MODIS On-orbit Calibration Uncertainty Assessment

Xiaoxiong (Jack) Xiong¹, Vincent Chiang², Junqiang Sun², and Aisheng Wu²

¹Sciences and Exploration Directorate, NASA/GSFC, Greenbelt, MD 20771, USA
²Sigma Space Co., 4801 Forbes Boulevard, Lanham, MD 20706, USA

ABSTRACT

MODIS has 20 reflective solar bands (RSB) and 16 thermal emissive bands (TEB). Compared to its heritage sensors, MODIS was developed with very stringent calibration uncertainty requirements. As a result, MODIS was designed and built with a set of on-board calibrators (OBC), which allow key sensor performance parameters and on-orbit calibration coefficients to be monitored and updated. In terms of its calibration traceability, MODIS RSB calibration is reflectance based using an on-board solar diffuser (SD) and the TEB calibration is radiance based using an on-board blackbody (BB). In addition to on-orbit calibration coefficients derived from its OBC, calibration parameters determined from sensor pre-launch calibration and characterization are used in both the RSB and TEB calibration and retrieval algorithms. This paper provides a brief description of MODIS calibration methodologies and an in-depth analysis of its on-orbit calibration uncertainties. Also discussed in this paper are uncertainty contributions from individual components and differences due to Terra and Aqua MODIS instrument characteristics and on-orbit performance.

Keywords: Terra, Aqua, MODIS, calibration, uncertainty