Building the International Space Station

Presentation to AIAA Greater New Orleans Section

Randy Galloway
NASA Stennis Space Center
November 7, 2011
EB-2011-11-00033-SSC
The Dream

- Building a Space Station was an early goal of Space pioneers
 - Willy Ley articles of the 1940s-1950s and *2001: A Space Odyssey* formed the popular idea of what one would be like
 - Large “wheel” type structures with artificial gravity at extremity, microgravity in the “hub”
 - This design has yet to be built
Von Braun Space Station Sketch (ca. 1947)
Early Models

- **U.S.**
 - Skylab
 - Launched 1973
 - 3 crewed missions 1973-74, 28-84 day missions
 - Abandoned and de-orbited (uncontrolled) in 1979

- **U.S.S.R.**
 - Salyut 1-7
 - 1971-1985
 - Evolutionary designs built by Russians for civilian and military use
 - Mir
 - 1986-2001
 - First true long duration space station and first with multiple international contributions
Skylab
(1973)
Salyut 7
(1985)
Beginnings

- Following Skylab, U. S. focused on development of Space Shuttle as follow on to Apollo with goal of making access to space cheaper and more routine
- Soviet success on operations of Salyuts through the late 70’s – early 80’s had created a perception that the U.S. and its allies were behind
- Desire to bridge the gap, while building on Free World partnerships already started on the Space Shuttle program, led President Reagan to ask NASA to begin a Space Station project in his 1984 State of the Union address
Definition Phase

- NASA began Phase A studies in 1984
 - Eventually settled on large dual keel truss with multiple large modules in racetrack configuration with large photovoltaic arrays and solar dynamic turbines
 - International contributions included robotics from Canada, modules from Europe and Japan
 - Multiple foci—satellite servicing, earth science, space science, microgravity science, materials research, biomedical research....
 - Work divided among 5 NASA Centers
 - Marshall Space Flight Center (MSFC)
 - Johnson Space Center (JSC)
 - Goddard Space Flight Center (GSFC)
 - Lewis Research Center (LeRC) (now Glenn)
 - Kennedy Space Center (KSC)
“Power Tower”
1984
Dual Keel Design (1986)
Development Starts

- In middle of Phase B studies, Space Shuttle *Challenger* accident occurred (January 1986)
 - Resulted in lowered flight rates and much lower payload capacity causing stretched out assembly sequence and more flights
 - NASA’s overall credibility questioned seriously
- New management model proposed (Level II at Reston, VA)
- Phase C/D contract awards made to Boeing (MSFC), McDonnell Douglas (JSC), GE (GSFC), Rocketdyne (LeRC), Grumman (Level II Integration) in 1987-88
“Freedom”
1988-1993

- Named Space Station “Freedom” by President Reagan in 1988
- Inter-governmental Agreement reached in 1988 that tied Canada, Japan, and Europe to the Program with contributions of modules and robotics
- The 1988-1993 period was marked by almost continual redesign and down-scoping for budgetary and technical reasons
 - Multiple changes to annual and run-out budgets
 - Weight / power requirements growth caused major scrubs and redesign of several elements
 - EVA projections for assembly and maintenance forced redesigns and drew major scrutiny from media and Congress
Faces of “Freedom”

1985

1987

1991
Winds of Change

- Combination of budget and technical concerns, an Administration change, and fall of the Communist bloc drove case for consideration of major changes to the Program in 1993
 - Sweeping redesign resulted in further de-scoping of U.S. contributions and addition of Russian modules to the Station to provide early power, guidance/control, and crew accommodations
 - Also moved management of the program to JSC and established a “single Prime” contractor, Boeing
 - Re-designated as the “International Space Station” or ISS
International Space Station

Created by a partnership of 5 space agencies representing 15 countries

Over 10 years and 32 missions to assemble
A collaboration of 5 space agencies
Assembly Comparison

The Pyramids
Most of them took about 27 years to build.

The Coliseum
It is one of the greatest works of Roman architecture and engineering. Took about 15 years to build.

Taj Mahal
The plinth and tomb took roughly 12 years to complete. The remaining parts of the complex took an additional 10 years.

The Washington Monument
The actual construction of the monument began in 1848 but was not completed until 1884.

Great Wall of China
The wall was constructed sporadically, starting in 221 B.C. during the Chin Dynasty, and ending in the 1500's during the Ming Dynasty, over 1700 years!

