, status='old', err=999)
  read(iin,*) mumx
  read(iin,*) itrnax
  do i = 1,28
    read(iin,*)
  enddo
  read(iin, ' (28x,f12.6,53x,f11.6,11x,f12.6)') dt,q0,u0
  do i = 1,5
    read(iin,*)
  enddo
  read(iin, '(59x,i13)') nm
  do i = 1,5
    read(iin,*)
  enddo
  read(iin, '(59x,f13.6)') cbar
  write(*, '(59x,f13.6)') cbar
  dtau = dt*cbar/u0
  3 read(iin, '(a132)') line
  if (index(line,'gmass').eq.0) goto 3
  read(iin,*)
  read(iin,*)
  do i = 1,nm
    read(iin, '(27x,2e20.12)') damp(i),freq(i)
    write(*, '(27x,2e20.12)') damp(i),freq(i)
  enddo
  do i = 1,2*nm
    do j = 1,2*nm
      stm(i,j) = 0
    enddo
  enddo
enddo
```

do i = 1,nm
 aaa = - damp(i)*freq(i)
 bbb = sqrt(freq(i)**2 - aaa*aaa)
 ec = exp(aaa*dtau)*cos(bbb*dtau)
 es = exp(aaa*dtau)*sin(bbb*dtau)
 stm(2*i-1,2*i-1) = ec - aaa*es/bbb
 stm(2*i-1,2*i) = es/bbb
 stm(2*i ,2*i-1) = (aaa*aaa + bbb*bbb)*es/bbb
 stm(2*i ,2*i) = ec + aaa*es/bbb
endo
write(*,*) 'stm:'
do i = 1,2*nm
 write(*,' (255e15.5) 1) (stm(i,j),j=1,2*nm)
endo
do i = 1,5
 read(iin,*)
endo
iter = 0
10 idone = 1
 read(iin,*),end=20
 read(iin,*),end=20
 read(iin,*),end=20
 write(*,*) 'iter = ',iter
 do i = 1,nm
 read(iin,'(4x,4(3x,e21.12))',end=20) d(i),v(i),f(i)
 write(*,'(7x,e21.12,3x,e21.12)') d(i),v(i),f(i)
 enddo
 write(25,'(255e15.5) I) (d(i),v(i),f(i),i=1,nm)
 iter = iter+1
 idone = 0
 if (iter.gt.itmax) idone = 1
20 continue
 call sysid(iter,d,v,min(rmunax, nm),dtau,ff,stm,nmax,.
 iconv,q0,nq,qmaxq,iflut,idone)
 if (idone.eq.0) goto 10
close(iin)
close(iconv)
goto 1
700 continue
stop
999 write(*,*) 'error.'
stop
end
SUBROUTINE cholsl(a,n,np,m,p,b,x)
INTEGER n,np
REAL*8 a(np,np),b(np,m),p(n),x(np,m)
INTEGER i,k
REAL*8 sum
do 100 kk = 1,m
 do 12 i=1,n
 sum=b(i,kk)
 do 11 k=i-1,1,-1
 sum=sum+a(i,k)*x(k,kk)
 11 continue
 12 continue
100 continue
x(i,kk) = sum/p(i)
12 continue
 do 14 i = n,1,-1
 sum = x(i,kk)
 do 13 k = i+1,n
 sum = sum - a(k,i)*x(k,kk)
13 continue
 x(i,kk) = sum/p(i)
14 continue
100 continue
return
END

C (C) Copr. 1986-92 Numerical Recipes Software 41.9;%{$1.
SUBROUTINE choldc(a,n,np,p,sing)
INTEGER n,np
REAL*8 a(np,np),p(n)
INTEGER i,j,k
LOGICAL sing
REAL*8 sum
sing = .false.
 do 13 i = l,n
 do 12 j = i,n
 sum = a(i,j)
 do 11 k = i-1,1,-1
 sum = sum - a(i,k)*a(j,k)
11 continue
 if(i.eq.j) then
 if(sum.le.0.) then
 sing = .true.
 return
 endif
 p(i) = sqrt(sum)
 else
 a(j,i) = sum/p(i)
 endif
12 continue
13 continue
return
END

C (C) Copr. 1986-92 Numerical Recipes Software 41.9;%{$1.
SUBROUTINE elmhes(a,n,np)
implicit real*8 (a-h,p-z)
INTEGER n,np
REAL*8 a(np,np)
INTEGER i,j,m
REAL*8 x,y
 do 17 m = 2,n-1
 x = 0.
 i = m
 do 11 j = m,n
 if(abs(a(j,m-1)).gt.abs(x)) then
 x = a(j,m-1)
 i = j
 endif
11 continue
 if(i.ne.m) then
 do 12 j = m-1,n
 y = a(i,j)
12 continue
9
\[a(i,j) \leftarrow a(m,j) \]
\[a(m,j) \leftarrow y \]
\[\text{continue} \]
\[\text{do } 13 \ j=1,n \]
\[y=a(j,i) \]
\[a(j,i) \leftarrow a(j,m) \]
\[a(j,m) \leftarrow y \]
\[\text{continue} \]
\[\text{endif} \]
\[\text{if}(x \neq 0.) \text{then} \]
\[\text{do } 16 \ i=m+1,n \]
\[y=a(i,m-1) \]
\[\text{if}(y \neq 0.) \text{then} \]
\[y=y/x \]
\[a(i,m-1) \leftarrow y \]
\[\text{do } 14 \ j=m,n \]
\[a(i,j) \leftarrow a(i,j) \cdot y \cdot a(m,j) \]
\[\text{continue} \]
\[\text{do } 15 \ j=1,n \]
\[a(j,m) \leftarrow a(j,m) + y \cdot a(j,i) \]
\[\text{continue} \]
\[\text{endif} \]
\[\text{continue} \]
\[\text{endif} \]
\[\text{continue} \]
\[\text{return} \]
\[\text{END} \]

```
SUBROUTINE hqr(a,n,np,wr,wi)
imPLICIT REAL*8 (A-H,P-Z)
INTEGER n,np
REAL*8 a(np,np),wi(np),wr(np)
INTEGER i,its,j,k,l,m,n
REAL*8 anorm,p,q,r,s,t,u,v,w,x,y,z
anorm=ahs(a(l,l))
DO 12 i=2,n
   DO 11 j=i-1,n
      anorm=anorm+ahs(a(i,j))
   11 CONTINUE
12 CONTINUE
M=n
T=O.
IF(M.GE.1) THEN
   ITS=O.
   DO 13 L=M,2,-1
      S=ABS(A(L+1,L-1))+ABS(A(L,L))
      IF(S.EQ.0.) S=ANORM
      IF(ABS(A(L,L-1)+S.EQ.S) GO TO 3
   13 CONTINUE
L=1
X=A(N,N)
IF(L.EQ.NN) THEN
   WR(NN)=X+T
   WI(NN)=0.
   NN=NN-1
ELSE
   Y=A(NN-1,NN-1)
   W=A(NN,NN-1)*A(NN-1,NN)
```
if(l.eq.M-1)then
 p=0.5*(y-x)
 q=p**2+w
 z=sqrt(abs(q))
 x=x+t
 if(q.ge.0.)then
 z=p+sign(z,p)
 wr(nn)=x+z
 wr(nn-1)=wr(nn)
 if(z.ne.0.)wr(nn)=x-w/z
 wi(nn)=0.
 wi(nn-1)=0.
 else
 wr(nn)=x+p
 wr(nn-1)=wr(nn)
 wi(nn)=z
 wi(nn-1)=-z
 endif
 M=M-2
else
 if(itst.eq.30)pause 'too many iterations in hqr'
 if(itst.eq.1000)return
 if((itst/10)*10.eq.itst)then
 t=t+x
 do 14 i=1,nn
 a(i,i)=a(i,i)*x
 14 continue
 s=abs(a(nn,nn-1))+abs(a(nn-1,M-2))
 x=0.75*s
 endif
 itst=itst+1
 do 15 m=nn-2,1,-1
 z=a(m,m)
 r=x-z
 s=y-z
 p=(r*s-w)/a(m+1,m)+a(m,m+1)
 q=a(m+1,m+1)-z*r-s
 r=a(m+2,m+1)
 s=abs(p)+abs(q)+abs(r)
 p=p/s
 q=q/s
 r=r/s
 if(m.eq.1)goto 4
 u=abs(a(m,m-1))*(abs(q)+abs(r))
 v=abs(p)*(abs(a(m-1,m-1))+abs(z)+abs(a(m+1,m+1)))
 if(u+v.eq.0)goto 4
 15 continue
 4 do 16 i=m+2,nn
 a(i,i-2)=0.
 if (i.ne.m+2) a(i,i-3)=0.