The Panama Canal
Although the concept the canal dates back to the early 16th century, the first attempt to construct a canal began in 1880. After this attempt failed, the project of building a canal was attempted and completed in the early 1900s, with the canal opening in 1914.
Agreements - Who Provides What?

- **SUPPLY CLOSETS**: Italy
- **KITCHEN/BATHROOMS**: U.S./Russia
- **HALLWAY**: ESA
- **BEDROOM FOR 3**: Russia
- **BEDROOM FOR 4**: U.S.
- **LABORATORY**: Japan
- **LABORATORY**: U.S.
- **LABORATORY**: ESA
- **LABORATORY**: Russia
- **BAY WINDOW**: ESA

ELECTRICITY
- U.S.
- Russia

ROBOT
- Canada

BACK PORCH
- Japan

Vehicles
- U.S.
- Russia
- Japan
- ESA
- Russia
- Japan
International Space Station Facts

Spacecraft Mass: ~862,000 lb
Velocity: 17,500 mph
Altitude: 220 miles above Earth
Habitable Volume: 13,696 cubic feet
Pressurized Volume: 32,333 cubic feet
Usual crew size: 6
International Space Station

Key Challenges

- Communication across languages, cultures, time zones
- Differences in technical approaches and understanding across Partners
- Hardware/software that would never see each other on the ground had to fit and function on-orbit
- Multi-generational Program (people and hardware)
- Change in orbital inclination from 28.5 (Freedom) to 51.6 degrees
- Declining industrial base in the United States
- Chaos in the Russian economy in the late 1990’s
- Extensive EVA requirements
- Application of product based management methods in midstream
- No dedicated system level qualification test articles on U.S. side—“hardware poor”
- Compliance with U.S. Export Control Laws in an International program
- Limited availability of personnel with spaceflight hardware development experience
ISS Key Lessons

- Stable, technically astute leadership and good relationships are essential
- Assure critical processes have adequate pathfinders done ahead of need
- Integrated testing must be a priority
 - Deletion of dedicated system level test beds is a false economy
 - Cost of schedule delays in a large program will eat any savings quickly
 - Must have purpose built, high fidelity hardware/software integration laboratories
 - Multi-Element Integrated Testing was the **most critical** investment for the early success of ISS (even though it was added late)
- Overdependence on a single supplier can have dire consequences
- Investments in EVA tools, simulation, and training were well justified by the results achieved
- Unwavering dedication to testing and understanding/solving anomalies pays off in mission success—"it all **has to work**"
- Use caution in applying product based management structures as they can dilute checks and balances, particularly in specialized disciplines (e.g. stress)
- There is no substitute for experience in spaceflight hardware development
 - Space Stations are not airplanes!
- A combination of strategically employed mockups, fit checks, and optical imaging/virtual assembly techniques was essential to assure that on-orbit fit up would be successful
Node 1 “Unity”
United States Laboratory
“Destiny”
Multi-Element Integrated Testing at Kennedy Space Center
Crew and Cargo Capability

Space Shuttle (Retired 2011)

Future U.S. crew capability being developed by Commercial Crew and Cargo Development (CCDEV) Program

Soyuz
Cargo Capacity: 3 crew
An International fleet of space vehicles that delivers propellant, supplies and replenishes science experiments
ISS Cargo Vehicles

ATV (ESA)
- Cargo Capacity: 5,500 kg

Cygnus (Orbital)
- Cargo Capacity: 2,000 kg

HTV (JAXA)
- Cargo Capacity: 5,500 kg

Dragon (SpaceX)
- Cargo Capacity: 3,100 kg ascent

Progress
- Cargo Capacity: 2,250 kg
Exercising in Space

Russian Treadmill

CEVIS
Cycle Ergometer with Vibration Isolation System

COLBERT
Combined Operational Load Bearing Exercise Treadmill

ARED
Advanced Resistance Exercise Device

Russian Cycle Ergometer
Working in Space (EVAs) - 161 Total Spacewalks
Robotics
Support Assembly and Maintenance
Robotics
Working in Space
International Space Station Unique Features

• Robust, continuous, sustainable microgravity platform
• Continuous human presence in space
• Access to the ultra high vacuum of space
• 30kw steady state power for payloads
• Unique altitude for observation and testing
• Payload to orbit and return capability
Why Microgravity Research?