 16 continue
 do 19 k=m,nn-1
 if(k.ne.m)then
 p=a(k,k-1)
 q=a(k+1,k-1)
 r=0.
 endif
if(k.ne.nn-l)r=a(k+2,k-1)
x=abs(p)+abs(q)+abs(r)
if(x.ne.0.)then
 p=p/x
 q=q/x
 r=r/x
 endif
endif
s=sign(sqrt(p**2+q**2+r**2),p)
if(s.ne.0.)then
 if(k.eq.m)then
 if(l.ne.m)a(k,k-l)=-a(k,k-1)
 else
 a(k,k-1)=-s*x
 endif
 p=p+s
 x=p/s
 y=q/s
 z=r/s
 q=q/p
 r=r/p
 do 17 j=k,nn
 p=a(k,j)+q*a(k+1,j)
 if(k.ne.nn-1)then
 p=p+r*a(k+2,j)
 a(k+2,j)=a(k+2,j)*p/z
 endif
 a(k+1,j)=a(k+1,j)*p*y
 a(k,j)=a(k,j)*p*x
 continue
 do 18 i=1,min(nn,k+3)
 p=x*a(i,k)+y*a(i,k+1)
 if(k.ne.nn-1)then
 p=p+z*a(i,k+2)
 a(i,k+2)=a(i,k+2)*p+r
 endif
 a(i,k+1)=a(i,k+1)*p*q
 a(i,k)=a(i,k)*p
 continue
 endif
 continue
 goto 2
 endif
endif
 goto 1
 endif
 return
 END

C (C) Copr. 1986-92 Numerical Recipes Software 41.9;%).1.

SUBROUTINE sort2a(n,arr,brr)
 implicit real*8 (a-h,p-z)
 real*8 arr(n),brr(n)
 real*8 t1(100),t2(100)
 do i = 1,n
 t1(i) = arr(i)
 t2(i) = brr(i)
 enddo
do i = 1,n
 amin=arr(i)
 imin=i
 do j = i+1,n
 if ((arr(j).ge.0.and.(amin.lt.0.or.arr(j).lt.amin)).or.
 (amin.lt.0.and.arr(j).lt.amin)) then
 amin = arr(j)
 imin = j
 endif
 enddo
 if (imin.ne.i) then
 temp = arr(i)
 arr(i) = arr(imin)
 arr(imin) = temp
 temp = brr(i)
 brr(i) = brr(imin)
 brr(imin) = temp
 endif
enddo
write(70,'(4e15.5)') arr(i),brr(i),tl(i),t2(i)
return
END

SUBROUTINE sort2(n,arr,brr)
INTEGER n,M,NSTACK
REAL*8 arr(n),brr(n)
PARAMETER (M=7,NSTACK=50)
INTEGER i,ir,j,jstack,k,l,istack(NSTACK)
REAL*8 a,b,temp
jstack=0
l=1
ir=n
1 if(ir-l.lt.M)then
 do 12 j=1+1,ir
 a=arr(j)
 b=brr(j)
 do 11 i=j-1,1,-1
 if(arr(i).le.a)goto 2
 arr(i+l)=arr(i)
 brr(i+l)=brr(i)
 11 continue
 i=0
2 arr(i+l)=a
 brr(i+l)=b
 continue
 if(jstack.eq.0)return
 ir=istack(jstack)
 l=istack(jstack-1)
 jstack=jstack-2
else
 k=(l+ir)/2
 temp=arr(k)
 arr(k)=arr(l+1)
 arr(l+1)=temp
 temp=brr(k)
brr(k)=brr(l+l)
brr(l+l)=temp
if(arr(l+l).gt.arr(ir))then
 temp=arr(l+l)
 arr(l+l)=arr(ir)
 arr(ir)=temp
 temp=brr(l+l)
 brr(l+l)=brr(ir)
 brr(ir)=temp
endif
if(arr(l).gt.arr(ir))then
 temp=arr(l)
 arr(l)=arr(ir)
 arr(ir)=temp
 temp=brr(l)
 brr(l)=brr(ir)
 brr(ir)=temp
endif
if(arr(l+l).gt.arr(l))then
 temp=arr(l+l)
 arr(l+l)=arr(l)
 arr(l)=temp
 temp=brr(l+l)
 brr(l+l)=brr(l)
 brr(l)=temp
endif
i=l+l
j=ir
a=arr(l)