- Gravity is a constant force on Earth
- It cannot be completely controlled or removed in experiments
- It dominates and masks other forces in processes
- The ISS provides a laboratory environment to control this force

A candle flame in Earth’s gravity (left) and microgravity (right) showing the difference in the processes of combustion in microgravity
Internal Research Accommodations

Architecture based on **Modular** racks

Modularity = maintainable, reconfigurable, interchangeable between ESA, JAXA, NASA

34 Total Racks
Material Science Glove Box

Provides a safe environment for research with liquids, combustion, and hazardous materials

Being modified to support Biology and Bio-technology
Minus Eighty-degree Laboratory Freezer for ISS (MELFI)

Provides thermal conditioning at +4°C, -26°C and -80°C for sample (blood, urine, tissue, etc) preservation

3 Units on-orbit
Two growth chambers; each chamber is a closed system capable of independently controlling temperature, illumination, and atmospheric composition to grow a variety of biological organisms.
Biological Experiment Laboratory (BioLab)

Used to perform space biology experiments on microorganisms, cells, tissue cultures, small plants, and small invertebrates.

It includes a incubator with microscope, spectrophotometer, and two centrifuges, glove box and two cooler/freezer units.
Human Research Facility (HRF)

2 Human Research Facility (HRF) Racks - Biomedical investigations, including ultrasound, body mass measurement, metabolic gas analysis, pulmonary monitoring, ambulatory blood pressure measurement, Holter monitor, and experiment unique hardware
External Research Accommodations

22 External Research Facilities (including Alpha-Magnetic Spectrometer)
Working in Space - Windows to the Earth

Service Module Window
40-cm diameter
NADIR view
Window Observation Research Facility (WORF)

US Laboratory Window
50-cm diameter
Telescope-quality optical glass
NADIR view

Facility to support visual and multispectral remote sensing using Lab Optical Window
Working in Space (Earth Observations)
Crew Earth Observation

Targets of opportunity are uplinked each day to the crew based on that day’s orbital track.

Human disasters

Gulf of Mexico Oil Spill, 4 May 2010, ISS023-E-32397
Crew Earth Observation

Geologic phenomena

Sarychev Peak, Kuril Islands, ISS020-E-9048, 12 June 2009
Working in Space
(Earth Observations)
Working in Space (Earth Observations)
Working in Space (Earth Observations)
Crew Earth Observation (CEO)

Recognize this?

Land use, agriculture studies and urban growth
Summary

27 years after President Reagan’s call, humankind has completed its first permanent collaborative Space outpost, continuously inhabited for over 10 years.

The International Space Station is providing the capability to do multi-faceted research that expands our knowledge of the universe, enhances life on Earth, and enables human Exploration beyond Earth orbit.

Even though the Space Shuttle has retired, the United States continues to have an active human spaceflight program with ISS as its centerpiece.
ISS Sightings

http://www.jsc.nasa.gov/sightings/
REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. **REPORT DATE** (DD/MM/YYYY) 2. **REPORT TYPE** 3. **DATES COVERED** (From - To)
 07-11-2011 Oral Presentation NA

4. **TITLE AND SUBTITLE**
 Building the International Space Station
 Presentation to AIAA Greater New Orleans Section

5a. **CONTRACT NUMBER** NA
5b. **GRANT NUMBER**
5c. **PROGRAM ELEMENT NUMBER**

6. **AUTHOR(S)**
 Thomas R. Galloway

5d. **PROJECT NUMBER** NA
5e. **TASK NUMBER**
5f. **WORK UNIT NUMBER**

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 NASA Stennis Space Center
 Engineering and Test Directorate
 SSC MS 39529

8. **PERFORMING ORGANIZATION REPORT NUMBER**
 EB-2011-11-00033-SSC

9. **SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**
 Same as above

10. **SPONSORING/MONITOR’S ACRONYM(S)**
 NASA SSC

11. **SPONSORING/MONITORING REPORT NUMBER**

12. **DISTRIBUTION/AVAILABILITY STATEMENT**
 Public

13. **SUPPLEMENTARY NOTES**

14. **ABSTRACT**
 A Powerpoint presentation of the history and building of the International Space Station, which the author worked on from 1986-2003.

15. **SUBJECT TERMS**

16. **SECURITY CLASSIFICATION OF:**
 a. **REPORT** b. **ABSTRACT** c. **THIS PAGE**
 U U U

17. **LIMITATION OF ABSTRACT**
18. **NUMBER OF PAGES**
 52
19a. **NAME OF RESPONSIBLE PERSON**
 Thomas R. Galloway
19b. **TELEPHONE NUMBER (Include area code)**
 (228) 688-3281