b=brr(l)
continue
i=i+l
if(arr(i).lt.a)goto 3
continue
j=j-1
if(arr(j).gt.a)goto 4
if(j.lt.i)goto 5
 temp=arr(i)
 arr(i)=arr(j)
 arr(j)=temp
 temp=brr(i)
 brr(i)=brr(j)
 brr(j)=temp
 goto 3
 arr(l)=arr(j)
 arr(j)=a
 brr(l)=brr(j)
 brr(j)=b
jstack=jstack+2
if(jstack.gt.NSTACK)pause 'NSTACK too small in sort2'
if(ir-i+l.ge.j-1)then
 istack(jstack)=ir
 istack(jstack-1)=i
 ir=j-1
else
 istack(jstack)=j
 istack(jstack-1)=l
 i=i-1

subroutine sysid(iter,d,v,n,dt,ff,stm,ldstm,iconv,q,nq,nmaxq,
 iflut,idone)
implicit real*8 (a-h,p-z)
parameter (nmax=50,nlag=1)
real*8 c0(nmax,nmax),cl(nmax,nmax),dold(nmax),vold(nmax)
real*8 a(nmax,nmax),freq(nmax),damp(nmax)
real*8 freqold(nmax),dampold(nmax),delta(nlag+1,nmax)
real*8 d(n),v(n),p(nmax),aa,wr(nmax),wi(nmax)
real*8 stm(ldstm,2*n),a2(nmax,nmax)
complex*16 e
LOGICAL, sing
integer ifirst
save c0,cl,dold,vold,ifirst
data ifirst/l/
data tol/-1.d-6/
write(*,*) 'entered sysid. iter =',iter

C ==--- -__-_______--_-----_~-~-----------------~~~~-~~---~--~~---~~~----~---~~~~~~~~
C initialize covariance matrices.
C======----------==-------------
if (ifirst.eq.1) then
 write(*,*) 'in first loop.'
 ifirst = 0
 do i = 1,nmax
 do j = 1,nmax
 c0(i,j) = 0
 cl(i,j) = 0
 enddo
 enddo
C----------------===
C update CO (the covariance matrix at dt=0)
C--------------------===
else
 write(*,*) 'updating c0'
do i = 1,n
 do j = 1,n
 c0(2*i-1,2*j-1) = ff*c0(2*i-1,2*j-1)+dold(i)*dold(j)
 c0(2*i ,2*j-1) = ff*c0(2*i ,2*j-1)+vold(i)*dold(j)
 c0(2*i-1,2*j) = ff*c0(2*i-1,2*j)+dold(i)*vold(j)
 c0(2*i ,2*j) = ff*c0(2*i ,2*j)+vold(i)*vold(j)
 enddo
 c0(2*n+1,2*n+1) = c0(2*n+1,2*n+1)+1.0
 do i = 2,2*n+1
 do j = 1,i-1
 c0(i,j) = c0(j,i)
 enddo
 enddo
C==
C update cl (the transpose of the covariance matrix at dt=l)
write(*,*) 'updating cl'
do i = 1,n
do j = 1,n
c1(2*i-1,2*j-1) = ff*c1(2*i-1,2*j-1)+dold(i)*d(j)
c1(2*i ,2*j-1) = ff*c1(2*i ,2*j-1)+vold(i)*d(j)
c1(2*i-1,2*j) = ff*c1(2*i-1,2*j)+dold(i)*v(j)
c1(2*i ,2*j) = ff*c1(2*i ,2*j)+vold(i)*v(j)
endo
c1(2*i-1,2*n+l) = c1(2*i-1,2*n+l)+dold(i)
c1(2*i ,2*n+l) = c1(2*i ,2*n+l)+vold(i)
c1(2*n+1,2*i-1) = c1(2*n+1,2*i-1)+d(i)
c1(2*n+1,2*i) = c1(2*n+1,2*i)+v(i)
endo
c1(2*n+1,2*n+l) = c1(2*n+1,2*n+l)+1.0
eendif
C store the displacement and velocity information.
write(l9,*) 'd,v:'
do i = 1,n
write(l9,'(2e12.5)') dold(i),d(i)
write(l9, '(2e12.5)') vold(i),v(i)
endo
do i = 1,n
dold(i) = d(i)
vold(i) = v(i)
endo
write(l9,*) 'co: '
do i = 1,2*n+l
write(19,' (255e12.5) I) (cO(i,j),j=1,2*n+l)
endo
write(l9,*) 'cl: '
do i = 1,2*n+l
write(l9,'(255e12.5) 1) (cl(i,j),j=1,2*n+l)
endo
C perform the backsubstitution to get A (if co is non-singular).
call choldc(c0,2*n+1,nmax,p,sing)
write(*,*) 'q0:'
do i = 1,2*n
write(*,'(255e15.8) ') (q0(j),j=1,i-1),p(i),(c0(j,i),j=1,2*n)
endo
if (sing) goto 900
write(*,*) 'backsubstituting.'
call cholsl(c0,2*n+1,nmax,2*n,p,cl,a)
write(*,*) 'a:'
do i = 1,2*n+l
write(*, '(255e15.8) ') (a(i,j),j=1,2*n+l)
endo
do i = 1,2*n
do j = i+1,2*n+l
aa = a(i,j)
a(i,j) = a(j,i)
a(j,i) = aa
endo
enddo
write(*,*) 'a:'
don i = 1,2*n+1
 write(*,'(255e15.8)') (a(i,j),j=1,2*n+1)
enddo

find the frequencies and damping ratios.
write(*,*) 'computing frequencies.'
call elmhes(a,2*n,nmax)
call hqr(a,2*n,nmax,wr,wi)
call sort2a(2*n,wi,wr)
don i = 2,nlag
don j = 1,n
delta(i,j)=delta(i-1,j)
enddo
do i = 1,n
e = zlog(dcmplx(wr(i),wi(i)))/dt
freq(i) = abs(imag(e))/2/3.14159
damp(i) = real(e)/abs(e)
delta(i,i) = sqrt(((freq(i)-freqold(i))/freq(i))**2+
 ((damp(i)-dampold(i))/damp(i))**2)
enddo
don j = 1,n
delta(nlag+1,j) = 0
don i = 1,nlag
delta(nlag+1,j) = delta(nlag+1,j)+delta(i,j)
enddo
write(l6,'(255e15.5) ') (wr(i),wi(i),i=n+l,2*n)
check convergence of the frequencies & damping ratios.
dd = 0
don i = n+1,2*n
dd = dd+delta(nlag+1,i)
enddo
dd = dd/nlag/n
write(iconv,'(255e13.5)') (freq(i),damp(i),i=l,n),
 (delta(nlag+l,i),i=1, n),dd
don i = n+1,2*n
freqold(i) = freq(i)
dampold = damp(i)
if ((dd.ge.0.0d0 .and. dd.lt.tol).or.idone.ne.0) then
 reconstruct the A matrix.
call chois1(c0,2*n+1,nmax,2*n+1,p,cl,a)
don i = 1,2*n-1
don j = i+1,2*n
 aa = a(i,j)
a(i,j) = a(j,i)
a(j,i) = aa
enddo
enddo
write(*,*) 'a:'
do i = 1, 2*n
 write(*, '(255e15.8)') (a(i,j), j=1, 2*n)
enddo

c---------==-----------=====================------==============----------------
c
 do a flutter analysis to get q-g and q-f plots.
c==---------------
do iq = 0, nq
 do j = 1, 2*n
 do k = 1, 2*n
 a2(j,k) = stm(j,k) + (a(j,k) - stm(j,k)) * qq/q
 enddo
 enddo
write(*,*) 'a2:'
do i = 1, 2*n
 write(*, '(255e15.5) I) (a2(i,j),j=1,2*n)
enddo

call elmhes(a2, 2*n, nmax)
call hqr(a2, 2*n, nmax, wr, wi)
do i = 1, 2*n
 write(*,*) wr(i), wi(i)
e = zlog(dcmplx(wr(i), wi(i)))/dt
wi(i) = imag(e)/2/3.14159
wr(i) = real(e)/abs(e)*2
enddo
write(70,*) 'iq = *, iq

call sort2a(2*n, wi, wr)
do i = 1, n
 freq(i) = wi(i)
damp(i) = wr(i)
enddo
write(20, '(255e15.5)') qq*144, (freq(i), damp(i), i=1, n)
if (iq.gt.1) then
 do i = 1, n
 if (damp(i) * dampold(i).lt.0) then
 qqq = qq - (q*qmaxq/nq) * damp(i)/(damp(i) - dampold(i))
 f = freq(i) - (freq(i) - freqold(i)) * damp(i)/
 (damp(i) - dampold(i))
 write(iflut, '(26hflutter crossing for mode ,i3,6h at q=,
 f8.4,7h and f=,f8.4)') i-n, qqq, f
 endif
 dampold = damp(i)
 freqold(i) = freq(i)
 enddo
endif
idone = 1
endif
900 continue
return
end
Finite Element Model of FSM Including Wing Rail and Mounting Structure

Figure 1

LIMITED EXCLUSIVE RIGHTS NOTICE
These data are subject to limited exclusive rights under U.S. Government Contract NAS1-20220.
Volume Grid Over HSCT Flexible Semispan Model
- Far Field View: 65x241x49 Grid Points -
Time History of Generalized Displacements for Flexible Semispan Model (FSM)

CFL3D.AE-BA, Euler, $M_{\infty} = 0.80$, $\alpha = 2.0^\circ$, $q = 250$ psf, $65x241x49$ C-O Grid

Generalized Displacement

with structural damping
$\Delta t = 1.74 \times 10^{-3}$ secs

Figure 3
Time History of Generalized Displacements for Flexible Semispan Model (FSM)

CFL3D.AE-BA, Euler, $M_{\infty} = 0.80$, $\alpha = 2.0^\circ$, $q = 250$ psf, 65x241x49 C-O Grid

Generalized Displacement

-0.103

-0.104

-0.105

-0.106

-0.107

0.052

0.051

0.050

0.049

Time (seconds)

Generalized Displacement

0.0066

0.0062

0.0058

0.0054

0.0050

0.0049

Time (seconds)

Mode 1

- w/o structural damping
- init. gen. disp. vel. = 0.1
- $\Delta t = 1.74 \times 10^{-3}$ secs

Mode 4

Mode 3

Mode 6

LIMITED EXCLUSIVE RIGHTS NOTICE
These data are subject to limited exclusive rights under U.S. Government Contract NAS1-20220

Figure 4
Convergence of Modal Frequency Estimates

Figure 5
Convergence of Modal Damping Estimates

Figure 6
Q-F Plot Computed From Nonlinear Flutter Simulation.
Mach 0.80, $\alpha=2.0$ deg, $q_0=250$ PSF.

Figure 7:
Q-F Plot Computed From Linear Flutter Analysis.
Mach 0.80, a=2.0 deg, q0=250 PSF.
Q-G Plot Computed From Nonlinear Flutter Simulation.
Mach 0.80, \(a=2.0\) deg, \(q_0=250\) PSF.

Figure 9:
Q-G Plot Computed From Linear Flutter Analysis.
Mach 0.80, a=2.0 deg, q0=250 PSF.

![Figure 10](image)